
CS 15-740, Computer Architecture, Fall 2003
Homework Assignment 1

Solutions

The purpose of this assignment is to develop techniques for measuring code performance, to practice
reasoning about low-level code optimization, and to better understand Alpha procedure calling conventions.

Policy

You will work in groups of three people in solving the problems for this assignment. (A group of two may be
necessary depending on the class size—groups of one are definitely not allowed.) Turn in a single writeup
per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on the “assignments” web page on the class
WWW directory.

In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15740-f03/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

Please hand in your assignment as a hard copy of your formatted text.

Using Interval Timers

Measuring performance is fundamental to the study of computer systems. When comparing machines,
or when optimizing code, it is often useful to measure the amount of time that it takes (preferably at the
resolution of processor clock cycles) to execute a particular operation or procedure. Some machines have
special facilities to assist in measuring performance. Even without such facilities, almost all machines
provide interval timers—a relatively crude method of computing elapsed times. In this assignment, you will
investigate how to reason about and control the accuracy of timing information that can be gathered using
interval timers. One of the goals is to develop a function timer which accurately measures the execution
time of any function on any machine.

The overall operation of an interval timer is illustrated in Figure 1. The system maintains a (user-settable)
counter value which is updated periodically. That is, once every ∆ time units, the counter is incremented
by ∆. Using the Unix library routine getitimer, the user can poll the value of this counter. Thus, to
measure the elapsed time of some operation Op, the user can poll the counter to get a starting value

���
,

perform the operation, and poll the counter to get a final value
���

. The elapsed time for the operation can
be approximated as

�����	��

����
��������������
. As the figure illustrates, however, the actual elapsed time

������������ 

may differ from
� ���	��

���!
��

significantly, due to the coarseness of the timer resolution. Since the value of ∆
is around 10 milliseconds for most systems, this error can be very significant.
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Tobserved = Tf - Ts

Figure 1: Time Measurement with an Interval Timer

We have encapsulated the Unix interval timer routines for you in a handy timer package called AS-
STDIR/etime.c. You should use this package for all measurements in the assignment. See ASST-
DIR/example.c for a simple example of how to use the package. One notable feature is that it converts
the measurements to units of seconds, expressed as a C double. The procedure for timing operation Op is
then:

init_etime();
Ts = get_etime();
Op;
Tf = get_etime()
T_observed = Tf - Ts;

Problem 1: Bounded Measurement Error

Consider a processor with a 500 MHz clock rate where precisely one addition operation can be performed
every clock cycle, and where the value of ∆ for the interval timer is 10 milliseconds. You would like to time
a section of code (Op) consisting purely of a sequence of back-to-back additions.

If your code sequence consists of 106 additions, what will the relative measurement error of
� ���	� 
	���!
��

with
respect to

�����������! 
be? How about for 108 additions? As always, show all of your work.

.

Solution 1: (Based on a solution courtesy of A. Nizhner)

We first demonstrate that
�

is bounded by ∆. Let
�

0 and
�

1 be the starting and ending wall-clock time points
respectively; that is

������������ ���
1
���

0. The values
���

and
���

then correspond to get etime() measurements
at
�

1 and
�

0. Let
��� ���

1∆ and
��� ���

0∆. Then,
�

0
���

0∆ ��� 0 and
�

1
���

1∆ ��� 1, with � 0 � � 1 	 ∆.
Thus:

� ��
 � ���	��

����
�� � � �!�������� 
 ��
���� � � � ��
 �����
1
���

0

 
 ��
 � 1

� � 0

 	 ∆

The relative error
� � 
� 

is then bounded by ∆������������� . For a 500MHz machine,
� ���������� 

of an operation with

cycle count � is
�

500 � 106 seconds; with a ∆ of 0 � 01 seconds, we have
� � 
  	 0 � 01 � 500 � 106� . Thus, for � � 106,� � 
  	 500

100
�

500%; for � � 108,
� � 
� 	 500

10000
�

5%.

Note, however, that for the particular cases we have we can calculate an even tighter bound. Let’s consider
the case in which we take consecutive measurements of a sequence of operations. In the absense of
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perturbations, if the consecutive measurements differ, they must differ by ∆. The reason for the difference
is the position in time of the start of the actual run relative to the timer interrupts. If the measurement run
starts right after a timer interrupt, then

� ���	��

���!
�� �
0 ns because

� ���������� �
2 ��� 	 10 ���

�
∆. If the

timer interrupt happens in the middle of the measurement period, then
�����	��

���!
�� �

∆. So the relative errors
for the 106 additions we consider can be:

���� 
� �

 � ����	� 
	���!
�� �����!�������� 


�����������! 
�



0
�

2



2
�

100%

���� 
� �

 � ����	� 
	���!
�� �����!�������� 


�����������! 
�



10

�
2



2
�

400%

Similarly, for the 108 additions we can only get 0% relative error because
���!��� ���! ��

200 ��� which is an
integer multiple of the ∆. Hence, in this particular case,

�����	��
	���!
 � � � ���������� 
and

� � 
� �
0%.

.

Problem 2: Measuring ∆ for Your Timer

Write a C procedure that uses measurements to estimate (as accurately as possible) the value of ∆ on any
UNIX machine. Provide a listing of your code along with a brief description of your scheme.

.

Solution 2: (Based on a solution courtesy of K. Bowers and J. Wales)

There are numerous subtleties, but the basic idea is to measure something until a timer tick is detected. For
example:

double get_delta() {
double end, start;
init_etime();
start = get_etime();
while (start == (end = get_etime());
return(end - start);

}

Note that with the code above we compute ∆ only if the time it takes for etime() to run is smaler than ∆
���������! 

.
This is a valid assumption, since the timer interrupts are in the order of ����� � , while polling the timer takes
several orders of magnitude less time to run. However, even in the case when this is not true, the computed
interval will truly be the granularity of measurement we can achieve. For example, say that it takes 4∆

���������� 

to run etime(), and the poll of the timer value takes place 3∆
���������� 

after etime() starts executing. Then,
the value we will calculate will be the time after the first call polls the timer value until it ends (1∆

�!�������� 
),

plus the time it takes for the second call to poll the value of the timer again (3∆
���������! 

), which is 4∆
���������! 

.
Any time measurement will always be off by the time it takes to run the "epilogue" of the first call plus
the "prologue" of the second. Since our goal is to account for such disparities, it is appropriate to use the
measurement above as the magnitude of the measurement granularity.

However, in the real world it is very difficult to take measurements without background noise (e.g. interrupts).
In order to adjust for such perturbations, we propose to use Standard Deviation as a more statistically-robust
measure, permitting more rigorous analysis and offering a method that is less affected by the noise of
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individual samples. We base this assertion on the assumption that the ∆ that is manifest in the running
course of the program will not always be exactly the same. If ∆ is somewhere between some unknown ∆ �����
and ∆ � ��� , what is to ensure that we ever see ∆ � ��� experimentally?

In light of this consideration, using the "maximum deviation" method may provide misleading results. In
view of the desire for statistical robustness, the "average-absolute-value-of-deviation" suggestion is less
compelling than Standard Deviation. Formally, if � 1 � � 2 � � 3 �	�
�	� are individual samples and � the mean, the
standard deviation � of the samples is given by:

� �

��� �� ��� 1 � ��� � ��� 2

In our case, the samples will be subsequent measurements of operation ��� . Note that in the absense of
perturbations,


 � 1���	��

���!
�� ��� 0���	� 
	���!
�� 
 � 0 ��� 
 � 1���	��

���!
�� � � 0���	��
	���!
 � 
 � ∆

So, any difference in subsequent measurements can be attributed to the relative position of the start of the
measurement run relative to the timer interrupts. In other words, our measurements will be quantized on
two values (bimodal), either

��� � ����
	����� � �	� � � � � ����	� 
	���!
 � 

or

��� � � ��

��� � � �	� � � � � ����	��
	���!
 � � ∆


. In the presence of perturbations,

other effects will contribute to the difference. However, at the limit, the observed values will converge to
the two values above. Hence, with a sufficiently large sample base we will have:

�"! 
	����� � �	� � � � � � � �#� ����
	����� � �	� � � � � � � 
 � � ����
	����� � �	� � � � � ����	� 
	���!
 � � ��� � ��� 

����� � �	� � � � � ����	��

����
�� � ∆

 


2
� ∆

2
�

The standard deviation � will also converge to the mean � because of the quantization of
� ���	��

���!
��

, so we
can approximate ∆

�
2 � .

The code included after Problem 3 calculates ∆
�

2 � . The function timer (func time) first calls a function
to calculate the value of delta (get delta). It accomplishes this by timing a small test function 10,000 times
and determining ∆ to be twice the standard deviation of the resulting pool of data.

Having a value for ∆, the timer can then calculate the minimum execution duration
���%$�� 
�� $ �� �

for a repeated
test function & in order to achieve a certain error upper bound

� ���	�	
 ! ���!�	 
 (see next problem).

With this value for
� �'$�� 
 � $ �� �

, the function proceeds to run & a number ( times, tracking the total observed
time, starting with ( �

1. If
���%$�� 
�� $ �� �

is not achieved, then ( is doubled and the timing operation repeated
until

� �%$�� 
���$ �� �
is equaled or exceeded. A value of time for & is calculated as the mean of the observed time,

again with the assumption that, as ( grows larger, the mean contribution from delta will move toward zero.

The code follows after Problem 3.

.
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We can improve the accuracy of the measurements by making sure that the activity we measure has sufficient
duration to overcome the imprecision of interval timers. That is, we can accurately measure the time required
by Op by executing it � times for a sufficiently large value of � :

init_etime();
Ts = get_etime();
for (i=0; i<n; i++) {

Op;
}
Tf = get_etime()
T_aggregate = Tf - Ts;
T_average = T_aggregate/n;

How do we choose a large enough value of � ? The idea is that � must be large enough such that
� �����!� 
�� � � 


is larger than the minimum value (
���%$�� 
���$ �� �

) which guarantees a relative measurement error less than the
desired upper bound of

�
. The value of

���'$�� 
 � $ �� �
can be computed based on ∆ and

�
. However, since the

elapsed time for Op is unknown, we cannot compute the minimum value of � ahead of time.

One approach is to start with � �
1, and continue doubling it until the observed

� �����!� 
�� � � 

is large enough

to guarantee sufficient accuracy (i.e. it is larger than
���%$�� 
�� $ �� �

).

Problem 3: Implementing a Function Timer

Implement a function timer in C that uses the doubling scheme outlined above to accurately measure the
running time of any function on any system. Your function timer should have the following interface

typdef void (*test_funct)(void);
double func_time(test_funct P, double E);

where & is the function to be timed and
�

is the maximum relative measurement error. These prototypes
are already defined for you in ASSTDIR/func time.h. Implement your func time() function in a
separate file called func time.c.

Your function timer should: (1) determine the timer period ∆ using the scheme from the previous problem; (2)
calculate

� �%$�� 
�� $ �� �
as a function of ∆ and

�
; and then (3) repeatedly double � until

� �����!� 
�� � � 
�� � �%$�� 
 � $ �� �
.

It should work for any function on any system, regardless of the running time of the function or the timer
period of the system.

.

Solution 3: (Based on a solution courtesy of K. Bowers and J. Wales)

The most common difficulty that people had was in computing the minimum threshold value. Remember
that

� �%$�� 
 � $ �� �
is expressed in terms of

�����	��

���!
��
, not

������������ 
. More formally, we established in Problem 1

that

 �����	� 
	���!
�� � �����������! 
 	 ∆ so

�����	��

����
���� ���!��� ���! ��
∆. We also showed that the acceptable error (

��� 
  
)

is bound by
� � 
  	 ∆����� ������� . Note that

������������ � ∆
� �����	� 
	���!
 �

. Hence, in order to guarantee the acceptable

error, it must hold that
������������ 
	 ∆�
��� � , so

� �%$�� 
���$ �� � � ������������ � ∆
	 ∆�
��� � � ∆.

A common error was to assume that
� �'$�� 
 � $ �� ��� ∆�
��� � . This mistake becomes especially important when the

acceptable error (
� � 
� 

) is nontrivially large. For example, if
� � 
� �

0 � 5, then the correct value of
� �%$�� 
�� $ �� �

is 3∆, whereas the incorrect formula yields 2∆. Since
�����	� 
	���!
 � � �����������! ��

∆, the maximum error when� �%$�� 
���$ �� � �
2∆ is 100% rather than 50%.

5



Another potential pitfall is to accidentally double � (the number of timing iterations) an extra time and to
fail to take this into account when computing the average time.

func time.c

#include <stdio.h>
#include <sys/time.h>
#include <math.h>
#include "etime.h"
#include "utils.h"
#include "func_time.h"

#define NUM_REPLICATION_C (int)10000
#define SHOWTEXT 1

double func_time(test_funct P, double E) {

return get_func_time(P, E, get_delta(NUM_REPLICATION_C));
}

// Time a test_funct P to error tolerance E
double get_func_time(test_funct P,

double E,
double delta_clf) {

// VARIABLES AND CONSTANTS

// Op timing variables.
double E_clf = E; // Permissible error.
double T_threshold_clf; // Minimum aggregate time to ensure error <= E.
int num_repetition_c = 0; // Number of times the operation will be repeated

// to obtain a more accurate time.
int cur_repetition_i; // Current repetition in loop.

double Ts_vlf; // Starting time.
double Tf_vlf; // Finishing time.

double T_aggregate_vlf = 0.0; // Total observed time.

// BEGIN PROGRAM

// PART 1: CALCULATE DELTA AND T_THRESHOLD

// Calculate T_threshold
T_threshold_clf = delta_clf/E_clf + delta_clf;

#if SHOWTEXT == 1
// Print out data.
printf("\ndelta:\t\t%lf\nError bound:\t%lf\nT_threshold:\t%lf\n",

delta_clf,
E_clf,
T_threshold_clf);

#endif

// PART 2: BEGIN LOOP TO OBTAIN DESIRED MEASUREMENT

// BEGIN WHILE: T_aggregate < T_threshold
while(T_aggregate_vlf < T_threshold_clf) {

if(num_repetition_c < 1)
num_repetition_c = 1;

else
num_repetition_c *= 2;
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// Set T_aggregate to 0.
T_aggregate_vlf = 0.0;

// Initialize timer and warm cache.
init_etime();

// Establish starting time.
Ts_vlf = get_etime();

// BEGIN LOOP: num_repetition_c
for(cur_repetition_i = 0;

cur_repetition_i < num_repetition_c;
cur_repetition_i++) {
P();

}
// END LOOP: num_repetition_c

// Establish finishing time.
Tf_vlf = get_etime();

// Calculate aggregate observed time.
T_aggregate_vlf = Tf_vlf - Ts_vlf;

}
// END WHILE: T_aggregate < T_threshold

#if SHOWTEXT == 1
printf("\nnum_repetition:\t%d\nT_aggregate:\t%lf\nT_mean:\t\t%lf ms\n",

num_repetition_c,
T_aggregate_vlf,
(1000*T_aggregate_vlf)/(double)num_repetition_c
);

#endif

// Done.
return(T_aggregate_vlf/(double)num_repetition_c);

}

// Calculate delta for this machine, using sample size num_replication_c
// Delta will be calculated by timing a function a very high number of times.
// Each instance of timing the function is one sample.
// Thus, many samples are taken.
// Delta is calculated as the Standard Deviation, or the Root of
// the Mean of the Sum of the Squared Errors for the samples.
double get_delta(int num_replication_c) {

// Declare local variables.

// Index/repetition variables for timing.
int cur_replication_i;

// Timer variables.
double Ts_vlf; // Start time.
double Tf_vlf; // End time.
double *T_observed_vlf_a1;

// Statistics.
double delta_vlf; // Delta
double mean_vlf; // Mean

// Control for erroneous constant values.
if(num_replication_c < 1)
num_replication_c = 1;

#if SHOWTEXT == 1
// Inform the user of how many times the op will be run.
printf("\nOp timing will be executed %d times for determining delta...\n",
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num_replication_c);
#endif

// Allocate memory for observation array.
T_observed_vlf_a1 = (double *)malloc(num_replication_c * sizeof(double));

// BEGIN LOOP: replication of timing operation
for(cur_replication_i = 0;

cur_replication_i < num_replication_c;
cur_replication_i++) {

// PERFORM TIMING OPERATION to DETERMINE DELTA

// Initialise timing package ("warm the cache").
init_etime();

// Record starting time.
Ts_vlf = get_etime();

// Execute timed operation.
do_op();

// Record ending time.
Tf_vlf = get_etime();

// CALCULATE AGGREGATE

// Calculate total observed time for this instance of running the op.
T_observed_vlf_a1[cur_replication_i] = Tf_vlf - Ts_vlf;

} // END LOOP: replication of timing operation.

// We have now populated the array T_observed_vlf_a1
// with the values of T_observed
// for each of num_replication_c replications.

// BEGIN DELTA-CALCULATION SECTION.

// We may assume that, as the delta is a +/- additive,
// it contributes zero to the mean of T_observed_vlf_a1

// We may calculate delta as the standard deviation of the mean,
// since mean(T_observed) is what we are taking to be our closest
// estimate to T_actual.

// The formula for Standard Dev of the Time Data is as follows:
// StdDev_vlf = sqrt(variance(T_observed_vlf_a1));

// We will calculate delva_vlf as the Standard Deviation of the data
// delta_vlf = calculate_delta(T_observed_vlf_a1, num_replication_c);
delta_vlf = get_StdDev_lf_a1(T_observed_vlf_a1, num_replication_c);

// Calculate the mean time just for interest and debugging.
mean_vlf = get_mean_lf_a1(T_observed_vlf_a1,

num_replication_c);

// PRINT THE INFORMATION
printf("Mean Time:\t%lf\nDelta:\t%lf\n", mean_vlf, delta_vlf);

// FREE MEMORY
free(T_observed_vlf_a1);

// DONE.
return(delta_vlf);
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}

/*
* The basic test operation.
* The basic test op does not particularly matter in its content.
* This test op declares 3 ints, sets 2 of them, and declares and
* sets one double.
* This test op repeats, 1000 times, an integer compare,
* 2 integer adds, 1 double add.
* This test op returns void.
*/

void do_op(void) {
long num_repetition_c = 1000000;
long cur_repetition_i;

long dummy_vd = 0;

// Repeat a series of operations.
for(cur_repetition_i = 0;

cur_repetition_i < num_repetition_c;
cur_repetition_i++)

{
dummy_vd += 1;

}

}

.

Problem 4: Testing Your Function Timer

Test your function timer using the program ASSTDIR/freq.c, which uses func_time() to estimate
the clock frequency of your machine. This routine assumes that your machine executes an integer addition
in one clock cycle. This is a safe assumption for most modern processors.

Turn in the output string from freq.c and the type of system you ran it on (e.g., Sparc 5).

.

Solution 4:

Most people got full credit on this one. Many people ran this on either the class Alphas, or on their Pentium
systems.

.

Problem 5: Alternative Timer Algorithms

Recall that in Problem 3, you repeatedly doubled the value of � until it was sufficiently large (i.e. until��� � �!� 
�� � � 
 � � �%$�� 
 � $ �� �
). Now consider the following three algorithms for increasing the value of � :

Algorithm 1: Set � �
1 initially, and repeatedly multiply � by a factor of 2 until � is sufficiently large (i.e.

the algorithm used in Problem 3).

Algorithm 2: Set � �
1 initially, and repeatedly multiply � by a factor of 10 until � is sufficiently large.

Algorithm 3: Set � �
1 initially, and repeatedly add (not multiply!) 100 to � until � is sufficiently large.

Your goal is to minimize the total amount of time that your timing routine takes to accurately time a function.
In this problem, you will evaluate the three algorithms described above based on this criteria.
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Part 1: Assuming that
� �%$�� 
���$ �� � �

100 milliseconds, and assuming that the timing loop surrounding Op
involves zero overhead, compute how long it would take for each of the three algorithms for increasing
� to accurately time Op for each of the following three cases: (i)

� �!�������� �
12 � 0 milliseconds, (ii)� ���������� �

99 � 0 microseconds, and (iii)
�����������! �

110 � 0 microseconds.

Part 2: Based on a quantitative analysis of their worst-case behaviors, evaluate which of the three algorithms
for increasing � is most desirable for measuring functions where

������������ 
is an arbitrary value no greater

than a microsecond and where ∆ for the interval timer is at least 10 milliseconds.

.

Solution 5: (Based on a solution courtesy of A. Nizhner)

Part 1: Let
�

represent the running time; � is computed as � ����� ��������� �
	����� ��������� .
(i)

�����������! �
12 � 0 ��� � � � � �
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:

Algorithm 1:
���������������� �

1 � 2 � 4 � 8 � 16

 �

31 
 ������������ 
= 372 msec

Algorithm 2:
���������������� �

1 � 10

 �

11 
 ������������ 
= 132 msec

Algorithm 3:
���������������� �

1 � 101

 �

102 
 ���!�������� 
= 1224 msec

(ii)
������������ �

99 � 0 � ��� � � � �
1010



:

Algorithm 1:
���������������� �

1 � 2 � 4 � 8 � 16 � � � ��� 1024

 �

2047 
 ������������ 
= 202.653 msec

(11 iterations)

Algorithm 2:
����� ���������� �

1 � 10 � 100 � 1000 � 10000

 �

11111 
 � ���������� 
= 1099.989 msec

(5 iterations)

Algorithm 3:
� � ������������ �

1 � 101 � 201 � 301 � � � � � 1101

 �

6612 
 ������������ 
= 654.588

msec (12 iterations)

(iii)
������������ �

110 � 0 � ��� � � � �
909



:

Algorithm 1:
����� ���������� �

1 � 2 � 4 � 8 � 16 � � � ��� 1024

 �

2047 
 � �!�������� 
= 225.17 msec

(11 iterations)

Algorithm 2:
���������������� �

1 � 10 � 100 � 1000

 �

1111 
 ������������ = 122.21 msec (4 iterations)

Algorithm 3:
� � �����������! �

1 � 101 � 201 � 301 � � � � � 1001

 �

5511 
 ������������ 
= 606.21

msec (11 iterations)

(Note: the number of iterations is not essential—it is included just for your information.)

Part 2: Let � , the lowest number of times required to execute operation � & in order to obtain an accurate
estimate of its running time, be given.

Algorithm 1: In the worst case, � �
2 � � 1 for some

��� ( .

� � �����������! �
1 � 2 � 4 ��� � � � 2 �

 � �
2 ��� 


� �����������! �
2 �
 � �

2 ����� 1 �
1

	 � ���������! �
2
 � �

2 ��� 2 �
1
��� �!��� ���! �

4 � �
1



	 �����������! �
4 � 
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Algorithm 2: In the worst case, � �
10 � � 1 for some

� � ( .

� � � ���������� �
1 � 10 � 100 ��� � � � 10 �

 � �
10 ��� 


� � ���������� � 10 �
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Algorithm 3: In the worst case, � �
100 � � 1 for some

� � ( .
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� 
 � 1
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��� 0

�
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�

100
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� �100
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��� 0

� �
� � ���������� 

� �
�

100
� � 1 � 50

� � �
100

� � 1

 � �

100
� �

� � ���������� 

� 50 � �
100

� 2 � 51 � �
100

� � 1 �
	 � ���������� 

� 50
� �
100

� 1

 2 � 51

� �
100

� 1

 � 1 �

� � ���������� 

�
� 2

200
� 151 �

100
� 102 �

In the worst case, � � � �!�������� ends up being just short of
� �%$�� 
�� $ �� �

, and we overshoot as much as
possible. The analysis shows that Algorithm 1 and Algorithm 2 are linear. In contrast, the upper
bound for Algorithm 3 is quadratic. Without loss of generality, we may set

��� 
  ��
0 � 1. Then,

with ∆
�

10 ms and
���!�������� ��

1 � � , we have ���
� ��� ��������� �
	����� ������� � ∆�
��� � � �������������

�
105. Therefore,

both Algorithm 1 and Algorithm 2 are superior to Algorithm 3 (given that
� �%$�� 
 � $ �� �

is large
relative to

�����������! 
, which it is in this case). Of the two, Algorithm 1 is the best because it has a

smaller constant factor in its upper bound.

.

Optimizing the strlen() Routine

The purpose of these next problems is to get hands-on experience with machine-level programming. Our
interest is in being able to understand, measure, and optimize the machine code generated by a compiler.
This is a far more useful skill than being able to churn out pages of assembly code by hand. Parts of this
assignment involve compiling, disassembling, and running code on one of our Alpha-based machines. For
information on how to access these machines, please refer to the link labeled “Information about our Alpha
systems” on the class WWW page.
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In the next several problems, we will be focusing on the performance of the strlen() routine, which
is part of the C library. The following paraphrased excerpts from the strlen() man page describe its
interface and behavior:

size_t strlen(const char *s);

� The strlen() function returns the number of bytes in the string pointed to by the s parameter. The
string length value does not include the terminating null character.

� If you pass an out of bounds or NULL pointer to strlen, the function generates a segmentation violation.

� There are no return values reserved to indicate an error.

The file ASSTDIR/strlen naive.c contains a straightforward (but naive, from a performance perspec-
tive) implementation of strlen() in C called “my strlen()”. The file ASSTDIR/strlen naive.s
contains the Alpha assembly code generated using the command: gcc -O -S strlen_naive.c

The file ASSTDIR/strlen.dis contains a disassembled version of the strlen() routine taken from
the Unix library /usr/lib/libc.a on one of our Alpha machines. (This was disassembled with the
x/30i strlen command of gdb.)

Problem 6: Understanding the strlen() Assembly Code

Generate an “annotated” version of both ASSTDIR/strlen naive.s and ASSTDIR/strlen.dis
using the following conventions:

� Put comments at the top of a code segment describing register usage and initial conditions.

� Put comments along the right hand side describing what each instruction does.

NOTE: Comments of the form:

# I won’t tell you anything about the registers.
s8addq r1, r2, r2 # r2 = 8*r1 + r2
ldq r3, 0(r2) # r3 = Mem[r2]

are useless and will receive little (if any) credit. Instead, we would like to see comments like the
following:

# Throughout the loop: r1 holds i, r7 holds n
# At the beginning of the loop: r2 = &v[0]
s8addq r1, r2, r2 # r2 = 8*i + &v[0]
ldq r3, 0(r2) # r3 = v[i]

In other words, your comments should convey semantic information from the source code, and not
simply reiterate what would be obvious to anyone who can read Alpha assembly code.

.
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Solution 6: (Based on a solution courtesy of A. Nizhner and A. Kannan)

strlen.s

# The only argument (char* s) is in a0.
# The "initialization" section below (through N+28) takes care of the
# case where the string is not aligned on an 8-byte boundary by masking
# out the bytes in the first quadword that do not belong to the string.
# a0 : start position in the string
# v0 : current position in the string
# t0 : scratch register
# t1 : scratch register (byte adjustment for boundary condition)
# t2 : scratch register
# t3 : scratch register

# The remaining code loops through the string, loading 8 bytes at a time and
# testing them in parallel.

# t0 contains the first quadword
0x3ff800d3dd0 <N>: ldq_u t0,0(a0) # load first qword (possibly unaligned)
0x3ff800d3dd4 <N+4>: lda t1,-1(zero) # set all bits in t1
0x3ff800d3dd8 <N+8>: insqh t1,a0,t1 # prepare mask (set high, clear low bits)
0x3ff800d3ddc <N+12>: andnot a0,0x7,v0 # align the index/ptr to qword (v0 = a0&˜0x07)
0x3ff800d3de0 <N+16>: or t0,t1,t0 # mask out irrelevant chars (before string start)
0x3ff800d3de4 <N+20>: cmpbge zero,t0,t1 # test 8 bytes in parallel
0x3ff800d3de8 <N+24>: bne t1,0x3ff800d3e00 <N+48> # if there exist zeros, don’t enter loop
0x3ff800d3dec <N+28>: nop # keep going if we haven’t found a NULL byte.

# Inside this loop v0 is iterating 8 bytes at a time.
# Over the string, we load 8 bytes at a time and use
# a compbge to check for a zero byte (in which case
# t1 will not be zero and we’ll exit the loop).

# Loop across the qword aligned parts of the string.
# Here, v0 is the quadword pointer and t0 contains the quadword being processed.

0x3ff800d3df0 <N+32>: ldq t0,8(v0) # load next qword of string
0x3ff800d3df4 <N+36>: addq v0,0x8,v0 # point to next qword
0x3ff800d3df8 <N+40>: cmpbge zero,t0,t1 # test 8 bytes and loop
0x3ff800d3dfc <N+44>: beq t1,0x3ff800d3df0 <N+32> # if there exist zeros, exit loop

# If we get here, at least one byte is zero. We need to adjust for boundary condition.
# t0 : holds the quadword from the previous loop
# t1 : result of the previous cmpbge
# v0 : address of the quadword with the NULL character.

# The code below determines the byte offset within the quadword, adds it to
# the quadword address, and subtracts the original byte address to yield the
# string length.

0x3ff800d3e00 <N+48>: negq t1,t2 # flip status bits
0x3ff800d3e04 <N+52>: blbs t1,0x3ff800d3e30 <N+96> # branch to final subtraction if no adjustment needed
0x3ff800d3e08 <N+56>: and t1,t2,t1 # set bit indicating position of lowest one

# Increment the end position v0 by 1..7 depending on the position of the lowest one in t1

0x3ff800d3e0c <N+60>: and t1,0xf,t2 # doubleword mask
0x3ff800d3e10 <N+64>: addq v0,0x4,t0 # which doubleword?
0x3ff800d3e14 <N+68>: cmoveq t2,t0,v0 # add dword offset
0x3ff800d3e18 <N+72>: and t1,0x33,t3 # word mask
0x3ff800d3e1c <N+76>: addq v0,0x2,t0 # which word?
0x3ff800d3e20 <N+80>: cmoveq t3,t0,v0 # add word offset
0x3ff800d3e24 <N+84>: and t1,0x55,t4 # byte mask
0x3ff800d3e28 <N+88>: addq v0,0x1,t0 # which byte?
0x3ff800d3e2c <N+92>: cmoveq t4,t0,v0 # add byte offset
0x3ff800d3e30 <N+96>: subq v0,a0,v0 # length = end post - start pos
0x3ff800d3e34 <N+100>: ret zero,(ra),0x1 # return string length in v0

13



strlen naive.s

.verstamp 3 11

.set noreorder

.set volatile

.set noat

.file 1 "strlen_naive.c"
gcc2_compiled.:
__gnu_compiled_c:
.text

.align 3

.globl my_strlen

.ent my_strlen
my_strlen:

# Register usage throughout this procedure :
# $0 : String length (len). Initialized to zero.
# $16 : Pointer to the current character to check (s). Initialized to the string address.
# $1 : Scratch register. Holds the current character to check (*s).

my_strlen..ng:
.frame $30,0,$26,0 # stack pointer is $30, ra is $26
.prologue 0
bis $31,$31,$0 # set len to 0
br $31,$38 # jump to while loop condition check
.align 4
.align 5

# this is the body of the while loop.
# len is in $0 and s is in $16 throughout.
$36:

addq $0,1,$0 # len++
addq $16,1,$16 # s++

# this is the condition checking part of the
# while loop. Byte manipulations are performed
# to check the value of *s and jump based on that.
$38:

ldq_u $1,0($16) # r1 = *s
extbl $1,$16,$1 # move *s into byte 0 of r1
bne $1,$36 # if (*s != 0) jump to $36
ret $31,($26),1 # return len
.end my_strlen

.

Problem 7: Measuring the Performance of the strlen() Routines

Use your interval timer code to measure the performance of both the my strlen() routine in ASST-
DIR/strlen naive.c and DEC C library implementation of strlen() on the various strlen()
calls contained in ASSTDIR/strlen test.c. Note that you should produce separate timing numbers
for each these individual calls to strlen(), and be sure to call the initialization routine in this file before
you start timing things to ensure that the cache is warm.

Discuss the relative performance differences between the two versions of the routine, and whether they
make sense given your analysis of the assembly code.

.
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Solution 7:

strlen:

do_test(0, 1): run timed at 0.000096 ms
do_test(0, 4): run timed at 0.000097 ms
do_test(0, 19): run timed at 0.000130 ms
do_test(0, 103): run timed at 0.000232 ms
do_test(0, 4088): run timed at 0.005242 ms
do_test(1, 1): run timed at 0.000097 ms
do_test(1, 4): run timed at 0.000096 ms
do_test(1, 19): run timed at 0.000135 ms
do_test(1, 103): run timed at 0.000218 ms
do_test(1, 4088): run timed at 0.005289 ms
do_test(6, 1): run timed at 0.000097 ms
do_test(6, 4): run timed at 0.000107 ms
do_test(6, 19): run timed at 0.000150 ms
do_test(6, 103): run timed at 0.000234 ms
do_test(6, 4088): run timed at 0.005257 ms

naive_strlen:

do_test(0, 1): run timed at 0.000078 ms
do_test(0, 4): run timed at 0.000143 ms
do_test(0, 19): run timed at 0.000368 ms
do_test(0, 103): run timed at 0.001633 ms
do_test(0, 4088): run timed at 0.061953 ms
do_test(1, 1): run timed at 0.000078 ms
do_test(1, 4): run timed at 0.000143 ms
do_test(1, 19): run timed at 0.000367 ms
do_test(1, 103): run timed at 0.001645 ms
do_test(1, 4088): run timed at 0.061953 ms
do_test(6, 1): run timed at 0.000078 ms
do_test(6, 4): run timed at 0.000144 ms
do_test(6, 19): run timed at 0.000369 ms
do_test(6, 103): run timed at 0.001648 ms
do_test(6, 4088): run timed at 0.061953 ms

The naive implementation is very fast for small strings due to minimal overhead. For medium-size or long
strings, though, it behaves poorly relative to the library implementation. The reason for this is that the
library implementation aligns the pointers to quad-word boundaries, and then it makes use of the cmpbge
instruction to compare 8 bytes in parallel with a single load. On the other hand, the naive implementation
loads each and every byte. Additionally, the library implementation avoids the unecessary increment of
the string’s length at every byte check. Instead, it calculates it by subtracting the address of the string’s
first character from the address of the string’s null-terminating character. All these offer a performance
advantage to the library implementation, which performs better for strings as small as 4 bytes, and is an
order of magnitude faster for very long strings.

.
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Problem 8: Implementing a Better Version of strlen() in C

Write your own version of strlen() in C. Your code must behave correctly, but at the same time it should
be as efficient as possible. You should create a version of your code which only uses C constructs (i.e. no
explicit assembly code). In addition, you may optionally create a second version of your code which uses
the GCC assembly code directives (i.e. “ASM”) if it further enhances performance. For further information
on how to use assembly code directives in gcc, see the “info” pages on gcc (under “C extensions”). These
info pages are reproduced on the Assignment and exam information class web page under Assignment 1.
Use a minimal number of ASM statements—do not simply reproduce large amounts of hand-coded assembly
in your C code. Be sure to compile your code using the “-O” optimization flag.

Measure the performance of your C-only code and your assembly-augmented code (if applicable). If your
assembly-augmented code achieves better performance than your C-only code, discuss why you are not able
to achieve comparable performance using only normal C constructs. Also, compare your code with both
the naive and UNIX library versions of strlen(). If your performance falls short of the UNIX library
version, explain why.

.

Solution 8: (Courtesy of A. Nizhner)

Implementation: The main bottleneck of the naive implementation inmy_strlen is memory bandwidth,
since a full word load is performed for each byte comparison. This memory access pattern is extremely
wasteful; only one load need be performed for each naturally-aligned run of 8 bytes, or 4 bytes on 32-bit
architectures. Our solution, therefore, is to partition the string into naturally-aligned 8-byte sections, perform
a single word load for each section, and test each byte within the loaded word, thereby eliminating 7 out of
every eight memory references in the naive implementation. The code is shown below.

#include <string.h>

/* Loads one native word (8 bytes) at a time and examines each byte in turn.
This code can be made more portable via compile-time switches; all
hard-coded dependencies on the Alpha native word width can be eliminated,
at the cost of more memory references on 32-bit machines.

*/
size_t new_strlen(const char *s)
{
/* generate aligned long int pointer */
long int* t = (long int*)(((long int)s)&˜7);
long int acc;
int u_bits = 8*(((long int)s)&7);

/* right-align the "unaligned" portion of the string and set the
high-order bits to prevent false-positives */

if(u_bits!=0)
acc = (((*t)>>u_bits) | ((-1L)&(-(1L<<(64-u_bits)))));

else
acc = *t;

/* special-case the first word */
if((acc&255)==’\0’)
return 0;

else if(((acc>>8)&255)==’\0’)
return 1;

else if(((acc>>16)&255)==’\0’)
return 2;

else if(((acc>>24)&255)==’\0’)
return 3;

else if(((acc>>32)&255)==’\0’)

16



return 4;
else if(((acc>>40)&255)==’\0’)
return 5;

else if(((acc>>48)&255)==’\0’)
return 6;

else if(((acc>>56)&255)==’\0’)
return 7;

/* the rest, now aligned */
do {

t++;
acc = *t;
if((acc&255)==’\0’)

return ((size_t)t-(size_t)s);
else if(((acc>>8)&255)==’\0’)

return ((size_t)t-(size_t)s+1);
else if(((acc>>16)&255)==’\0’)

return ((size_t)t-(size_t)s+2);
else if(((acc>>24)&255)==’\0’)

return ((size_t)t-(size_t)s+3);
else if(((acc>>32)&255)==’\0’)

return ((size_t)t-(size_t)s+4);
else if(((acc>>40)&255)==’\0’)

return ((size_t)t-(size_t)s+5);
else if(((acc>>48)&255)==’\0’)

return ((size_t)t-(size_t)s+6);
else if(((acc>>56)&255)==’\0’)

return ((size_t)t-(size_t)s+7);
}while(1);

return 0;

}

Evaluation: While clearly faster than the naive implementation,my_strlen fails to achieve performance
comparable to the DEC C strlen routine. The main reason for this is the use of the cmpbge instruction
in the UNIX library code–by testing each byte in parallel, it allows an average speedup by a factor of
approximately 4 for long strings, compared to an equivalent sequential version.

The timing data for our implementation of strlen are shown below.

do_test(0, 1): run timed at 0.000058 ms
do_test(0, 4): run timed at 0.000073 ms
do_test(0, 19): run timed at 0.000186 ms
do_test(0, 103): run timed at 0.000648 ms
do_test(0, 4088): run timed at 0.023113 ms
do_test(1, 1): run timed at 0.000070 ms
do_test(1, 4): run timed at 0.000086 ms
do_test(1, 19): run timed at 0.000197 ms
do_test(1, 103): run timed at 0.000670 ms
do_test(1, 4088): run timed at 0.023352 ms
do_test(6, 1): run timed at 0.000071 ms
do_test(6, 4): run timed at 0.000127 ms
do_test(6, 19): run timed at 0.000227 ms
do_test(6, 103): run timed at 0.000700 ms
do_test(6, 4088): run timed at 0.023828 ms

.
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Problem 9: Measuring strlen() on a Different Architecture

Using your interval timer code, measure and compare the performance of both your C-only version of
strlen() and the native (i.e. UNIX C library) version of strlen() on a machine other than an Alpha
machine. Discuss whether these results are what you expected, or whether they are surprising.

.

Solution 9: (Courtesy of A. Nizhner)

Measurements. These tests were run on:
SunOS unix14.andrew.cmu.edu 5.8 Generic_108528-19 sun4u sparc SUNW,Ultra-6
0.

new_strlen:

do_test(0, 1): run timed at 0.000082 ms
do_test(0, 4): run timed at 0.000103 ms
do_test(0, 19): run timed at 0.000174 ms
do_test(0, 103): run timed at 0.000534 ms
do_test(0, 4088): run timed at 0.017090 ms
do_test(1, 1): run timed at 0.000093 ms
do_test(1, 4): run timed at 0.000114 ms
do_test(1, 19): run timed at 0.000210 ms
do_test(1, 103): run timed at 0.000563 ms
do_test(1, 4088): run timed at 0.017395 ms
do_test(6, 1): run timed at 0.000093 ms
do_test(6, 4): run timed at 0.000113 ms
do_test(6, 19): run timed at 0.000200 ms
do_test(6, 103): run timed at 0.000563 ms
do_test(6, 4088): run timed at 0.017700 ms

UNIX strlen:

do_test(0, 1): run timed at 0.000124 ms
do_test(0, 4): run timed at 0.000162 ms
do_test(0, 19): run timed at 0.000226 ms
do_test(0, 103): run timed at 0.000572 ms
do_test(0, 4088): run timed at 0.017395 ms
do_test(1, 1): run timed at 0.000119 ms
do_test(1, 4): run timed at 0.000148 ms
do_test(1, 19): run timed at 0.000236 ms
do_test(1, 103): run timed at 0.000591 ms
do_test(1, 4088): run timed at 0.017395 ms
do_test(6, 1): run timed at 0.000150 ms
do_test(6, 4): run timed at 0.000150 ms
do_test(6, 19): run timed at 0.000234 ms
do_test(6, 103): run timed at 0.000582 ms
do_test(6, 4088): run timed at 0.017395 ms
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Discussion. When run on a SPARC, new_strlen actually exhibits the same level of performance as the
libc strlen. (In fact, it performs better on short strings!) This is expected, and due to the fact that the
SPARC lacks an instruction equivalent to the Alpha’s cmpbge–in other words, the libc implementation
enjoys no more parallelism than ours. These results reinforce the conjecture that the memory access pattern
was precisely what made the naive implementation naive.

(Note: new_strlen obviously had to be modified to account for the 32-bit native word size and the
reversed endiannes of the SPARC.)

.

Problem 10: Stack Frames and Procedure Calls

The file ASSTDIR/structure.c shows the C code for a function that demonstrates many interesting
features of implementing C on an Alpha machine. The code generated by GCC with the -O flag is shown in
the file ASSTDIR/structure.s

Document the following:

A. Show the layout of the data structure list ele.

B. Explain how the program implements the returning of a structure by sum list.

C. Describe the register allocation used in sum list.

D. Show the layout of the stack frame used by sum list.

E. Create an annotated version of the assembly code for sum list using our usual formatting conven-
tions.

.

Solution 10:

A - Data Structure Layout

� offset 0-7: next

� offset 8-15: pt.x

� offset 16-23: pt.y

B - Implementation of Returning Structure The first argument to sum_list is a pointer to the point
result structure located in the caller’s stack frame. The function is also changed to return a pointer.
Essentially, the function header is changed to point *sum(point *pResult, list_ptr ls)
and everywhere the variable result is used, *pResult is used instead. This makes it possible to avoid
copying the structure to the function argument, and copying it again to return it after the completion of the
function call. Register $16 holds the pointer to the point structure when it is passed as an argument, hence
it also indicates the place in the caller’s stack where the return value is to be placed.
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C - Register Allocation

� $9 holds result.x.

� $10 holds result.y.

� $11 holds ls before the recursive call. Subsequent calls overwrite the previous value. The local
copy is taken from $17.

� $12 holds a local copy of the pointer to the caller’s rest structure. This is where the fuction should
place its return value before recursing.

� $16 holds the &(rest) argument to sum_list. It indicates the address in the caller’s stack where
the return structure should be placed. It is overwritten at each recursive call.

� $17 holds the list_ptr ls argument to sum_list. It is overwritten by ls->next at each
recursive call.

� $1 is used as an integer scratch register.

� $f1 and $f10 are used as floating-point scratch registers in the sum_list computation.

D - Stack Frame Layout

� offset 0-7: Saved return address $26

� offset 8-15: Callee saved $9

� offset 16-23: Callee saved $10

� offset 24-31: Callee saved $11

� offset 32-39: Callee saved $12

� offset 40-47: Padding

� offset 48-55: rest.x

� offset 56-63: rest.y

� offset 64-71: result.x and later rest.x

� offset 72-79: result.y and later rest.y

� offset 80-87: Scratch space used to convert FP to integer

� offset 88-95: Padding
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E - Annotated Assembly Code

.verstamp 3 11

.set noreorder # prevent reordering if assembly instructions

.set volatile # loads and stores may not be moved in relation
# to each other or removed by an optimization pass.

.set noat # permit the use of the $at register by the program.

.file 1 "structure.c"
gcc2_compiled.:
__gnu_compiled_c:
.text

.align 3 # quadword alignment

.globl sum_list # identify sum_list as an external symbol
# and require the linker to resolve it.

.ent sum_list # entry point of the sum_list procedure

# The arguments to sum_list are $16 (&(rest) in the callers stack frame)
# and $17 (list_ptr ls).
sum_list:

ldgp $29,0($27) # setup the global pointer gp
sum_list..ng: # the local entry point

lda $30,-96($30) # point to bottom of current stack frame
.frame $30,96,$26,0 # describe the stack frame:

# the frame register is $30.
# the stack frame is 96 bytes long.
# the return address is stored in $26.
# there are 0 bytes between the virtual
# frame pointer and the local variables.

stq $26,0($30) # save return address
stq $9,8($30) # save s0
stq $10,16($30) # save s1
stq $11,24($30) # save s2
stq $12,32($30) # save s3
.mask 0x4001e00,-96 # set a mask with a bit turned on for each

# register the current routine saved.
# The least significant bit corresponds to $1.
# The offset indicates the distance in bytes
# from the virtual frame pointer to where the
# registers are saved.

.prologue 1 # make the end of the prologue section of the
# procedure. The flag is set, indicating that gp
# is used by the procedure.

# argument registers are trashed by subsequent calls
bis $16,$16,$12 # local copy of pointer to caller’s "rest"
bis $17,$17,$11 # local copy of "ls"
bne $11,$34 # check if "ls" is NULL

# "ls" was determined to be NULL
bis $31,$31,$9 # zero $9 (result.x)
bis $9,$9,$10 # zero $10 (result.y)
br $31,$35 # clean up and return
.align 4 # octaword alignment

# "ls" was determined to be nonzero. Build child arguments and
# recurse.

$34:
addq $30,48,$16 # pass &rest in current frame to child
ldq $17,0($11) # pass ls->next to child
bsr $26,sum_list..ng # recurse
ldq $1,48($30) # load rest.x
stq $1,64($30) # move rest.x to result.x (why?)
ldq $1,56($30) # load rest.y
stq $1,72($30) # move rest.y to result.y (why?)
ldt $f1,8($11) # load ls->pt.x
ldt $f10,64($30) # load rest.x
addt $f1,$f10,$f10 # $f10 = ls->pt.x + rest.x
stt $f10,80($30) # prepare to move fp data to integer reg
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ldq $9,80($30) # result.x = ls->pt.x + rest.x
ldt $f1,16($11) # load ls->pt.y
ldt $f10,72($30) # load rest.y
addt $f1,$f10,$f10 # $f10 = ls->pt.y + rest.y
stt $f10,80($30) # prepare to move fp data to integer reg
ldq $10,80($30) # result.y = ls->pt.y

# Clean up and return. At this time $9 and $10 contain the bit
# patterns of the x and y coordinates to be returned to the caller.

$35:
stq $9,0($12) # write result.x to rest.x in caller’s frame
stq $10,8($12) # write result.y to rest.y in caller’s frame
bis $12,$12,$0 # return pointer to "rest" in caller’s frame
ldq $26,0($30) # restore return address
ldq $9,8($30) # restore s0
ldq $10,16($30) # restore s1
ldq $11,24($30) # restore s2
ldq $12,32($30) # restore s3
addq $30,96,$30 # restore sp (bottom of caller’s frame)
ret $31,($26),1 # return
.end sum_list

.

Problem 11: Leaf Procedures

The doubly recursive solution to the Fibonacci function is elegant, but inefficient. The file ASSTDIR/fib.c
shows the C code for the function. The code generated by GCC with the -O flag is shown in the file
ASSTDIR/fib.s. Without changing the basic implementation, i.e., keep it doubly recursive, try and make
is subtantially faster by optimzing the assembly code.

Document the following:

A. Explain your optimization and why it speeds up fib

B. Plot the time taken to run fib for fib 1 to fib 40 with and without your optimization.

C. Determine the cost of allocating a frame for a procedure using this data.

.

Solution 11:

A - Optimization We have applied several optimizations. First of all, we eliminate all memory references
associated with stack manipulation in the base case (that is, the leaf codepath), since the computation is
trivial enough to be performed entirely in caller-saved registers. While negligible for small values of � , the
performance improvement is significant for � 	 �

40 due to the asymptotic growth characteristics of
� ���

.
This optimization alone provided most of the performance improvement we observed. Additionally, we use
$0 to hold both the return value of the cmple, and the return value of the fib() call, therby eliminating one
lda instruction. Note that $0 always holds the return value of the function call. Then, we change the way we
save registers in the stack. Originally we load the address of our frame to $30 and then we store the callee
saved registers we modify. However, the stores depend on the value of the previous lda, potentially stalling
the pipeline. Instead, we directly manipulate the offsets and store the registers to the appropriate location
at the stack frame, and load $30 at the end. Also, we choose to compute the argument to the fib(n-2) call
first. That way, we can reuse $10 to hold the result of fib(n-1). This eliminates the usage of $9, and removes
the stq/ldq instructions needed to save/restore its value at every function call. In addition, by using one less
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register we can get rid of the space allocated for it at the stack frame, and we no longer need the padding
to cache-align the frame. Thus, the new stack frame is only 16 bytes long, and exactly 4 of them fit in a
cache line, effectively doubling its density from the original size of 32 bytes. Finally, we remove the L3
label since it leads to dead code, and eliminate the branch to L4. All the additional optimizations besides
the elimination of stack frame allocation for the base case result in a 23 % performance increase. The code
has been modified as follows:

.verstamp 3 11

.set noreorder

.set volatile

.set noat

.arch ev4
.text

.align 5

.globl fib

.ent fib
fib:

.frame $30,16,$26,0 # the stack frame is only 16 bytes

.mask 0x4000600,-16 # correct mask: only $10 and $26 saved
ldgp $29,0($27)

# If the argument to fib() is less than 2, return 1
# As an additional optimization, use $0 to hold both
# the return value of the cmple, and the return value
# of the fib() call, therby eliminating one lda instruction.

$fib..ng:
cmple $16, 2, $0 # ret = ((n<=2) ? (1:0))
bne $0, fastret

# Move lda to the end so that the stq instructions don’t
# depend on it. Change the offsets from $30 appropriately.

stq $10,-8($30)
stq $26,-16($30)
lda $30,-16($30)
.prologue 1

mov $16,$10
subl $10,1,$16
bsr $26,$fib..ng

# Compute the argument to the next fib(n-2) call first.
# Then, reuse the register to hold the result of fib(n-1).
# This eliminates one register, and removes the stq/ldq
# instructions. The stack frame is also denser, as it can
# be compressed to 16 bytes with no padding necessary to
# cache-align it. There are exactly 4 frames per cache line.

subl $10,2,$16
mov $0,$10
bsr $26,$fib..ng
addl $10,$0,$0
.align 4

# Remove the L3 label since it is dead code, and eliminate
# the branch to L4.

$L4:
ldq $26,0($30)
ldq $10,8($30)
lda $30,16($30)

fastret:
ret $31,($26),1
.end fib
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Figure 2: The running times of fibfast and fibslow

B - Performance Evaluation See Figure 2.

C - Discussion An invocation of fib(n) results in precisely
� ��� � � 
 executions of the leaf codepath. The

above plot gives execution times of 7377.584 ms and 6476.736 ms for fibslow 40 and fibfast 40,
respectively. Since fibfast and fibslow differ only in the implementation of the base case (we are
ignoring the effect of the optimization on the recursive step), and the cost difference is due entirely to stack
manipulation, the cost of allocating a stack frame is given by 7377 � 584 � ��� 6476 � 736 � �� � � � 40 �

�
8 � 803 � � . Note that

the measurements were done with a version of the code that optimizes only the frame allocation for the base
case as discussed above.

.

Long Jumps

(NOTE: this last section is for extra credit only.)

In this section, you will enhance your understanding of Alpha calling and returning conventions by examining
the Unix setjmp library, which in effect cheats on the standard procedure calling conventions.

setjmp provides a mechanism for nonlocal procedure exits. By usingsetjmp andlongjmp, a procedure
can exit to a function a long way up the procedure chain, bypassing its calling procedure.

This is typically used for error handling, in the following style:

jmp_buf env;
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main()
{

int jval;
if ((jval = setjmp(env)) != 0) {

/* Do error recovery and cleanup. */
/* And possibly try to execute again. */

} else {
/* Do normal case. */
...

}
}

The first time setjmp() is called, it sets up the buffer env with enough information to reconstruct the state
of the registers and the stack. It returns 0 to the calling function.

The calling function then does other code, and deep within some complicated hierarchy of other functions,
it may find some error:

deep_within_some_complicated_hierarchy ()
{
if (error_detected) {

longjmp(env, ERROR_CONSTANT);
}
...

}

longjmp() restores the state that was saved in setjmp() and resets the stack pointer to the position it
was in when setjmp() was called.

The file ljdemo.c contains a somewhat contrived example of the use of setjmp() and longjmp().
Study this code to better understand the behavior of these constructs. Try compiling and running it (it should
work on any Unix machine).

Problem 12: (For Extra Credit) Understanding the Implementation of Long Jumps

The file ASSTDIR/longjmp.dis contains a disassembly of the code for___setjmp() and_longjmp(),
which are simplified versions of setjmp() and longjmp(). In addition, the file also includes
__longjump_resume(), which is called by _longjmp() This code was extracted from the Unix
library /usr/lib/libc.a on one of our Alpha machines. Your job is to create annotated versions of
these three procedures. Show clearly what state is being saved and restored, and how longjmp subverts the
Alpha calling routines to appear to ‘return’ to a place other than that from which it was called.

It may help you understand the code to write down what data is stored in which places in the jmp_buf. If
you write this information down, turn that in too.

Hints: � The ldt and stt instructions load and store 64-bit numbers into/from the floating-point
register file. Their behavior is analogous to ldq and stq for integer data.

� The value 0xacedbade is used as a “magic token” to identify a buffer that has (probably) been
set by setjmp() (A moment’s thought should convince you that doing a longjmp() to a
buffer that has not been set up by setjmp() is likely to result in errors that are very difficult
to track down.) This value is generated by a combination of three instructions:
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ldah r1, 22135(r31)
lda r1, -8849(r1)
addq r1, r1, r1

� The ldah instruction, which stands for Load Address High, multiplies a signed 16-bit constant
by 65536, and then adds this value into the destination register. The lda instruction, which
stands for Load Address, generates the effective address address in the destination register (in
this case, it subtracts 8849 from r1).

.

Solution 12: (Courtesy of J. Hendricks, D. Koes, D. Malayeri)

# The env structure stores the certain information at certain offsets:
# offset info
# 16 r26
# 104 r9
# 112 r10
# 120 r11
# 128 r12
# 136 r13
# 144 r14
# 152 r15
# 240 r26 (again)
# 264 gp
# 272 sp
# 280 0xacedbade

# r16 is the first argument (the env pointer to the jmpbuf)
# This routine saves a bunch of state. It doesn’t need to save
# temporary registers since they can’t have important values in them
# anyway (since this is a function call).

___setjmp:
0x10: 241f5677 ldah r0, 22135(r31) # r0 := 0x56770000

# why does the gp get stored?
# it isn’t preserved across function calls...
# hmm..
0x14: b7b00108 stq gp, 264(r16) # *(r16+264) := gp

# r27 is the current procedure’s address
0x18: 243b0001 ldah r1, 1(r27) # r1 := r27+1

# store a permanent (callee save) register to env
0x1c: b5500070 stq r10, 112(r16) # *(r16+112) := r10
0x20: 2000dd6f lda r0, -8849(r0) # r0 := r0 - 8849 = 0x5676dd6f

# store another perm register to env
0x24: b5700078 stq r11, 120(r16) # *(r16+120) := r11
0x28: 202180e0 lda r1, -32544(r1) # r1 := r1-32544

# store another perm register to env
0x2c: b5900080 stq r12, 128(r16) # *(r16+128) := r12
0x30: 40000400 addq r0, r0, r0 #r0 := 2*r0 = 0xacedbade

# store the magical value 0xacedbade into env
0x34: b4100118 stq r0, 280(r16) # *(r16+280) := r0

# store another perm register to env
0x38: b5b00088 stq r13, 136(r16) # *(r16+136) := r13

# set our return value to 0
0x3c: 47ff0400 bis r31, r31, r0 # r0 := 0

# store another perm register to env
0x40: b5d00090 stq r14, 144(r16) # *(r16+144) := r14
0x44: 443f041d bis r1, r31, gp # gp := r1

# store another perm register to env
0x48: b5f00098 stq r15, 152(r16) # *(r16+152) := r15

# store the return address
0x4c: b7500010 stq r26, 16(r16) # *(r16+16) := r26

# store all the floating point permanant (callee save) registers
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0x50: 9c500138 stt $f2, 312(r16)
0x54: 9c700140 stt $f3, 320(r16)
0x58: 9c900148 stt $f4, 328(r16)
0x5c: 9cb00150 stt $f5, 336(r16)
0x60: 9cd00158 stt $f6, 344(r16)
0x64: 9cf00160 stt $f7, 352(r16)
0x68: 9d100168 stt $f8, 360(r16)
0x6c: 9d300170 stt $f9, 368(r16)

# store the return address (again) in a different location
0x70: b75000f0 stq r26, 240(r16) # *(r16+240) := r26

# store the stack pointer
0x74: b7d00110 stq sp, 272(r16) # *(r16+272) := sp

# store another perm register to env
0x78: b5300068 stq r9, 104(r16) # *(r16+104) := r9
0x7c: 6bfa8001 ret r31, (r26), 1 # return to whence we were

# called

# this routine does the actual restore from the env pointer
# so all the state saved in setjmp gets put back where it came from

__longjump_resume:
# load the saved return address (from the setjmp) into r26
0x110: a75000f0 ldq r26, 240(r16) # r26 := *(r16+240)

# the return value needs to get set to the second argument to longjmp (r17)
0x114: 47f10400 bis r31, r17, r0 # r0 := r17
0x118: a7b00108 ldq gp, 264(r16) # gp := *(r16+264)
0x11c: 461f0412 bis r16, r31, r18 # r18 := r16 who knows why
# load a callee save integer register from saved state
0x120: a5300068 ldq r9, 104(r16)

# if the second argument to longjmp is zero, return value is actually 1
# although in this disassembled code it appears to be 3, strange
0x124: 44003480 cmoveq r0,0x11, r0

# restore the callee save integer registers
0x128: a5500070 ldq r10, 112(r16)
0x12c: a5700078 ldq r11, 120(r16)
0x130: a5900080 ldq r12, 128(r16)
0x134: a5b00088 ldq r13, 136(r16)
0x138: a5d00090 ldq r14, 144(r16)
0x13c: a5f00098 ldq r15, 152(r16)

# restore the callee save floating point registers
0x140: 8c500138 ldt $f2, 312(r16)
0x144: 8c700140 ldt $f3, 320(r16)
0x148: 8c900148 ldt $f4, 328(r16)
0x14c: 8cb00150 ldt $f5, 336(r16)
0x150: 8cd00158 ldt $f6, 344(r16)
0x154: 8cf00160 ldt $f7, 352(r16)
0x158: 8d100168 ldt $f8, 360(r16)
0x15c: 8d300170 ldt $f9, 368(r16)

# set the stack pointer to the saved value
0x160: a7d00110 ldq sp, 272(r16)
# return to the caller of the previous setjmp (not _longjmp)
0x164: 6bfa8001 ret r31, (r26), 1

# wrapper around __longjump_resume that does error checking
_longjmp:
0x17c: 23defff0 lda sp, -16(sp) # create a small stack frame

# (16 bytes)
0x180: 27bb0001 ldah gp, 1(r27) # setup the gp
0x184: 23bd8184 lda gp, -32380(gp)
0x188: b75e0000 stq r26, 0(sp) # store the return address onto

# the stack

# a correctly setup env will have 0xacedbade at this position in env
0x18c: a4100118 ldq r0, 280(r16) #r0 := *(r16+280)
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# next three lines put 0xacedbade into r28
0x190: 279f5677 ldah r28, 22135(r31)
0x194: 239cdd6f lda r28, -8849(r28)
0x198: 439c041c addq r28, r28, r28

0x19c: 401c05a0 cmpeq r0, r28, r0 # make sure env has right
# magic number

0x1a0: e4000002 beq r0,0x1ac # jump ahead if r0 is false

# apparently the addres of __longjump_resume is stored in global
# data somewhere, probably to facilitate shared objects or something
0x1a4: a77d8010 ldq r27, -32752(gp)

# call __longjump_resume, this will never return since it
# resets the return address to be the original setjmp ra
0x1a8: 6b5b4000 jsr r26, (r27), __longjump_resume

# branch to next instruction, put the next instruction’s address into r1
0x1ac: c0200000 br r1,0x1b0
# do some funky gp stuff - we apparently have position independant data
# that is pc relative (we’ve loaded the pc into r1)
0x1b0: 27a10001 ldah gp, 1(r1)
0x1b4: 23bd8150 lda gp, -32432(gp)
0x1b8: a77d8018 ldq r27, -32744(gp)
# call off to an error handling routine..
0x1bc: 6b5b4000 jsr r26, (r27), __longjmperror
# do some more funky gp stuff to get the address of abort
0x1c0: 27ba0001 ldah gp, 1(r26)
0x1c4: 23bd8140 lda gp, -32448(gp)
0x1c8: a77d8020 ldq r27, -32736(gp)
# we had problems apparently and have to abort
0x1cc: 6b5b4000 jsr r26, (r27), abort
0x1d0: 6bfa8001 ret r31, (r26), 1

.
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