CS495 T. C. Mowry
Parallel Computer Architecture and Programming Date: 01/25/02
Spring 2002

ANL Parallel Processing Maco Package Tutorial

Intr oduction

The Agonne National Laboratoiy/(ANL) parallel processing macro packagevptes a
virtual machine that consists of a shared global memory and a number of processors with their
own local memoryThe macros themseads are a set of process control, synchronization, and
communication primities implemented as C-languagé macros.

The use of macros has the adtage of portabilityUnfortunatelythe use of macros also
makes dehigging more dficult, since error messages aregyi in reference to the C program
generated from the original program. (While these problewesl@en resokd in the subsequent
“p4” macros from ANL, unfortunately | @ not been able to find @non of “p4” which has
been ported to SGI Origin machines—if you find one, let m&kno

This document describes a subset of the ANL macros as an introduction to their use. A more
complete description of the ANL macro package appedpsriable Programs for Parallel Pro-
cessors by Ewing Lusk et. a, published by Holt, Rineharington, Inc., Ne/ York.

Macro Description

In this document the macros are grouped by functionr@mment specification, process
control, shared memory allocation, synchronization and timing. Notice that some mageog e
into definitions or declarations of data structures, while otkgaired into gecutable code.

Environment Specification Macos

Some of the macros assume tRistence of certain data structures. The MAIN_ENV and
the EXTERN_ENV macros contain the necessary definitions and declarations; MAIN_INITENV
performs the required initialization.

MAIN_ENV contains types and structures used internally in the macro package. It should appear
in exactly one file (typically the main file) in the static definitions section before@ter
macros usage.

EXTERN_ENV contains definitions and&rnal declarations and should appear in the static
definitions section of each separately compiled module in which MAIN_ENV does not
appear

MAIN_INITENV is an eecutable macro that initializes data structures defined by MAIN. ENV
The code generated by this macro mustdeeeted before that of giother macro, thus typ-
ically appearing &ry early in the program’main function.

MAIN_END should be placed at the end of your main routine, just before your progitanite
cleans up anstructures used by the ANL macros. On the SGI machine, ivesvay
shared memory which has been allocatexli rviust put this in all your programs toaid
leaving shared memory allocated when your prograitse

Page 1 of 4

Shared Memory Allocation M acros

It is a good idea to declare a single structuregsay, as global memoryand use a single
call to G_MALLOC to allocate this structure, say ariablegm. Parts of global memory can then
be referenced agn->someVar.

G_MALLOC(size) behaes like the Unix/C malloc call)eept that the pointer returned points to
globally shared memory which is accessible to all pointensetample,

gm= (struct gmt*)G MALLOC(si zeof (struct gmt));
wheregm t is a structure declared earlier

G_FREE(ptr) de-allocates memory allocated by G_MALLOC, and is similar to the Unix/C free
procedure.

Process Control M acros

CREATE(entryProc) causes a process to be created and sectigng the procedumntryProc.
No aguments can be passed to the peocess, or as parametergmtryProc. The process
is a Unix-style process and, iact, CREAE uses théork system call.

Each process will be assigned to dedtdnt processor until there are no processors left. Pro-
cesses are Unix processes, and compete for system resources with all other processes on the
system. As one auld expect, process creation is typically relaty slav, which sets a

lower limit to useful task granularity

Note: At the point when a process is created, all of the pargatic data, including the
pointer to global shared memorycopied once into a separate address space for the created
process. The only memory that is shared is the menxphicely allocated by

G_MALLOC. Globally allocated data is static.

WAIT_FOR_END(nProcs) waits fornProcs processes created by this processib e

Synchronization Macros

There are macros praled for locking, barriers, and distuted loops. In each case, there is
a macro for declaration (its name ends in DE declaration macro should appear within a
structure that is allocated with G_MALLOC, so that it will be globally shared and accessible to
all processes. Another macro contains initialization code (its name ends inthiiliRifializa-
tion must occur before any use.

L ock Macros
L OCKDEC(lockName) contains a lock declaration.

L OCKINIT (lockName) initializes the lockockName.

L OCK (lockName) attempts to acquirenmership of the lock namddckName. If no other pro-
cess currentlywns the lock, then the process becomes wreeo of the lock and proceeds.
Otherwise, it is delayed until it can acquire the lock.

UNL OCK (lockName) relinquishes wnership of the lock namédckName. If other processes are
waiting to acquire the lock, one of them will succeed.

Page 2 of 4

When multiple locks need to be acquired, deadlocks can.ddedraps the simplest strgye
to avoid deadlocks in this case is tovhaall processes acquire the locks in the same.order

If the created processes all try to output to standard output at once, there can be trouble - so
use a lock to access standard output, or let only the main process generate output.

Barrier Macros

A barrier is used to hold processes at a particular pama program until a specified num-
ber of processes W@ reachegb.

BARDEC(barName) declares a barrier with thevgh name.
BARINIT(barName) is an &ecutable macro that initializes the barrier

BARRIER(barName, nProcs) stops all processes reaching this barrier aitibcs processes
have reached it. When that happens,

1. BarrierbarName is reinitialized; it is not necessary to calBINIT(barName) again.
2. All the processes continue on from th®RERIER statement.

Distributed L oops. Get Subscript

These macros aid in coordinating a disttdadl or self-scheduled loop. A self-scheduled loop
is executed in parallel; each process dynamically acquires #té@etion to bexeecuted (in this
case, by first obtaining its corresponding dalue).

GSDEC(name) declares an instance of a distrtidd loop.
GSINIT (name) initializes internal ariables of the distrilted loop.

GET SUB(name, subscript, maxSub, nProcs) setssubscript to the n&t available subscript. When
all subscripts in the range On@xSub (inclusive) have been returned, the folling will
happen to a procesgexuting GETSUB, in that order:

1. The GETSUB operation is delayed unirocs processes lva requested an out-of-range
subscript.

2. Loop instanceame is reinitialized; it is not necessary to call GSINidife) again.
3. A value of -1 is returned faubscript.

NOTE: a common mistakis to pass in thaddress of an object as one of thegaments to GET-
SUB—instead, you should pass in tiane of the object (the address of the object igtak
implicitly as part of macroxgansion).

Timing Macros

Execution time of part or whole programs can be measured using the CLOCK macro. It
gives the current elapsed time in some time unit (1 microsecond on the KSR and SGI), no actual
CPU time, which means that it is important in general that no other programs run during time
measurements.

CLOCK (time) sets time to the current timealue, from 0 to %° - 1, where time is declared as:
unsigned int tine;

Page 3 of 4

Since the timer is a systema timer; it's possible for thealue to wrap around while your
program is running. This means that you should output both the start and end time, as well
as the actual elapsed time (thdafiénce). Then you can check whether the timer wrapped
around while the programas eecuting.

Using the ANL Macroson the NCSA SGI Origin 2000
Machines

Debugging

Your programs should be written so thatytiagll run with a variable number of processes/
processors (alle the number to be specified as a command ligenaent). It is a®ry good idea
to beagin by delngging your program using a single processor sdmee. If that wrks, then
move to two processors. Only if thataxks should you try more thandvprocessors. U can run
on a single processorymhere (@en on your wn UNIX machine), by using the Makile in
ASSTDIRExanpl e_uni processor.

The SGI debgger @bx) is capable of dalyging parallel codes. Note thatorder to use
dbx or udb, you must compile with thed” r ather than the * Q2" CCFLAGS option However,
for your timing runs, you should useO’ to get the best performance.

When the compiler complains about an error in yauwr file, the line number that it ggs
you refers to thig . c¢ file, and not your original. Ufile. Hence you must look in yotr. ¢ file
first to determine where the problem is in yduiJ file. (Oh, the jgs of using m4 macros.)

Note that themd macros can be delicate; a misplaced space or semicolon can lead to seem-
ingly bizarre beh@aor—keep this in mind when dalging your programs.df example, a space
cannot occur between a macro name and the opening ‘(* fogusant list. Thus,

G _FREE(ptr) calls the macr&_ FREE with the agumentpt r, whileG_FREE (ptr) calls
the macrdG_FREE with no agument (note that this will not necessarily lead to an error mes-
sage). See the! man pages for a quickrervien on the use afd macros.

Kill Those Stray Processes!

When your parallel progranaifs on an SGI machine, the associated processes will not nec-
essarily terminate. Alays check to see if grprocesses are still running by typings” - ef |
grep your Logi nNane”. If so,use kil|l -9 processl D’to kill the associated pro-
cesses.

Free those shared memory segments!

On an SGI machine, bery careful to release yashared memory genents that your pro-
grams resew. If your program alays eecutes MAI N_END’ when it &its the program, then
you should be okayote: donot exit the program by simply sayingXi t (1) ” - this doesot
free the shared memorygseent.

To check whether gnshared memory genents are outstanding, usepts”. To free an
outstanding memory geent, type i pcrm - m <segnent _i d>", and to free a synchroniza-
tion object, typef'pcrm -s <segnent _i d>".

Page 4 of 4

