CS 495, Spring 2002
Assignment 1: Intro to Parallel Programming Using the Shared Memory Model

Assigned: Tuesday, Jan. 29
Due: Thursday., Feb. 7, 9:00am

The purpose of this assignment is to get some hands-on experience with optimizing parallel program
performance. Although the task which you are asked to parallelize is relatively simple, there are a number
of subtle issues related to achieving high performance.

1 Policy and Logistics

Please work in groups of 2 people to solve the problems for this assignment. (Hand in one assignment per
group.) There will be both electronic and hard copy hand-ins, as described below. Any clarifications and
revisions to the assignment will be posted on Web page assigns.html in the class WWW directory. In
the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15495-s02/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

2 Written Assignments

Please answer problems 2.6 and 2.7 (parts a, b, and d only) in the textbook.

3 Coding Assignment: Parallelizing a Prime Number Generator

The file ASSTDIR/primes .U contains a uniprocessor program written in C for determining prime numbers.
The program works by testing each odd number (up to a specified limit) for divisibility by all of the factors
from 3 to the square root of that number. The algorithm is not very smart, but it is easy to parallelize.

Your assignment is to parallelize this existing algorithm in a number of different ways to run on an SGI
Origin multiprocessor. Note that you should not change the underlying algorithm. Instead, you should
view it as a workload that is to be parallelized.

The program takes two parameters, which are read in from the command line:

P: the number of processors (numProcs in the code); and

N: the problem size (size in the code).

The main data structure of the program is an array which holds boolean values indicating whether the
corresponding numbers are prime. The array only holds odd numbers, since no even numbers (except 2)
are prime. The core code is executed 200 times to provide a reasonable runtime. You should parallelize
only the actual core code, not this outer loop! Also, you should not change this data structure.

You are to parallelize these applications using the ANL macros to create a shared-memory application.
Further details on how to use the ANL macros can be found in ASSTDIR/ANL_tutorial.ps, along with
an example program in ASSTDIR/example.U.



To compare performance, you should implement two different versions of the parallel code:

1. Statically scheduled loop: the programmer statically determines which loop iterations will be executed
by which processor. (This is usually computed based on the processor ID of the given processor.)

2. Dynamically scheduled loop: the loop iterations are divided up between processors dynamically at
run-time. (Note that the ANL macro “GETSUB” can be used to help implement this approach.)

The trick is to achieve good “load balancing” with minimal overhead while achieving good memory per-
formance. You should be able to achieve very good speedups on this assignment.

Please use #defines and #ifdefs if possible so that there is only one source file (i.e. the static version
should be generated if STATIC is defined, and the dynamic version should be generated if DYNAMIC is
defined).

4 The NCSA Origin 2000 Machines

You will collect your numbers on the NCSA Origin 2000 machines. You have each been given accounts on
these machines. (If you do not pick up your login information form in class, see Prof. Mowry immediately
to get it.) Note that you must sign the “responsibilities” form and give that back to use in order to continue
using the account.

To develop your code, compile it, and make sure that it gets reasonable performance on small numbers of
processors, you should use the Origin machine at NCSA called modi4.ncsa.uiuc.edu. This machine is
reserved for running interactive tasks. Note that you can use ssh to log into this machine, and you can
use klog to access your AFS directories here at CMU. You will have to use the local filesystems on these
Origin machines to collect your actual results.

Information on the NCSA machines and how to use them can be found at the following URL:
e http://www.ncsa.uiuc.edu/SCD/Hardware/0rigin2000

In particular, look under the “NCSA SGI Cray Origin2000 User Documentation” and “Frequently asked
questions” links.

To measure your final performance numbers, you will want to use the LSF batch queueing system (Note
that the interactive machine only allows jobs with up to 8 processors). In particular, you will use vst_sj,
vst_mj and vst_1j ”lIsbatch” queues to run small (1-8 processors), medium (9-16 processors) and large
(17-64 processors) jobs respectively. Remember that submitting a job to the queueing system requires your
executable and associated data files to be on modi4’s local filesystems.

More information about how to run jobs on the Origins can be obtained from:

e http://www.ncsa.uiuc.edu/SCD/Hardware/0rigin2000/Doc/Jobs.html
e http://www.ncsa.uiuc.edu/SCD/Hardware/CommonFAQ/SGIJobs.html

e The 1sbatch and bsub man pages.



5 Using the ANL Macros

As mentioned earlier, there is a tutorial on how to use the ANL macros in ASSTDIR/ANL_tutorial.ps.
Section 2.3.5 of the Culler, Singh, and Gupta book on “Parallel Architecture” shows an example of how
to use somewhat similar primitives, but you should not necessarily trust their syntax.

An example of how to compile and run these applications can be found in the ASSTDIR/example_sgi direc-
tory. The ASSTDIR/example_loop directory contains a simple example that makes use of the distributed
loop macros to achieve dynamic load distribution. In addition, the ASSTDIR/example uniprocessor di-
rectory contains an example of how a program with ANL macros can be compiled to run on a uniprocessor.
When you are debugging your code, it is a very good idea to first make sure that it works correctly on a
uniprocessor before you start running it on a multiprocessor.

5.1 Some Important Pitfalls to Avoid

These things are discussed in the ANL macros tutorial, but they are worth repeating.

5.1.1 Debugging

Although you may want to compile your applications using the “~g” option to enable symbolic debugging,

be sure to turn off this flag when you compile your applications to time them. You should compile your
applications using the “-0” compiler flag to produce timing numbers.

5.1.2 Kill Those Stray Processes!

When your parallel programs crashes, the associated processes will not necessarily terminate. Always
check to see if any processes are still running by typing “ps -ef | grep <yourLoginName>”. If so, kill
the associated processes by typing the following for each of them: “kill -9 <processID>”.

5.1.3 Free Those Shared Memory Segments!

On an SGI machine, you must be very careful to release any shared memory segments that your programs
reserve. If your program always executes “MAIN_END” when it exits the program, then you should be ok.
NOTE: do not exit by simply saying “exit(-1)”, since this does not free the shared memory segment.

You should make a habit of frequently checking whether you have any shared memory segments outstanding.
To do this, type “ipcs” on an Origin machine. This will list whether any memory or synchronization
segments are still outstanding. To free them, type “ipcrm -m <segmentID>” for each of them.

6 Measuring Perfomance

To evaluate the performance of the parallel program, measure the following times using the ANL CLOCK
macro:

1. Initialization Time: the time required to do all the sundry initialization, read the command line
arguments, and create the separate processes. Start timing when the program starts, and end just



before the main computation starts.

2. Computation Time: this is strictly the time to compute the answer. Start timing when the main
computation starts (after all the processes have been created), and finish when all of the answers
have been calculated.

Note that: Total Time = Initialization Time + Computation Time. Speedup is calculated as %, where

T; is the time for one processor, and 7, is the time for P processors. Computation Speedup uses only
Computation Time, and Total Speedup uses the Total Time.

7 Performance Analysis

The goal of this assignment is for you to think carefully about real-world effects in the machine are limiting
your speedup, and how you can improve your program to get better performance. If your performance
is disappointing, then it is likely that you restructure your code to make things better. I am especially
interested in hearing about the thought process that went into designing your program, and how it evolved
over time based on your experiments.

Your report should include the following items:
1. A detailed discussion of the design and rationale behind your approach to parallelizing the algorithm.
2. The number of primes, and the last prime for N = 5000, 10000, 50000, and 100000.

3. A plot of the Total Speedup and Computation Speedup vs. Number of Processors (P) for N = 5000,
10000, 50000, and 100000. Use P =1, 2, 4, 8, 16, 24, and 30 on the NSCA Origin 2000 machines. (If
you can collect numbers on larger numbers of processors, that is great, but it is not a requirement.)

4. Discuss the results that you expected and explain the reasons for any non-ideal behavior that you
observe.

5. A plot of the Total Speedup and Computation Speedup vs. N for P = 16. N = 5000, 10000, 50000,
and 100000. (A larger value of P is also acceptable, and may be more interesting.)

6. Discuss the impact of problem size on performance.
8 Hand In

Electronic submission:

e Your version of primes.U. Do this by naming your file last-primes .U, where last is the last name of
one of your group members, and copying this file to the directory

/afs/cs.cmu.edu/academic/class/15495-s02/public/asst/asst1/handin

Include as comments near the beginning of this file the identities of all members of your group. Also
remember to put comments in your code.



Hard-copy submission:

1. Answers to written problems specified in Section 2.
2. Answers to items listed in Section 7.

3. A listing of your code.



