
The Memory Hierarchy
CS 740

Sept. 17, 2014

Topics
• The memory hierarchy
• Cache design

CS 740 F’14 – 2 –

Computer System

disk Disk disk Disk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

I/O
controller

I/O
controller

Display Network

interrupts

CS 740 F’14 – 3 –

The Tradeoff

CPU

regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
block size:

608 B
1.4 ns

4 B

register
reference

L2-cache
reference

memory
reference

disk memory
reference

512kB -- 4MB
16.8 ns
$90/MB
16 B

128 MB
112 ns
$2-6/MB
4-8 KB

27GB
9 ms
$0.01/MB

larger, slower, cheaper

16 B 8 B 4 KB

cache virtual memory

C
a
c
h
e

128k B
4.2 ns

4 B

L1-cache
reference

(Numbers are for a 21264 at 700MHz)

CS 740 F’14 – 4 –

The Tradeoff

CS 740 F’14 – 5 –

The Performance Gap

CS 740 F’14 – 6 –

Why is bigger slower?

• Physics slows us down
• Racing the speed of light: (3.0x10^8m/s)

• clock = 500MHz
• how far can I go in a clock cycle?
• (3.0x10^8 m/s) / (500x10^6 cycles/s) = 0.6m/cycle
• For comparison: 21264 is about 17mm across

• Capacitance:
• long wires have more capacitance
• either more powerful (bigger) transistors required, or slower
• signal propagation speed proportional to capacitance
• going “off chip” has an order of magnitude more capacitance

CS 740 F’14 – 7 –

One-Transistor Dynamic RAM

7

TiN top electrode (VREF)
Ta2O5 dielectric

W bottom
electrode

poly
word

line access
transistor

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,

trench, stack)

VREF

CS 740 F’14 – 8 –

Modern DRAM Cell Structure

8

[Samsung, sub-70nm DRAM, 2004]

CS 740 F’14 – 9 –

DRAM Conceptual Architecture

9

Ro
w

 A
dd

re
ss

De

co
de

r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

 Bits stored in 2-dimensional arrays on chip
 Modern chips have around 4-8 logical banks on each chip
 each logical bank physically implemented as many smaller arrays

CS 740 F’14 – 10 –

DRAM Physical Layout

10
[Vogelsang, MICRO-2010]

CS 740 F’14 – 11 –

DRAM Operation
Three steps in read/write access to a given bank
Row access (RAS)

• decode row address, enable addressed row (often multiple Kb in
row)

• bitlines share charge with storage cell
• small change in voltage detected by sense amplifiers which latch

whole row of bits
• sense amplifiers drive bitlines full rail to recharge storage cells

Column access (CAS)
• decode column address to select small number of sense amplifier

latches (4, 8, 16, or 32 bits depending on DRAM package)
• on read, send latched bits out to chip pins
• on write, change sense amplifier latches which then charge storage

cells to required value
• can perform multiple column accesses on same row without another

row access (burst mode)
Precharge

• charges bit lines to known value, required before next row access
Each step has a latency of around 15-20ns in modern DRAMs
Various DRAM standards (DDR, RDRAM) have different ways of

encoding the signals for transmission to the DRAM, but all share
same core architecture

11

CS 740 F’14 – 12 –

Memory Parameters

Latency
• Time from initiation to completion of one memory read (e.g., in

nanoseconds, or in CPU or DRAM clock cycles)

Occupancy
• Time that a memory bank is busy with one request
• Usually the important parameter for a memory write

Bandwidth
• Rate at which requests can be processed (accesses/sec, or GB/s)

All can vary significantly for reads vs. writes, or
address, or address history (e.g., open/close page
on DRAM bank)

12

CS 740 F’14 – 13 –

Processor-DRAM Gap (latency)

13

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
19

80

19
81

19
83

19

84

19
85

19

86

19
87

19

88

19
89

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

or
m

an
ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

CS 740 F’14 – 14 –

Physical Size Affects Latency

14

Small
Memory

CPU

Big Memory

CPU

 Signals have further to travel
 Fan out to more locations

CS 740 F’14 – 15 –

Two predictable properties of
memory references:

Temporal Locality: If a location is
referenced it is likely to be
referenced again in the near future.

Spatial Locality: If a location is
referenced it is likely that locations
near it will be referenced in the near
future.

CS 740 F’14 – 16 –

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Spatial
Locality

Temporal
 Locality

CS 740 F’14 – 17 –

Memory Hierarchy

Small, fast memory near processor to buffer
accesses to big, slow memory
• Make combination look like a big, fast memory

Keep recently accessed data in small fast memory
closer to processor to exploit temporal locality
• Cache replacement policy favors recently accessed data

Fetch words around requested word to exploit spatial
locality
• Use multiword cache lines, and prefetching

17

CS 740 F’14 – 18 –

Management of Memory Hierarchy

Small/fast storage, e.g., registers
• Address usually specified in instruction
• Generally implemented directly as a register file

– but hardware might do things behind software’s back,
e.g., stack management, register renaming

Larger/slower storage, e.g., main memory
• Address usually computed from values in register
• Generally implemented as a hardware-managed cache

hierarchy (hardware decides what is kept in fast
memory)
– but software may provide “hints”, e.g., don’t cache or

prefetch

18

CS 740 F’14 – 19 –

Alpha 21164 Chip Photo

Microprocessor
Report 9/12/94

Caches:
L1 data
L1 instruction
L2 unified
+ L3 off-chip

CS 740 F’14 – 20 –

Alpha 21164 Chip Caches

Caches:
L1 data
L1 instruction
L2 unified
+ L3 off-chip

Right Half
L2

Right Half
L2

L1

I
n
s
t
r.

L1
Data

L2
Tags

L3 Control

CS 740 F’14 – 21 –

Locality of Reference

Principle of Locality:
• Programs tend to reuse data and instructions near those they

have used recently.
• Temporal locality: recently referenced items are likely to be

referenced in the near future.
• Spatial locality: items with nearby addresses tend to be

referenced close together in time.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
*v = sum;

Locality in Example:
• Data

– Reference array elements in succession
(spatial)

• Instructions
– Reference instructions in sequence (spatial)
– Cycle through loop repeatedly (temporal)

CS 740 F’14 – 22 –

Caching: The Basic Idea

Main Memory
• Stores words

A–Z in example

Cache
• Stores subset of the

words
4 in example

• Organized in lines
– Multiple words
– To exploit spatial

locality

Access
• Word must be in cache

for processor to access

Big, Slow Memory

A
B
C
•
•
•
Y
Z

Small,
Fast Cache

A
B

G
H

Processor

CS 740 F’14 – 23 –

Note that speculative and multithreaded
processors may execute other instructions
during a miss
• Reduces performance impact of misses

Memory Hierarchy Basics

CS 740 F’14 – 24 –

How important are caches?

(Figure from Jim Keller, Compaq Corp.)

•21264 Floorplan

•Register files in
middle of execution
units

•64k instr cache

•64k data cache

•Caches take up a
large fraction of the
die

CS 740 F’14 – 25 –

• Between any two levels, memory is divided into lines (aka “blocks”)
• Data moves between levels on demand, in line-sized chunks
• Invisible to application programmer

– Hardware responsible for cache operation
• Upper-level lines a subset of lower-level lines

a

a
b

Access word w in line a (hit)

a

a
b

Access word v in line b (miss)

w

b

a

b

a
b

v

Accessing Data in Memory Hierarchy

High
Level

Low
Level

CS 740 F’14 – 26 –

Design Issues for Caches

Key Questions:
• Where should a line be placed in the cache? (line placement)
• How is a line found in the cache? (line identification)
• Which line should be replaced on a miss? (line replacement)
• What happens on a write? (write strategy)

Constraints:
• Design must be very simple

– Hardware realization
– All decision making within nanosecond time scale

• Want to optimize performance for “typical” programs
– Do extensive benchmarking and simulations
– Many subtle engineering tradeoffs

CS 740 F’14 – 27 –

Direct-Mapped Caches

Simplest Design
• Each memory line has a unique cache location

Parameters
• Line (aka block) size B = 2b

– Number of bytes in each line
– Typically 2X–8X word size

• Number of Sets S = 2s

– Number of lines cache can hold
• Total Cache Size = B*S = 2b+s

Physical Address
• Address used to reference main memory
• n bits to reference N = 2n total bytes
• Partition into fields

– Offset: Lower b bits indicate which byte within line
– Set: Next s bits indicate how to locate line within cache
– Tag: Identifies this line when in cache

n-bit Physical Address

t s b

tag set index offset

CS 740 F’14 – 28 –

Indexing into Direct-Mapped Cache

• Use set index bits
to select cache set

Set 0: 0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

CS 740 F’14 – 29 –

Direct-Mapped Cache Tag Matching

Identifying Line
• Must have tag match high

order bits of address
• Must have Valid = 1

0 1 • • • B–1 Tag Valid

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

CS 740 F’14 – 30 –

Properties of Direct Mapped Caches

Strength
• Minimal control hardware overhead
• Simple design
• (Relatively) easy to make fast

Weakness
• Vulnerable to thrashing
• Two heavily used lines have same cache index
• Repeatedly evict one to make room for other

Cache Line

CS 740 F’14 – 31 –

Vector Product Example

Machine
• DECStation 5000
• MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance
• Good case: 24 cycles / element
• Bad case: 66 cycles / element

float dot_prod(float x[1024], y[1024])
{
 float sum = 0.0;
 int i;
 for (i = 0; i < 1024; i++)
 sum += x[i]*y[i];
 return sum;
}

CS 740 F’14 – 32 –

Thrashing Example

• Access one element from each array per iteration

x[1]
x[0]

x[1020]

•
•
•

•
•
•

x[3]
x[2]

x[1021]
x[1022]
x[1023]

y[1]
y[0]

y[1020]

•
•
•

•
•
•

y[3]
y[2]

y[1021]
y[1022]
y[1023]

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

CS 740 F’14 – 33 –

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Good Case

Access Sequence
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– Hit
• Read y[1]

– Hit
• • • •
• 2 misses / 8 reads

Analysis
• x[i] and y[i] map to different cache

lines
• Miss rate = 25%

– Two memory accesses / iteration
– On every 4th iteration have two

misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =
 10 + 0.25 * 2 * 28

CS 740 F’14 – 34 –

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Bad Case

Access Pattern
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– x[0], x[1], x[2], x[3] loaded
• Read y[1]

– y[0], y[1], y[2], y[3] loaded
• • •
• 8 misses / 8 reads

Analysis
• x[i] and y[i] map to same cache lines
• Miss rate = 100%

– Two memory accesses / iteration
– On every iteration have two misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =
 10 + 1.0 * 2 * 28

CS 740 F’14 – 35 –

Miss Types

Compulsory Misses – required to warm up the cache

Capacity Misses – occur when the cache is full

Conflict Misses – Block placement may cause these in
direct or non-fully associative caches

CS 740 F’14 – 36 –

Set Associative Cache

Mapping of Memory Lines
• Each set can hold E lines (usually E=2-8)
• Given memory line can map to any entry within its given set

Eviction Policy
• Which line gets kicked out when bring new line in
• Commonly either “Least Recently Used” (LRU) or pseudo-random

– LRU: least-recently accessed (read or written) line gets evicted

Set i:
0 1 • • • B–1 Tag Valid

•
•
•

0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 740 F’14 – 37 –

Set 0:

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

Indexing into 2-Way Associative Cache

• Use middle s bits to
select from among S = 2s
sets

0 1 • • • B–1 Tag Valid
0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid
0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid
0 1 • • • B–1 Tag Valid

CS 740 F’14 – 38 –

Associative Cache Tag Matching

Identifying Line
• Must have one of the

tags match high order
bits of address

• Must have Valid = 1 for
this line

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1 Tag Valid
0 1 • • • B–1 Tag Valid

CS 740 F’14 – 39 –

Two-Way Set Associative Cache
Implementation

• Set index selects a set from the cache
• The two tags in the set are compared in parallel
• Data is selected based on the tag result

Cache Data
Cache Line 0

Cache Tag Valid

: : :

Cache Data
Cache Line 0

Cache Tag Valid

: : :

Set Index

Mux 0 1 Sel1 Sel0

Cache Line

Compare
Adr Tag

Compare

OR

Hit

Adr Tag

CS 740 F’14 – 40 –

Fully Associative Cache

Mapping of Memory Lines
• Cache consists of single set holding E lines
• Given memory line can map to any line in set
• Only practical for small caches

Entire Cache

0 1 • • • B–1 Tag Valid

•
•
•

0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 740 F’14 – 41 –

Fully Associative Cache Tag Matching

Identifying Line
• Must check all of the tags for

match
• Must have Valid = 1 for this

line

t b

tag offset
Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1 Tag Valid

•
•
•

0 1 • • • B–1 Tag Valid

0 1 • • • B–1 Tag Valid

•
•
•

CS 740 F’14 – 42 –

Replacement Algorithms
• When a block is fetched, which block in the target set should be

replaced?
Optimal algorithm:

– replace the block that will not be used for the longest period of time
– must know the future

Usage based algorithms:
• Least recently used (LRU)

– replace the block that has been referenced least recently
– hard to implement (unless low associativity)

Non-usage based algorithms:
• First-in First-out (FIFO)

– treat the set as a circular queue, replace block at head of queue.
– Essentially replace oldest

• Random (RAND)
– replace a random block in the set
– even easier to implement

CS 740 F’14 – 44 –

Write Policy

• What happens when processor writes to the cache?
• Should memory be updated as well?

Write Through:
• Store by processor updates cache and memory
• Memory always consistent with cache
• Never need to store from cache to memory
• ~2X more loads than stores

Processor

Cache

Memory
Store

Load
Cache
Load

CS 740 F’14 – 45 –

Write Policy (Cont.)

Write Back:
• Store by processor only updates cache line
• Modified line written to memory only when it is evicted

– Requires “dirty bit” for each line
»Set when line in cache is modified
»Indicates that line in memory is stale

• Memory not always consistent with cache

Processor

Cache
Memory

Store

Load Cache
Load

Write
Back

CS 740 F’14 – 46 –

Write Buffering

Write Buffer
• Common optimization for all caches
• Overlaps memory updates with processor execution
• Read operation must check write buffer for matching address

Cache

CPU

Memory

Write
Buffer

CS 740 F’14 – 47 –

Multi-Level Caches

Memory disk

L1 Icache

L1 Dcache regs L2
Cache

Processor

Options: separate data and instruction caches, or a unified cache

How does this affect self modifying code?

CS 740 F’14 – 48 –

Bandwidth Matching

Challenge
• CPU works with short cycle times
• DRAM (relatively) long cycle times
• How can we provide enough bandwidth between processor

& memory?
Effect of Caching

• Caching greatly reduces amount of traffic to main
memory

• But, sometimes need to move large amounts of data from
memory into cache

Trends
• Need for high bandwidth much greater for multimedia

applications
– Repeated operations on image data

• Recent generation machines (e.g., Pentium II) greatly
improve on predecessors

CPU

cache

M

bus

Short
Latency

Long
Latency

CS 740 F’14 – 49 –

High Bandwidth Memory Systems

CPU

cache

M

bus

mux

CPU

cache

M

bus

Solution 1
High BW DRAM

Solution 2
Wide path between memory & cache

Example:
 Page Mode DRAM
 RAMbus

Example: Alpha AXP 21064
256 bit wide bus, L2 cache,
and memory.

CS 740 F’14 – 50 –

Cache Performance Metrics

Miss Rate
• fraction of memory references not found in cache

(misses/references)
• Typical numbers:

3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
• time to deliver a line in the cache to the processor (includes time

to determine whether the line is in the cache)
• Typical numbers:

1-3 clock cycles for L1
3-12 clock cycles for L2

Miss Penalty
• additional time required because of a miss

– Typically 25-100 cycles for main memory

CS 740 F’14 – 51 –

Impact of Cache and Block Size

Cache Size
• Effect on miss rate?

• Effect on hit time?

Block Size
• Effect on miss rate?

• Effect on miss penalty?

• Effect on hit time?

CS 740 F’14 – 52 –

Impact of Associativity

• Direct-mapped, set associative, or fully associative?

Total Cache Size (tags+data)?

Miss rate?

Hit time?

Miss Penalty?

CS 740 F’14 – 53 –

Impact of Replacement Strategy

• RAND, FIFO, or LRU?

Total Cache Size (tags+data)?

Miss Rate?

Miss Penalty?

CS 740 F’14 – 54 –

Impact of Write Strategy

• Write-through or write-back?

Advantages of Write Through?

Advantages of Write Back?

CS 740 F’14 – 55 –

Allocation Strategies

• On a write miss, is the block loaded from memory into the cache?
Write Allocate:

• Block is loaded into cache on a write miss.
• Usually used with write back
• Otherwise, write-back requires read-modify-write to replace word within

block

• But if you’ve gone to the trouble of reading the entire block, why not load
it in cache?

17

5 7 11 13

write buffer block

memory block

17

5 7 11 13

read

5 7 11 13

17

5 7 11 13

modify

5 7 17 13

17

5 7 17 13

write

5 7 17 13 temporary buffer

CS 740 F’14 – 56 –

Allocation Strategies (Cont.)

• On a write miss, is the block loaded from memory into the cache?

No-Write Allocate (Write Around):
• Block is not loaded into cache on a write miss
• Usually used with write through

– Memory system directly handles word-level writes

CS 740 F’14 – 57 –

Qualitative Cache Performance Model

Miss Types
• Compulsory (“Cold Start”) Misses

– First access to line not in cache
• Capacity Misses

– Active portion of memory exceeds cache size
• Conflict Misses

– Active portion of address space fits in cache, but too many lines
map to same cache entry

– Direct mapped and set associative placement only
• Validation Misses

– Block invalidated by multiprocessor cache coherence mechanism
Hit Types

• Reuse hit
– Accessing same word that previously accessed

• Line hit
– Accessing word spatially near previously accessed word

CS 740 F’14 – 58 –

Interactions Between Program & Cache

Major Cache Effects to Consider
• Total cache size

– Try to keep heavily used data in highest level cache
• Block size (sometimes referred to “line size”)

– Exploit spatial locality

Example Application

• Multiply n X n matrices
• O(n3) total operations
• Accesses

– n reads per source element
– n values summed per destination

»But may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

CS 740 F’14 – 59 –

0

20

40

60

80

100

120

140

160

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
flo

ps
 (d

.p
.)

ijk
ikj
jik
jki
kij
kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

CS 740 F’14 – 60 –

Block Matrix Multiplication

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

Example n=8, B = 4:

B11 B12

B21 B22

X =
C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Aij) can be treated just like scalars.

CS 740 F’14 – 61 –

Blocked Matrix Multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
 for (i=0; i<n; i++)
 for (j=jj; j < min(jj+bsize,n); j++)
 c[i][j] = 0.0;
 for (kk=0; kk<n; kk+=bsize) {
 for (i=0; i<n; i++) {
 for (j=jj; j < min(jj+bsize,n); j++) {
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }
 }
 }
}

CS 740 F’14 – 62 –

Blocked Matrix Multiply Analysis

A B C

block reused
n times
in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jj jj

for (i=0; i<n; i++) {
 for (j=jj; j < min(jj+bsize,n); j++) {
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }

• Innermost loop pair multiplies 1 X bsize sliver of A times bsize X
bsize block of B and accumulates into 1 X bsize sliver of C

• Loop over i steps through n row slivers of A & C, using same B

Innermost
Loop Pair

CS 740 F’14 – 63 –

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

m
flo

ps
 (d

.p
.)

bijk
bikj
ijk
ikj

	The Memory Hierarchy�CS 740��Sept. 17, 2014
	Computer System
	The Tradeoff
	The Tradeoff
	The Performance Gap
	Why is bigger slower?
	One-Transistor Dynamic RAM
	Modern DRAM Cell Structure
	DRAM Conceptual Architecture
	DRAM Physical Layout
	DRAM Operation
	Memory Parameters
	Processor-DRAM Gap (latency)�
	Physical Size Affects Latency
	Two predictable properties of�memory references:
	Memory Reference Patterns
	Memory Hierarchy
	Management of Memory Hierarchy
	Alpha 21164 Chip Photo
	Alpha 21164 Chip Caches
	Locality of Reference
	Caching: The Basic Idea
	Memory Hierarchy Basics
	How important are caches?
	Accessing Data in Memory Hierarchy
	Design Issues for Caches
	Direct-Mapped Caches
	Indexing into Direct-Mapped Cache
	Direct-Mapped Cache Tag Matching
	Properties of Direct Mapped Caches
	Vector Product Example
	Thrashing Example
	Thrashing Example: Good Case
	Thrashing Example: Bad Case
	Miss Types
	Set Associative Cache
	Indexing into 2-Way Associative Cache
	Associative Cache Tag Matching
	Two-Way Set Associative Cache�Implementation
	Fully Associative Cache
	Fully Associative Cache Tag Matching
	Replacement Algorithms
	Write Policy
	Write Policy (Cont.)
	Write Buffering
	Multi-Level Caches
	Bandwidth Matching
	High Bandwidth Memory Systems
	Cache Performance Metrics
	Impact of Cache and Block Size
	Impact of Associativity
	Impact of Replacement Strategy
	Impact of Write Strategy
	Allocation Strategies
	Allocation Strategies (Cont.)
	Qualitative Cache Performance Model
	Interactions Between Program & Cache
	Matmult Performance (Alpha 21164)
	Block Matrix Multiplication
	Blocked Matrix Multiply (bijk)
	Blocked Matrix Multiply Analysis
	Blocked matmult perf (Alpha 21164)

