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What Can Robots Learn?

● Parameter tuning, e.g., for a faster walk

● Perceptual learning:  ALVINN driving the Navlab

● Map learning, e.g., SLAM algorithms

● Behavior learning; plans and macro-operators

– Shakey the Robot (SRI)

– Robo-Soar

● Training by operant conditioning (reinforcement)

– Skinnerbots
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AIBO Walk Optimization

● How fast can an AIBO walk?  Figures from Kohl & Stone, 
ICRA 2004, for the ERS-210 model:

– CMU (2002) 200 mm/s

– German Team 230 mm/s

– UT Austin Villa 245 mm/s

– UNSW 254 mm/s

– Hornsby (1999) 170 mm/s

– UNSW 270 mm/s

– UT Austin Villa 291 mm/s

                                         Hand-tuned gaits

                                     Learned gaits
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Walk Parameters

12 parameters to optimize:

● Front locus (height, x pos, ypos)

● Rear locus (height, x pos, y pos)

● Locus length

● Locus skew multiplier
(in the x-y plane, for turning)

● Height of front of body

● Height of rear of body

● Foot travel time

● Fraction of time foot is on ground

From Kohl & Stone (ICRA 2004)
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Optimization Strategy

● “Policy gradient reinforcement learning”:

– Walk parameter assignment = “policy”

– Estimate the gradient along each dimension by trying 
combinations of  slight perturbations in all parameters

– Measure walking speed on the actual robot

– Optimize all 12 parameters simultaneously

– Adjust parameters according to the
estimated gradient.
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Kohl & Stone Results

● Used three robots

– 23 iterations

– 1000 total runs 

– elapsed time 3 hours

● Final speed 291 mm/s:
 faster than any other 
AIBO walk

● Videos: initial walk 
(clumsy 150 mm/s), 
final walk
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Kohl & Stone Results

● Initial result was for optimizing walking speed alone.

● But stability is also important:

– Bouncy walk makes vision hard

● Later experiments optimized for a combination of speed 
and stability.

● Also applied the technique to the ERS-7

(videos)
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Perceptual Learning

● ALVINN (Autonomous Land Vehicle in a Neural Network) 
learns to drive the Navlab
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ALVINN
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ALVINN Training

● Watched a human drive for a few minutes

● Used clever techniques to expand the training set

● Maintained a pool of 200 training images

● Trained on the fly
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Map Learning

● Lots of work on learning maps

– from sonar data

– from laser rangefinder data

– using visual landmarks

● Dieter Fox et al., particle filters for map learning

● SLAM: Simultaneous Localization and
Mapping

– many algorithms, all based on probabilistic
approaches like particle filters
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Shakey the Robot

● SRI International,
 1968-1972

● Remote controlled
by a PDP-10

● Programmed in
Lisp and a theorem
proving planner
called STRIPS
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Learning Blocks World Plans

● Shakey learned plans for manipulating blocks by pushing 
them around.
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Sample Problem

Initial model:
  INROOM(robot,R1)
  CONNECTS(D1,R1,R2)
  CONNECTS(D2,R2,R3)
  BOX(BOX1)
  INROOM(BOX1,R2)
  (xy) [CONNECTS(d,x,y) 
            CONNECTS(d,y,x)]

Goal:
  (x) [BOX(x) & INROOM(x,R1)]

Available operators:
  GOTHRU(d,r1,r2)
  PUSHTHRU(b,d,r1,r2)
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GOTHRU Preconditions;
Add and Delete Lists

● Operator:  GOTHRU(d,r1,r2)

● Precondition:
   INROOM(ROBOT,r1)  &  CONNECTS(d,r1,r2)

● Delete list:  INROOM(ROBOT, $)

● Add list:  INROOM(ROBOT, r2)
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PUSHTHRU Preconditions;
Add and Delete Lists

● Operator:  PUSHTHRU(b,d,r1,r2)

● Precondition:
   INROOM(b, r1)  &  INROOM(ROBOT,r1)
          &  CONNECTS(d,r1,r2)

● Delete list:  INROOM(ROBOT, $),  INROOM(b, $)

● Add list:  INROOM(ROBOT, r2),  INROOM(b, r2)
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Solving the Problem

● Goal G0: (x) [BOX(x) & INROOM(x,R1)]

– Not satisfied in current model

– But PUSHTHRU could make INROOM(BOX1,R1) true

● Precondition for PUSHTHRU gives subgoal G1:
   INROOM(BOX1,r1) & INROOM(ROBOT,r1)
        &  CONNECTS(d,r1,R1)

– Not satisfied in current model

– But if r1=R2 and d=D1, the operator could apply

– Need INROOM(ROBOT,R2)

● Precondition for GOTHRU gives subgoal G2:
   INROOM(ROBOT,r1)  &  CONNECTS(d,r1,R2)
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Solving the Problem

● Apply operator GOTHRU(D1,R1,R2)

● New model M1:
    INROOM(ROBOT,R2)
  CONNECTS(D1,R1,R2)
  CONNECTS(D2,R2,R3)
  BOX(BOX1)
  INROOM(BOX1,R2)

● Apply operator PUSHTHRU(BOX1,D1,R2,R1)

● Goal G0 has now been achieved.
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Shakey's Full Environment
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Macro Operators (MACROPs)

● Idea: extract general plans from solutions to specific 
problems.

● Reuse those plans in novel contexts by rebinding 
variables and/or deleting irrelevant steps.

● “Triangle table” defines
additions/deletions for each
operator in a plan.

● Reasoning algorithm
determines which clauses
are relevant to the new
plan.
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Marked Clauses
● Clauses are “marked” if 

needed to prove the 
precondition of the 
operator in that row.

● Unneeded clauses are 
deleted.
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Resulting MACROP
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SOAR
● SOAR is a cognitive modeling architecture originally 

developed by Allen Newell and his students at CMU.
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SOAR

● SOAR uses production rules to match items in working 
memory, update the memory, and initiate actions.

● An impasse (failure to match) leads to subgoal creation.

● Chunking is used to abstract and remember production 
sequences.
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Robo-SOAR

● Laird, Yager, and Hucka (1991)

● Extended SOAR to allow control of a Puma 560 arm

● Solved simple blocks world problems

● Two block types: cubes and pyramids

● Initial plan to pick up a pyramid fails
when gripper not oriented correctly.



04/07/08 15-494 Cognitive Robotics 26

Skinnerbots
(Touretzky & Saksida)

● Can we apply Skinnerian (operant) conditioning to robots?

– Represent behaviors as schemas with modifiable preconditions

– Use reward signal to train the robot

– Try to infer preconditions from context + reward
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Schema Representation
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Example of a Precondition
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Machine Learning Algorithms
Applied to the AIBO

– Temporal Difference (TD)
learning for classical
conditioning

– Two-armed bandit
 learning problem
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Potential for Learning in 
Tekkotsu

● Currently there is map learning (MapBuilder)

● Cognitive robotics student project (2006):  interface to 
ACT-R

● New ideas:

– Provide a way to supply reward signals

– Provide some persistence of memory across reboots via a 
facility for storing variables on the memory stick.


