
04/07/08 15-494 Cognitive Robotics 1

Robot Learning

15-494 Cognitive Robotics
David S. Touretzky &
Ethan Tira-Thompson

Carnegie Mellon
Spring 2008

04/07/08 15-494 Cognitive Robotics 2

What Can Robots Learn?

● Parameter tuning, e.g., for a faster walk

● Perceptual learning: ALVINN driving the Navlab

● Map learning, e.g., SLAM algorithms

● Behavior learning; plans and macro-operators

– Shakey the Robot (SRI)

– Robo-Soar

● Training by operant conditioning (reinforcement)

– Skinnerbots

04/07/08 15-494 Cognitive Robotics 3

AIBO Walk Optimization

● How fast can an AIBO walk? Figures from Kohl & Stone,
ICRA 2004, for the ERS-210 model:

– CMU (2002) 200 mm/s

– German Team 230 mm/s

– UT Austin Villa 245 mm/s

– UNSW 254 mm/s

– Hornsby (1999) 170 mm/s

– UNSW 270 mm/s

– UT Austin Villa 291 mm/s

 Hand-tuned gaits

 Learned gaits

04/07/08 15-494 Cognitive Robotics 4

Walk Parameters

12 parameters to optimize:

● Front locus (height, x pos, ypos)

● Rear locus (height, x pos, y pos)

● Locus length

● Locus skew multiplier
(in the x-y plane, for turning)

● Height of front of body

● Height of rear of body

● Foot travel time

● Fraction of time foot is on ground

From Kohl & Stone (ICRA 2004)

04/07/08 15-494 Cognitive Robotics 5

Optimization Strategy

● “Policy gradient reinforcement learning”:

– Walk parameter assignment = “policy”

– Estimate the gradient along each dimension by trying
combinations of slight perturbations in all parameters

– Measure walking speed on the actual robot

– Optimize all 12 parameters simultaneously

– Adjust parameters according to the
estimated gradient.

04/07/08 15-494 Cognitive Robotics 6

Kohl & Stone Results

● Used three robots

– 23 iterations

– 1000 total runs

– elapsed time 3 hours

● Final speed 291 mm/s:
 faster than any other
AIBO walk

● Videos: initial walk
(clumsy 150 mm/s),
final walk

04/07/08 15-494 Cognitive Robotics 7

Kohl & Stone Results

● Initial result was for optimizing walking speed alone.

● But stability is also important:

– Bouncy walk makes vision hard

● Later experiments optimized for a combination of speed
and stability.

● Also applied the technique to the ERS-7

(videos)

04/07/08 15-494 Cognitive Robotics 8

Perceptual Learning

● ALVINN (Autonomous Land Vehicle in a Neural Network)
learns to drive the Navlab

04/07/08 15-494 Cognitive Robotics 9

ALVINN

04/07/08 15-494 Cognitive Robotics 10

ALVINN Training

● Watched a human drive for a few minutes

● Used clever techniques to expand the training set

● Maintained a pool of 200 training images

● Trained on the fly

04/07/08 15-494 Cognitive Robotics 11

Map Learning

● Lots of work on learning maps

– from sonar data

– from laser rangefinder data

– using visual landmarks

● Dieter Fox et al., particle filters for map learning

● SLAM: Simultaneous Localization and
Mapping

– many algorithms, all based on probabilistic
approaches like particle filters

04/07/08 15-494 Cognitive Robotics 12

Shakey the Robot

● SRI International,
 1968-1972

● Remote controlled
by a PDP-10

● Programmed in
Lisp and a theorem
proving planner
called STRIPS

04/07/08 15-494 Cognitive Robotics 13

Learning Blocks World Plans

● Shakey learned plans for manipulating blocks by pushing
them around.

04/07/08 15-494 Cognitive Robotics 14

Sample Problem

Initial model:
 INROOM(robot,R1)
 CONNECTS(D1,R1,R2)
 CONNECTS(D2,R2,R3)
 BOX(BOX1)
 INROOM(BOX1,R2)
 (xy) [CONNECTS(d,x,y) 
 CONNECTS(d,y,x)]

Goal:
 (x) [BOX(x) & INROOM(x,R1)]

Available operators:
 GOTHRU(d,r1,r2)
 PUSHTHRU(b,d,r1,r2)

04/07/08 15-494 Cognitive Robotics 15

GOTHRU Preconditions;
Add and Delete Lists

● Operator: GOTHRU(d,r1,r2)

● Precondition:
 INROOM(ROBOT,r1) & CONNECTS(d,r1,r2)

● Delete list: INROOM(ROBOT, $)

● Add list: INROOM(ROBOT, r2)

04/07/08 15-494 Cognitive Robotics 16

PUSHTHRU Preconditions;
Add and Delete Lists

● Operator: PUSHTHRU(b,d,r1,r2)

● Precondition:
 INROOM(b, r1) & INROOM(ROBOT,r1)
 & CONNECTS(d,r1,r2)

● Delete list: INROOM(ROBOT, $), INROOM(b, $)

● Add list: INROOM(ROBOT, r2), INROOM(b, r2)

04/07/08 15-494 Cognitive Robotics 17

Solving the Problem

● Goal G0: (x) [BOX(x) & INROOM(x,R1)]

– Not satisfied in current model

– But PUSHTHRU could make INROOM(BOX1,R1) true

● Precondition for PUSHTHRU gives subgoal G1:
 INROOM(BOX1,r1) & INROOM(ROBOT,r1)
 & CONNECTS(d,r1,R1)

– Not satisfied in current model

– But if r1=R2 and d=D1, the operator could apply

– Need INROOM(ROBOT,R2)

● Precondition for GOTHRU gives subgoal G2:
 INROOM(ROBOT,r1) & CONNECTS(d,r1,R2)

04/07/08 15-494 Cognitive Robotics 18

Solving the Problem

● Apply operator GOTHRU(D1,R1,R2)

● New model M1:
 INROOM(ROBOT,R2)
 CONNECTS(D1,R1,R2)
 CONNECTS(D2,R2,R3)
 BOX(BOX1)
 INROOM(BOX1,R2)

● Apply operator PUSHTHRU(BOX1,D1,R2,R1)

● Goal G0 has now been achieved.

04/07/08 15-494 Cognitive Robotics 19

Shakey's Full Environment

04/07/08 15-494 Cognitive Robotics 20

Macro Operators (MACROPs)

● Idea: extract general plans from solutions to specific
problems.

● Reuse those plans in novel contexts by rebinding
variables and/or deleting irrelevant steps.

● “Triangle table” defines
additions/deletions for each
operator in a plan.

● Reasoning algorithm
determines which clauses
are relevant to the new
plan.

04/07/08 15-494 Cognitive Robotics 21

Marked Clauses
● Clauses are “marked” if

needed to prove the
precondition of the
operator in that row.

● Unneeded clauses are
deleted.

04/07/08 15-494 Cognitive Robotics 22

Resulting MACROP

04/07/08 15-494 Cognitive Robotics 23

SOAR
● SOAR is a cognitive modeling architecture originally

developed by Allen Newell and his students at CMU.

04/07/08 15-494 Cognitive Robotics 24

SOAR

● SOAR uses production rules to match items in working
memory, update the memory, and initiate actions.

● An impasse (failure to match) leads to subgoal creation.

● Chunking is used to abstract and remember production
sequences.

04/07/08 15-494 Cognitive Robotics 25

Robo-SOAR

● Laird, Yager, and Hucka (1991)

● Extended SOAR to allow control of a Puma 560 arm

● Solved simple blocks world problems

● Two block types: cubes and pyramids

● Initial plan to pick up a pyramid fails
when gripper not oriented correctly.

04/07/08 15-494 Cognitive Robotics 26

Skinnerbots
(Touretzky & Saksida)

● Can we apply Skinnerian (operant) conditioning to robots?

– Represent behaviors as schemas with modifiable preconditions

– Use reward signal to train the robot

– Try to infer preconditions from context + reward

04/07/08 15-494 Cognitive Robotics 27

Schema Representation

04/07/08 15-494 Cognitive Robotics 28

Example of a Precondition

04/07/08 15-494 Cognitive Robotics 29

Machine Learning Algorithms
Applied to the AIBO

– Temporal Difference (TD)
learning for classical
conditioning

– Two-armed bandit
 learning problem

04/07/08 15-494 Cognitive Robotics 30

Potential for Learning in
Tekkotsu

● Currently there is map learning (MapBuilder)

● Cognitive robotics student project (2006): interface to
ACT-R

● New ideas:

– Provide a way to supply reward signals

– Provide some persistence of memory across reboots via a
facility for storing variables on the memory stick.

