
CS 15-740, Computer Architecture, Fall 2003
Homework Assignment 1

Assigned: Monday, September 8
Due: Monday, September 15, 10:30AM

The purpose of this assignment is to develop techniques for measuring code performance, to practice
reasoning about low-level code optimization, and to better understand Alpha procedure calling conventions.

Policy

You will work in groups of three people in solving the problems for this assignment. (A group of two may be
necessary depending on the class size—groups of one are definitely not allowed.) Turn in a single writeup
per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on the “assignments” web page on the class
WWW directory.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15740-f03/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

Please hand in your assignment as a hard copy of your formatted text.

Using Interval Timers

Measuring performance is fundamental to the study of computer systems. When comparing machines,
or when optimizing code, it is often useful to measure the amount of time that it takes (preferably at the
resolution of processor clock cycles) to execute a particular operation or procedure. Some machines have
special facilities to assist in measuring performance. Even without such facilities, almost all machines
provide interval timers—a relatively crude method of computing elapsed times. In this assignment, you will
investigate how to reason about and control the accuracy of timing information that can be gathered using
interval timers. One of the goals is to develop a function timer which accurately measures the execution
time of any function on any machine.

The overall operation of an interval timer is illustrated in Figure 1. The system maintains a (user-settable)
counter value which is updated periodically. That is, once every ∆ time units, the counter is incremented
by ∆. Using the Unix library routine getitimer, the user can poll the value of this counter. Thus, to
measure the elapsed time of some operation Op, the user can poll the counter to get a starting value

���
,

perform the operation, and poll the counter to get a final value
���

. The elapsed time for the operation can
be approximated as

�����	��

����
������ ��� ���
. As the figure illustrates, however, the actual elapsed time

�������������
may differ from

�����	��

��� 
��
significantly, due to the coarseness of the timer resolution. Since the value of ∆

is around 10 milliseconds for most systems, this error can be very significant.
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Figure 1: Time Measurement with an Interval Timer

We have encapsulated the Unix interval timer routines for you in a handy timer package called AS-
STDIR/etime.c. You should use this package for all measurements in the assignment. See ASST-
DIR/example.c for a simple example of how to use the package. One notable feature is that it converts
the measurements to units of seconds, expressed as a C double. The procedure for timing operation Op is
then:

init_etime();
Ts = get_etime();
Op;
Tf = get_etime()
T_observed = Tf - Ts;

Problem 1: Bounded Measurement Error
Consider a processor with a 500 MHz clock rate where precisely one addition operation can be performed
every clock cycle, and where the value of ∆ for the interval timer is 10 milliseconds. You would like to time
a section of code (Op) consisting purely of a sequence of back-to-back additions.

If your code sequence consists of 106 additions, what will the relative measurement error of
�!���	�"
	��� 
��

with
respect to

� ��������� �
be? How about for 108 additions? As always, show all of your work.

.

Problem 2: Measuring ∆ for Your Timer
Write a C procedure that uses measurements to estimate (as accurately as possible) the value of ∆ on any
UNIX machine. Provide a listing of your code along with a brief description of your scheme.

.

We can improve the accuracy of the measurements by making sure that the activity we measure has sufficient
duration to overcome the imprecision of interval timers. That is, we can accurately measure the time required
by Op by executing it # times for a sufficiently large value of # :

init_etime();
Ts = get_etime();
for (i=0; i<n; i++) {

Op;
}
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Tf = get_etime()
T_aggregate = Tf - Ts;
T_average = T_aggregate/n;

How do we choose a large enough value of # ? The idea is that # must be large enough such that
�$�&%'% �'
�%(�)�*


is larger than the minimum value (
���*+��'
��"+,���-�

) which guarantees a relative measurement error less than the
desired upper bound of . . The value of

����+��&
"��+,���/�
can be computed based on ∆ and . . However, since the

elapsed time for Op is unknown, we cannot compute the minimum value of # ahead of time.

One approach is to start with # �
1, and continue doubling it until the observed

�$�&%'% �'
�%,�'�*

is large enough

to guarantee sufficient accuracy (i.e. it is larger than
���*+��'
���+,���-�

).

Problem 3: Implementing a Function Timer
Implement a function timer in C that uses the doubling scheme outlined above to accurately measure the
running time of any function on any system. Your function timer should have the following interface

typdef void (*test_funct)(void);
double func_time(test_funct P, double E);

where 0 is the function to be timed and . is the maximum relative measurement error. These prototypes
are already defined for you in ASSTDIR/func time.h. Implement your func time() function in a
separate file called func time.c.

Your function timer should: (1) determine the timer period ∆ using the scheme from the previous problem; (2)
calculate

�1�*+��'
���+,���-�
as a function of ∆ and . ; and then (3) repeatedly double # until

���&%'% �'
�%(�)�*
324�5�*+��'
"��+,���/�
.

It should work for any function on any system, regardless of the running time of the function or the timer
period of the system.

.

Problem 4: Testing Your Function Timer
Test your function timer using the program ASSTDIR/freq.c, which uses func_time() to estimate
the clock frequency of your machine. This routine assumes that your machine executes an integer addition
in one clock cycle. This is a safe assumption for most modern processors.

Turn in the output string from freq.c and the type of system you ran it on (e.g., Sparc 5).

.

Problem 5: Alternative Timer Algorithms
Recall that in Problem 3, you repeatedly doubled the value of # until it was sufficiently large (i.e. until����%)% �'
�%(�)�*
627�5�*+��'
"��+,���/�

). Now consider the following three algorithms for increasing the value of # :

Algorithm 1: Set # �
1 initially, and repeatedly multiply # by a factor of 2 until # is sufficiently large (i.e.

the algorithm used in Problem 3).

Algorithm 2: Set # �
1 initially, and repeatedly multiply # by a factor of 10 until # is sufficiently large.

Algorithm 3: Set # �
1 initially, and repeatedly add (not multiply!) 100 to # until # is sufficiently large.

Your goal is to minimize the total amount of time that your timing routine takes to accurately time a function.
In this problem, you will evaluate the three algorithms described above based on this criteria.
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Part 1: Assuming that
� �*+��'
��"+,���/� �

100 milliseconds, and assuming that the timing loop surrounding Op
involves zero overhead, compute how long it would take for each of the three algorithms for increasing
# to accurately time Op for each of the following three cases: (i)

��� �����������
12 8 0 milliseconds, (ii)� ����������� �

99 8 0 microseconds, and (iii)
� ��������� � �

110 8 0 microseconds.

Part 2: Based on a quantitative analysis of their worst-case behaviors, evaluate which of the three algorithms
for increasing # is most desirable for measuring functions where

� �����������
is an arbitrary value no greater

than a microsecond and where ∆ for the interval timer is at least 10 milliseconds.

.

Optimizing the strlen() Routine

The purpose of these next problems is to get hands-on experience with machine-level programming. Our
interest is in being able to understand, measure, and optimize the machine code generated by a compiler.
This is a far more useful skill than being able to churn out pages of assembly code by hand. Parts of this
assignment involve compiling, disassembling, and running code on one of our Alpha-based machines. For
information on how to access these machines, please refer to the link labeled “Information about our Alpha
systems” on the class WWW page.

In the next several problems, we will be focusing on the performance of the strlen() routine, which
is part of the C library. The following paraphrased excerpts from the strlen() man page describe its
interface and behavior:

size_t strlen(const char *s);

9 The strlen() function returns the number of bytes in the string pointed to by the s parameter. The
string length value does not include the terminating null character.

9 If you pass an out of bounds or NULL pointer to strlen, the function generates a segmentation violation.

9 There are no return values reserved to indicate an error.

The file ASSTDIR/strlen naive.c contains a straightforward (but naive, from a performance perspec-
tive) implementation of strlen() in C called “my strlen()”. The file ASSTDIR/strlen naive.s
contains the Alpha assembly code generated using the command: gcc -O -S strlen_naive.c

The file ASSTDIR/strlen.dis contains a disassembled version of the strlen() routine taken from
the Unix library /usr/lib/libc.a on one of our Alpha machines. (This was disassembled with the
x/30i strlen command of gdb.)

Problem 6: Understanding the strlen() Assembly Code
Generate an “annotated” version of both ASSTDIR/strlen naive.s and ASSTDIR/strlen.dis
using the following conventions:

9 Put comments at the top of a code segment describing register usage and initial conditions.

9 Put comments along the right hand side describing what each instruction does.
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NOTE: Comments of the form:

# I won’t tell you anything about the registers.
s8addq r1, r2, r2 # r2 = 8*r1 + r2
ldq r3, 0(r2) # r3 = Mem[r2]

are useless and will receive little (if any) credit. Instead, we would like to see comments like the
following:

# Throughout the loop: r1 holds i, r7 holds n
# At the beginning of the loop: r2 = &v[0]
s8addq r1, r2, r2 # r2 = 8*i + &v[0]
ldq r3, 0(r2) # r3 = v[i]

In other words, your comments should convey semantic information from the source code, and not
simply reiterate what would be obvious to anyone who can read Alpha assembly code.

.

Problem 7: Measuring the Performance of the strlen() Routines
Use your interval timer code to measure the performance of both the my strlen() routine in ASST-
DIR/strlen naive.c and DEC C library implementation of strlen() on the various strlen()
calls contained in ASSTDIR/strlen test.c. Note that you should produce separate timing numbers
for each these individual calls to strlen(), and be sure to call the initialization routine in this file before
you start timing things to ensure that the cache is warm.

Discuss the relative performance differences between the two versions of the routine, and whether they
make sense given your analysis of the assembly code.

.

Problem 8: Implementing a Better Version of strlen() in C
Write your own version of strlen() in C. Your code must behave correctly, but at the same time it should
be as efficient as possible. You should create a version of your code which only uses C constructs (i.e. no
explicit assembly code). In addition, you may optionally create a second version of your code which uses
the GCC assembly code directives (i.e. “ASM”) if it further enhances performance. For further information
on how to use assembly code directives in gcc, see the “info” pages on gcc (under “C extensions”). These
info pages are reproduced on the Assignment and exam information class web page under Assignment 1.
Use a minimal number of ASM statements—do not simply reproduce large amounts of hand-coded assembly
in your C code. Be sure to compile your code using the “-O” optimization flag.

Measure the performance of your C-only code and your assembly-augmented code (if applicable). If your
assembly-augmented code achieves better performance than your C-only code, discuss why you are not able
to achieve comparable performance using only normal C constructs. Also, compare your code with both
the naive and UNIX library versions of strlen(). If your performance falls short of the UNIX library
version, explain why.

.
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Problem 9: Measuring strlen() on a Different Architecture
Using your interval timer code, measure and compare the performance of both your C-only version of
strlen() and the native (i.e. UNIX C library) version of strlen() on a machine other than an Alpha
machine. Discuss whether these results are what you expected, or whether they are surprising.

.

Problem 10: Stack Frames and Procedure Calls
The file ASSTDIR/structure.c shows the C code for a function that demonstrates many interesting
features of implementing C on an Alpha machine. The code generated by GCC with the -O flag is shown in
the file ASSTDIR/structure.s

Document the following:

A. Show the layout of the data structure list ele.

B. Explain how the program implements the returning of a structure by sum list.

C. Describe the register allocation used in sum list.

D. Show the layout of the stack frame used by sum list.

E. Create an annotated version of the assembly code for sum list using our usual formatting conven-
tions.

.

Problem 11: Leaf Procedures
The doubly recursive solution to the Fibonacci function is elegant, but inefficient. The file ASSTDIR/fib.c
shows the C code for the function. The code generated by GCC with the -O flag is shown in the file
ASSTDIR/fib.s. Without changing the basic implementation, i.e., keep it doubly recursive, try and make
is subtantially faster by optimzing the assembly code.

Document the following:

A. Explain your optimization and why it speeds up fib

B. Plot the time taken to run fib for fib 1 to fib 40 with and without your optimization.

C. Determine the cost of allocating a frame for a procedure using this data.

.

Long Jumps

(NOTE: this last section is for extra credit only.)

In this section, you will enhance your understanding of Alpha calling and returning conventions by examining
the Unix setjmp library, which in effect cheats on the standard procedure calling conventions.

setjmp provides a mechanism for nonlocal procedure exits. By usingsetjmp andlongjmp, a procedure
can exit to a function a long way up the procedure chain, bypassing its calling procedure.

This is typically used for error handling, in the following style:

6



jmp_buf env;

main()
{

int jval;
if ((jval = setjmp(env)) != 0) {

/* Do error recovery and cleanup. */
/* And possibly try to execute again. */

} else {
/* Do normal case. */
...

}
}

The first time setjmp() is called, it sets up the buffer env with enough information to reconstruct the state
of the registers and the stack. It returns 0 to the calling function.

The calling function then does other code, and deep within some complicated hierarchy of other functions,
it may find some error:

deep_within_some_complicated_hierarchy ()
{
if (error_detected) {

longjmp(env, ERROR_CONSTANT);
}
...

}

longjmp() restores the state that was saved in setjmp() and resets the stack pointer to the position it
was in when setjmp() was called.

The file ljdemo.c contains a somewhat contrived example of the use of setjmp() and longjmp().
Study this code to better understand the behavior of these constructs. Try compiling and running it (it should
work on any Unix machine).

Problem 12: (For Extra Credit) Understanding the Implementation of Long Jumps
The file ASSTDIR/longjmp.dis contains a disassembly of the code for___setjmp() and_longjmp(),
which are simplified versions of setjmp() and longjmp(). In addition, the file also includes
__longjump_resume(), which is called by _longjmp() This code was extracted from the Unix
library /usr/lib/libc.a on one of our Alpha machines. Your job is to create annotated versions of
these three procedures. Show clearly what state is being saved and restored, and how longjmp subverts the
Alpha calling routines to appear to ‘return’ to a place other than that from which it was called.

It may help you understand the code to write down what data is stored in which places in the jmp_buf. If
you write this information down, turn that in too.

Hints: 9 The ldt and stt instructions load and store 64-bit numbers into/from the floating-point
register file. Their behavior is analogous to ldq and stq for integer data.

9 The value 0xacedbade is used as a “magic token” to identify a buffer that has (probably) been
set by setjmp() (A moment’s thought should convince you that doing a longjmp() to a
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buffer that has not been set up by setjmp() is likely to result in errors that are very difficult
to track down.) This value is generated by a combination of three instructions:

ldah r1, 22135(r31)
lda r1, -8849(r1)
addq r1, r1, r1

9 The ldah instruction, which stands for Load Address High, multiplies a signed 16-bit constant
by 65536, and then adds this value into the destination register. The lda instruction, which
stands for Load Address, generates the effective address address in the destination register (in
this case, it subtracts 8849 from r1).

.
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