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Probabilistic Robotics

● The world is uncertain:

– Sensors are noisy and inaccurate.

– Actuators are unreliable.

– Other actors can affect the world.

● Embrace the uncertainty!

● How?

– Explicitly model our uncertainty about sensors and actions.

– Replace discrete states with beliefs: probability 
distributions over states.

– Use Bayesian reasoning to update our beliefs.



03/19/14 15-494 Cognitive Robotics 4

Some Notation

● x
t
 = state at time t

● u
t
 = control signal at time t

● z
t
 = sensor input at time t

● We don't know x
t
 with certainty; 

we have a priori beliefs about it:

bel(x
t
) = p(x

t
 | z

1:t-1
, u

1:t
)

● New sensor data updates our belief:

bel(x
t
) = p(z

t
 | x

t
) · bel(x

t
)
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Beliefs      

Figures from Thrun, Burgard, and Fox (2005) 
Probabilistic Robotics

are probability distributions
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Parametric Representations

● Represent a probability distribution using an analytic 
function described by a small number of parameters.

● Most common example: Gaussian (Kalman filter)

Figure from Thrun, Burgard, and 
Fox (2005) Probabilistic Robotics
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Parametric Representations (2)

● Good points:

– Compact representation: just a few numbers

● For a Gaussian: mean  and variance 

– Fast to compute

– Nice mathematical properties

● Drawbacks:

– May not match the data very well

– Can give bad results if the fit is poor
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Nonparametric Representations

● No preconceived formula for the distribution.

● Instead, maintain a representation of the actual 
distribution, via sampling.

● Example: histogram

● Good points:

– Can represent arbitrary distributions

● Drawbacks:

– Requires more storage

– Expensive to update
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Particle Filters

● A particle filter is a non-parametric representation of a 
probability distribution based on sampling.

● Each particle is a sample.

● As the distribution shifts
due to new information,
we resample it.

Figures from Thrun, Burgard, and Fox (2005) 
Probabilistic Robotics
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Particle Filters and Localization

● We can use a particle filter to represent the distribution 
of hypotheses about the robot's pose (location and 
orientation).

● Two types of updates: motion, and sensor readings.

● Self-motion information (odometry) u
t
:

– Noisy: describe the noise using a motion model.

– Drag the particles along.

● Sensor information (landmarks) z
t
:

– Noisy: describe the noise using a sensor model.

– Weight the particles based on their sensor predictions.

– Resample based on the weighting in order to approximate 
the new distribution p(z

t
|x

t
) · p(x

t
|x

t-1
,u

t
).
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Tekkotsu Particle Filter Demo
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Initial World Map
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Randomize the Particles
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Sensor Input
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Localize
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Move 3 Meters to the East
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Relocalize (Cheat)
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Motion Model p(x
t
|x

t-1
,u

t
)

  Moderate                        High                           High
Noise  Values                Translational               Rotational

Figures from Thrun, Burgard, and 
Fox (2005) Probabilistic Robotics
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Sensor Model

● Try to model uncertainty in sensor data.

● Lots of work on rangefinder noise models.

● For visual landmarks:

– Distance estimates might have variance proportional to the 
mean.

– Bearing estimates might have variance inversely 
proportional to distance.

● Tekkotsu doesn't currently implement this.
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Resampling

● Resampling generates a new set of particles.

● The alternative is to keep adjusting the weights on the 
existing set.

● When to resample?

– If the variance on the weights is high, then many particles 
are representing non-useful portions of the space.

– Resampling redistributes the particles so they are 
concentrated where the probability density is highest.

● Problem: we want to sample bel(x
t
) but we have no 

representation for it. We have bel(x
t
) and p(z

t
|x

t
).

● Solution: importance sampling.



03/19/14 15-494 Cognitive Robotics 21

Importance
Sampling

● Want to sample from f.

● Can only sample from g.

● Weight each sample
by f(x) / g(x).

● The weighted samples
approximate f.

● g is bel(x
t
)

● Weighting comes from
p(z

t
|x

t
)

Figure from Thrun, Burgard, and 
Fox (2005) Probabilistic Robotics
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Tekkotsu's Particle Filter

● Generic particle filter: templated class.

Shared/ParticleFilter.h

● For localization:

Localization/ShapeBasedParticleFilter.h

Localization/LocalizationParticle.h

Localization/CreateMotionModel.h

Localization/ShapeSensorModel.h
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Demos

● PilotDemo allows you to experiment with the particle 
filter.  Commands:

– rand: randomize the particles

– loc: localize

– disp n: display n particles

● Particle Filter Bingo (coming soon)

– Trace the weighting of particles as sensor data comes in.
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