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The Tradeoff 
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The Tradeoff 
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The Performance Gap 



CS 740 F’14 – 6 – 

Why is bigger slower? 

• Physics slows us down 
• Racing the speed of light:  (3.0x10^8m/s) 

• clock = 500MHz 
• how far can I go in a clock cycle? 
• (3.0x10^8 m/s) / (500x10^6 cycles/s) = 0.6m/cycle 
• For comparison:  21264 is about 17mm across 

• Capacitance: 
• long wires have more capacitance 
• either more powerful (bigger) transistors required, or slower 
• signal propagation speed proportional to capacitance 
• going “off chip” has an order of magnitude more capacitance 
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One-Transistor Dynamic RAM 
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Modern DRAM Cell Structure 
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[Samsung, sub-70nm DRAM, 2004] 
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DRAM Conceptual Architecture 
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  Bits stored in 2-dimensional arrays on chip 
  Modern chips have around 4-8 logical banks on each chip 
  each logical bank physically implemented as many smaller arrays 
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DRAM Physical Layout 

10 
[ Vogelsang, MICRO-2010 ] 
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DRAM Operation 
Three steps in read/write access to a given bank 
Row access (RAS) 

• decode row address, enable addressed row (often multiple Kb in 
row) 

• bitlines share charge with storage cell 
• small change in voltage detected by sense amplifiers which latch 

whole row of bits 
• sense amplifiers drive bitlines full rail to recharge storage cells 

Column access (CAS) 
• decode column address to select small number of sense amplifier 

latches (4, 8, 16, or 32 bits depending on DRAM package) 
• on read, send latched bits out to chip pins 
• on write, change sense amplifier latches which then charge storage 

cells to required value 
• can perform multiple column accesses on same row without another 

row access (burst mode) 
Precharge 

• charges bit lines to known value, required before next row access 
Each step has a latency of around 15-20ns in modern DRAMs 
Various DRAM standards (DDR, RDRAM) have different ways of 

encoding the signals for transmission to the DRAM, but all share 
same core architecture 

11 
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Memory Parameters 

Latency 
• Time from initiation to completion of one memory read (e.g., in 

nanoseconds, or in CPU or DRAM clock cycles) 

Occupancy 
• Time that a memory bank is busy with one request 
• Usually the important parameter for a memory write 

Bandwidth 
• Rate at which requests can be processed (accesses/sec, or GB/s) 

 

All can vary significantly for reads vs. writes, or 
address, or address history (e.g., open/close page 
on DRAM bank) 

 

12 



CS 740 F’14 – 13 – 

Processor-DRAM Gap (latency) 
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instructions during time for one memory access! 
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Physical Size Affects Latency 

14 
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Two predictable properties of 
memory references: 

Temporal Locality: If a location is 
referenced it is likely to be 
referenced again in the near future. 
 

Spatial Locality: If a location is 
referenced it is likely that locations 
near it will be referenced in the near 
future. 
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Memory Reference Patterns 

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971) 
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Memory Hierarchy 

Small, fast memory near processor to buffer 
accesses to big, slow memory 
• Make combination look like a big, fast memory 

 
Keep recently accessed data in small fast memory 
closer to processor to exploit temporal locality 
• Cache replacement policy favors recently accessed data 

Fetch words around requested word to exploit spatial 
locality 
• Use multiword cache lines, and prefetching 

17 
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Management of Memory Hierarchy 

Small/fast storage, e.g., registers 
• Address usually specified in instruction 
• Generally implemented directly as a register file 

– but hardware might do things behind software’s back, 
e.g., stack management, register renaming 

 

Larger/slower storage, e.g., main memory 
• Address usually computed from values in register 
• Generally implemented as a hardware-managed cache 

hierarchy (hardware decides what is kept in fast 
memory) 
– but software may provide “hints”, e.g., don’t cache or 

prefetch 

 
18 
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Alpha 21164 Chip Photo 

Microprocessor 
Report 9/12/94 

Caches: 
L1 data 
L1 instruction 
L2 unified 
+ L3 off-chip 
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Alpha 21164 Chip Caches 
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L1 data 
L1 instruction 
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+ L3 off-chip 
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Locality of Reference 

Principle of Locality: 
• Programs tend to reuse data and instructions near those they 

have used recently. 
• Temporal locality:   recently referenced items are likely to be 

referenced in the near future. 
• Spatial locality:   items with nearby addresses tend to be 

referenced close together in time. 

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
*v = sum; 

Locality in Example: 
• Data 

– Reference array elements in succession 
(spatial) 

• Instructions 
– Reference instructions in sequence (spatial) 
– Cycle through loop repeatedly (temporal) 
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Caching: The Basic Idea 

Main Memory 
• Stores words 

A–Z in example 
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• Stores subset of the 
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– Multiple words 
– To exploit spatial 
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Note that speculative and multithreaded 
processors may execute other instructions 
during a miss 
• Reduces performance impact of misses 

Memory Hierarchy Basics 
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How important are caches? 

(Figure from Jim Keller, Compaq Corp.) 

•21264 Floorplan 

•Register files in 
middle of execution 
units 

•64k instr cache 

•64k data cache 

•Caches take up a 
large fraction of the 
die 
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• Between any two levels, memory is divided into lines (aka “blocks”) 
• Data moves between levels on demand, in line-sized chunks 
• Invisible to application programmer 

– Hardware responsible for cache operation 
• Upper-level lines a subset of lower-level lines 
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Design Issues for Caches 

Key Questions: 
• Where should a line be placed in the cache?  (line placement) 
• How is a line found in the cache? (line identification) 
• Which line should be replaced on a miss? (line replacement) 
• What happens on a write? (write strategy) 

Constraints: 
• Design must be very simple 

– Hardware realization 
– All decision making within nanosecond time scale 

• Want to optimize performance for “typical” programs 
– Do extensive benchmarking and simulations 
– Many subtle engineering tradeoffs 
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Direct-Mapped Caches 

Simplest Design 
• Each memory line has a unique cache location 

Parameters 
• Line (aka block) size B = 2b 

– Number of bytes in each line 
– Typically 2X–8X word size 

• Number of Sets S = 2s 

– Number of lines cache can hold 
• Total Cache Size = B*S = 2b+s 

Physical Address 
• Address used to reference main memory 
• n bits to reference N = 2n total bytes 
• Partition into fields 

– Offset: Lower b bits indicate which byte within line 
– Set: Next s bits indicate how to locate line within cache 
– Tag: Identifies this line when in cache 

 
 

n-bit Physical Address 

t s b 

tag set index offset 
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Indexing into Direct-Mapped Cache 

• Use set index bits 
to select cache set 

Set 0: 0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 

Set 1: 

Set S–1: 

• 
• 
• 

t s b 

tag set index offset 

Physical Address 
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Direct-Mapped Cache Tag Matching 

Identifying Line 
• Must have tag match high 

order bits of address 
• Must have Valid = 1  

0 1 • • • B–1 Tag Valid 

Selected Set: 

t s b 

tag set index offset 

Physical Address 

= ? 

= 1? 

• Lower bits of address 
select byte or word 
within cache line 
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Properties of Direct Mapped Caches 

Strength 
• Minimal control hardware overhead 
• Simple design 
• (Relatively) easy to make fast 

Weakness 
• Vulnerable to thrashing 
• Two heavily used lines have same cache index 
• Repeatedly evict one to make room for other 

Cache Line 
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Vector Product Example 

Machine 
• DECStation 5000 
• MIPS Processor with 64KB direct-mapped cache, 16 B line size 

Performance 
• Good case: 24 cycles / element 
• Bad case: 66 cycles / element 

float dot_prod(float x[1024], y[1024]) 
{ 
  float sum = 0.0; 
  int i; 
  for (i = 0; i < 1024; i++) 
    sum += x[i]*y[i]; 
  return sum; 
} 
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Thrashing Example 

• Access one element from each array per iteration 

x[1] 
x[0] 

x[1020] 

• 
• 
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• 
• 
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x[3] 
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y[1020] 
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• 
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y[3] 
y[2] 

y[1021] 
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x[1] 
x[0] 

x[3] 
x[2] 

y[1] 
y[0] 

y[3] 
y[2] 

Cache 
Line 

Thrashing Example: Good Case 

Access Sequence 
• Read x[0] 

– x[0], x[1], x[2], x[3] loaded 
• Read y[0] 

– y[0], y[1], y[2], y[3] loaded 
• Read x[1] 

– Hit 
• Read y[1] 

– Hit 
• • • • 
• 2 misses / 8 reads 

Analysis 
• x[i] and y[i] map to different cache 

lines 
• Miss rate = 25% 

– Two memory accesses / iteration 
– On every 4th iteration have two 

misses 

Timing 
• 10 cycle loop time 
• 28 cycles / cache miss 
• Average time / iteration = 
 10 + 0.25 * 2 * 28 
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x[1] 
x[0] 

x[3] 
x[2] 

y[1] 
y[0] 

y[3] 
y[2] 

Cache 
Line 

Thrashing Example: Bad Case 

Access Pattern 
• Read x[0] 

– x[0], x[1], x[2], x[3] loaded 
• Read y[0] 

– y[0], y[1], y[2], y[3] loaded 
• Read x[1] 

– x[0], x[1], x[2], x[3] loaded 
• Read y[1] 

– y[0], y[1], y[2], y[3] loaded 
• • • 
• 8 misses / 8 reads 

Analysis 
• x[i] and y[i] map to same cache lines 
• Miss rate = 100% 

– Two memory accesses / iteration 
– On every iteration have two misses 

Timing 
• 10 cycle loop time 
• 28 cycles / cache miss 
• Average time / iteration =  
 10 + 1.0 * 2 * 28 
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Miss Types 

Compulsory Misses – required to warm up the cache 
 
Capacity Misses – occur when the cache is full 
 
Conflict Misses – Block placement may cause these in 
direct or non-fully associative caches 
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Set Associative Cache 

Mapping of Memory Lines 
• Each set can hold E lines (usually E=2-8) 
• Given memory line can map to any entry within its given set 

Eviction Policy 
• Which line gets kicked out when bring new line in 
• Commonly either “Least Recently Used” (LRU) or pseudo-random 

– LRU: least-recently accessed (read or written) line gets evicted 

Set i: 
0 1 • • • B–1 Tag Valid 

• 
• 
• 

0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 

LRU State 

Line 0: 

Line 1: 

Line E–1: 



CS 740 F’14 – 37 – 

Set 0: 

Set 1: 

Set S–1: 

• 
• 
• 

t s b 

tag set index offset 

Physical Address 

Indexing into 2-Way Associative Cache 

• Use middle s bits to 
select from among S = 2s 
sets 

0 1 • • • B–1 Tag Valid 
0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 
0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 
0 1 • • • B–1 Tag Valid 
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Associative Cache Tag Matching 

Identifying Line 
• Must have one of the 

tags match high order 
bits of address 

• Must have Valid = 1  for 
this line 

Selected Set: 

t s b 

tag set index offset 

Physical Address 

= ? 

= 1? 

• Lower bits of address 
select byte or word 
within cache line 

0 1 • • • B–1 Tag Valid 
0 1 • • • B–1 Tag Valid 
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Two-Way Set Associative Cache 
Implementation 

• Set index selects a set from the cache 
• The two tags in the set are compared in parallel 
• Data is selected based on the tag result 

Cache Data 
Cache Line 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Line 0 

Cache Tag Valid 

: : : 

Set Index 

Mux 0 1 Sel1 Sel0 

Cache Line 

Compare 
Adr Tag 

Compare 

OR 

Hit 

Adr Tag 
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Fully Associative Cache 

Mapping of Memory Lines 
• Cache consists of single set holding E lines 
• Given memory line can map to any line in set 
• Only practical for small caches 

 
Entire Cache 

0 1 • • • B–1 Tag Valid 

• 
• 
• 

0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 

LRU State 

Line 0: 

Line 1: 

Line E–1: 
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Fully Associative Cache Tag Matching 

Identifying Line 
• Must check all of the tags for 

match 
• Must have Valid = 1  for this 

line 

t b 

tag offset 
Physical Address 

= ? 

= 1? 

• Lower bits of address 
select byte or word 
within cache line 

0 1 • • • B–1 Tag Valid 

• 
• 
• 

0 1 • • • B–1 Tag Valid 

0 1 • • • B–1 Tag Valid 

• 
• 
• 
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Replacement Algorithms 
• When a block is fetched,  which block in the target set should be 

replaced? 
Optimal algorithm: 

– replace the block that will not be used for the longest period of time 
– must know the future 

Usage based algorithms: 
• Least recently used (LRU) 

– replace the block that has been referenced least recently 
– hard to implement (unless low associativity) 

Non-usage based algorithms: 
• First-in First-out (FIFO) 

– treat the set  as a circular queue, replace block at head of queue. 
– Essentially replace oldest 

• Random (RAND) 
– replace a random block in the set  
– even easier to implement 
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Write Policy 

• What happens when processor writes to the cache? 
• Should memory be updated as well? 

Write Through:  
• Store by processor updates cache and memory 
• Memory always consistent with cache 
• Never need to store from cache to memory 
• ~2X more loads than stores 

 
 

Processor 

Cache 

Memory 
Store 

Load 
Cache 
Load 
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Write Policy (Cont.) 

Write Back:  
• Store by processor only updates cache line 
• Modified line written to memory only when it is evicted 

– Requires “dirty bit” for each line 
»Set when line in cache is modified 
»Indicates that line in memory is stale 

• Memory not always consistent with cache 

Processor 

Cache 
Memory 

Store 

Load Cache 
Load 

Write 
Back 
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Write Buffering 

Write Buffer 
• Common optimization for all caches 
• Overlaps memory updates with processor execution 
• Read operation must check write buffer for matching address 

Cache 

CPU 

Memory 

Write 
Buffer 
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Multi-Level Caches 

Memory disk 

L1 Icache 

L1 Dcache regs L2  
Cache 

Processor 

Options: separate data and instruction caches, or a unified cache 

How does this affect self modifying code? 
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Bandwidth Matching 

Challenge 
• CPU works with short cycle times 
• DRAM (relatively) long cycle times 
• How can we provide enough bandwidth between processor 

& memory? 
Effect of Caching 

• Caching greatly reduces amount of traffic to main 
memory 

• But, sometimes need to move large amounts of data from 
memory into cache 

Trends 
• Need for high bandwidth much greater for multimedia 

applications 
– Repeated operations on image data 

• Recent generation machines (e.g., Pentium II) greatly 
improve on predecessors 

CPU 

cache 

M 

bus 

Short 
Latency 

Long 
Latency 
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High Bandwidth Memory Systems 

CPU 

cache 

M 

bus 

mux 

CPU 

cache 

M 

bus 

Solution 1 
High BW DRAM 

Solution 2 
Wide path between memory & cache 

Example: 
    Page Mode DRAM 
    RAMbus 

Example: Alpha AXP 21064 
256 bit wide bus, L2 cache,  
and memory. 
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Cache Performance Metrics 

Miss Rate 
• fraction of memory references not found in cache 

(misses/references) 
• Typical numbers: 

3-10% for L1 
can be quite small (e.g., < 1%) for L2, depending on size, etc. 

Hit Time 
• time to deliver a line in the cache to the processor (includes time 

to determine whether the line is in the cache) 
• Typical numbers: 

1-3 clock cycles for L1 
3-12 clock cycles for L2 

Miss Penalty 
• additional time required because of a miss 

– Typically 25-100 cycles for main memory 
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Impact of Cache and Block Size 

Cache Size 
• Effect on miss rate? 

 
• Effect on hit time? 

 

Block Size 
• Effect on miss rate? 

 
• Effect on miss penalty? 

 
• Effect on hit time? 
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Impact of Associativity 

• Direct-mapped, set associative, or fully associative? 

Total Cache Size (tags+data)? 
 
 

Miss rate? 
 
 

Hit time? 
 
 

Miss Penalty? 
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Impact of Replacement Strategy 

• RAND, FIFO, or LRU? 

Total Cache Size (tags+data)? 
 
 

Miss Rate? 
 
 

Miss Penalty? 
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Impact of Write Strategy 

• Write-through or write-back? 

Advantages of Write Through? 
 
 
 

Advantages of Write Back? 
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Allocation Strategies 

• On a write miss, is the block loaded from memory into the cache? 
Write Allocate:  

• Block is loaded into cache on a write miss. 
• Usually used with write back 
• Otherwise, write-back requires read-modify-write to replace word within 

block 
 
 
 
 
 
 
 

• But if you’ve gone to the trouble of reading the entire block, why not load 
it in cache? 

17 

5 7 11 13 

write buffer block 

memory block 

17 

5 7 11 13 

read 

5 7 11 13 

17 

5 7 11 13 

modify 

5 7 17 13 

17 

5 7 17 13 

write 

5 7 17 13 temporary buffer 
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Allocation Strategies (Cont.) 

• On a write miss, is the block loaded from memory into the cache? 

No-Write Allocate (Write Around): 
• Block is not loaded into cache on a write miss 
• Usually used with write through 

– Memory system directly handles word-level writes 
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Qualitative Cache Performance Model 

Miss Types 
• Compulsory (“Cold Start”) Misses 

– First access to line not in cache 
• Capacity Misses 

– Active portion of memory exceeds cache size 
• Conflict Misses 

– Active portion of address space fits in cache, but too many lines 
map to same cache entry 

– Direct mapped and set associative placement only 
• Validation Misses 

– Block invalidated by multiprocessor cache coherence mechanism 
Hit Types 

• Reuse hit 
– Accessing same word that previously accessed 

• Line hit 
– Accessing word spatially near previously accessed word 
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Interactions Between Program & Cache 

Major Cache Effects to Consider 
• Total cache size 

– Try to keep heavily used data in highest level cache 
• Block size (sometimes referred to “line size”) 

– Exploit spatial locality 
 
 
 
Example Application 

• Multiply n X n matrices 
• O(n3) total operations 
• Accesses 

– n reads per source element 
– n values summed per destination 

»But may be able to hold in register 

/* ijk */ 
for (i=0; i<n; i++)  { 
  for (j=0; j<n; j++) { 
    sum = 0.0; 
    for (k=0; k<n; k++)  
      sum += a[i][k] * b[k][j]; 
    c[i][j] = sum; 
  } 
}  

Variable sum 
held in register 



CS 740 F’14 – 59 – 

0

20

40

60

80

100

120

140

160

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
flo

ps
 (d

.p
.)

ijk
ikj
jik
jki
kij
kji

Matmult Performance (Alpha 21164) 
Too big for L1 Cache Too big for L2 Cache 



CS 740 F’14 – 60 – 

Block Matrix Multiplication 

C11  =  A11B11 + A12B21           C12  =  A11B12 + A12B22 
 
C21  =  A21B11 + A22B21           C22  =  A21B12 + A22B22 

A11   A12 
 
A21   A22 

Example n=8, B = 4: 

B11   B12 
 
B21   B22 

X =  
C11   C12 
 
C21   C22 

Key idea: Sub-blocks (i.e., Aij) can be treated just like scalars. 
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Blocked Matrix Multiply (bijk) 

for (jj=0; jj<n; jj+=bsize) { 
  for (i=0; i<n; i++) 
    for (j=jj; j < min(jj+bsize,n); j++) 
      c[i][j] = 0.0; 
  for (kk=0; kk<n; kk+=bsize) {  
    for (i=0; i<n; i++) { 
      for (j=jj; j < min(jj+bsize,n); j++) {  
        sum = 0.0 
        for (k=kk; k < min(kk+bsize,n); k++) { 
          sum += a[i][k] * b[k][j]; 
        } 
        c[i][j] += sum; 
      } 
    } 
  } 
} 
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Blocked Matrix Multiply Analysis 

A B C 

block reused 
n times 
in succession 

row sliver accessed 
bsize times 

Update successive 
elements of sliver 

i i 
kk 

kk jj jj 

for (i=0; i<n; i++) { 
      for (j=jj; j < min(jj+bsize,n); j++) {  
        sum = 0.0 
        for (k=kk; k < min(kk+bsize,n); k++) { 
          sum += a[i][k] * b[k][j]; 
        } 
        c[i][j] += sum; 
      } 

 

• Innermost loop pair multiplies 1 X bsize sliver of A times bsize X 
bsize block of B and accumulates into 1 X bsize sliver of C 

• Loop over i steps through n row slivers of A & C, using same B 

Innermost 
Loop Pair 
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Blocked matmult perf (Alpha 21164) 
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