Multi-Core Processors: Why?

Carnegie Mellon University
10/1/14

b4
Moore s Law

MOORE'S LAW

1975

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Transistor count

2,600,000,000
1,000,000,000 +

100,000,000 -

10,000,000

1,000,000 -

100,000

10,000 +

2,300 -

16-Cone SPARC T2
Sw-Cone Cone i7
Slw<Coim Xaon 7400

\\.. . W 10Core Kaon Wakiman-EX
CuakCore Hanium 2 ,H-m:lﬁ PD'-'-EEB.'-‘
. 1
AMD me ,:: gu-mﬁlun um Tuiawita
FOWERS & = B-Core Xoon Mohalmm-EX
It 2 woth SW2 hod S-
anum 2 w Cac Hﬁh'll'.‘l i xmalz; Iuru E?Iumn 2800
are 2 Duo
anim 2§ EHF
AMDER
Pl 4 Al
ARMD T
W 20D KE-lI
curve shows transistar AMD K&
eaunl doubling every ﬁmflrlwum m
wAKD ES
I I | | 1
1971 1980 1990 2000 2011

| T i U [.
Crate ormiroguction

Conventional Processors Stop Scaling

Performance by 50% each year

le+7
le+6 1 %) — Perf (ps/Inst)
o
<
le+5 - S
© A%%b' dbb
le+4 L TN
o, 8, (9% \
Yo 70
le+3 C4—2cz ~_
N7 o 0
/,)\9[0/0 19/0/ Q
le+2 7 o \Lal'—
% \
le+l
le+0
1980 1990 2000 2010

2020

Multi-Core

Idea: Put multiple processors on the same die.

Technology scaling (Moore’ s Law) enables more transistors
to be placed on the same die area

What else could you do with the die area you dedicate to
multiple processors?

Q

Q
Q
Q

Have a bigger, more powerful core
Have larger caches in the memory hierarchy
Simultaneous multithreading

Integrate platform components on chip (e.g., network
Interface, memory controllers)

Why Not a Better Single Core?

Alternative: Bigger, more powerful single core

o Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

Detour: OoO/Multithreading/SMT

Functional Unit Utilization

Time

[
»

= Data dependencies reduce functional unit utilization in
pipelined processors

Functional Unit Utilization in Superscalar

Time

[
»

= Functional unit utilization becomes lower in superscalar,
Oo00 machines. Finding 4 instructions in parallel is not

always possible

Predicated Execution

Time

[
>

= ldea: Convert control dependencies into data dependencies
= Improves FU utilization, but some results are thrown away

10

Chip Multiprocessor

Time

= ldea: Partition functional units across cores

= Still imited FU utilization within a single thread; limited
single-thread performance

11

Fine-grained Multithreading

Time

[
»

= Still low utilization due to intra-thread dependencies

= Single thread performance suffers

Simultaneous Multithreading

Time

= ldea: Utilize functional units with independent operations
from the same or different threads

[
»

13

Horizontal vs. Vertical Waste

Issue width

Instruction
issue -—-.L::g 333 1333

L B i &

1213 ‘________Completely idle cycle
(vertical waste)

Time
Partially filled cycle,
=1 L—— ie.,IPC<4
55 S . (horizontal waste)
:000 v 2 2
$351 8338 188 1535

Why Is there horizontal and vertical waste?
How do you reduce each?

Slide from Joel Emer

14

Simultaneous Multithreading

Reduces both horizontal and vertical waste

Required hardware

o The ability to dispatch instructions from multiple threads
simultaneously into different functional units

Superscalar, Oo0O processors already have this machinery

2 Dynamic instruction scheduler searches the scheduling
window to wake up and select ready instructions

o As long as dependencies are correctly tracked (via renaming
and memory disambiguation), scheduler can be thread-
agnostic

15

Basic Superscalar OoO Pipeline

Fetch Decode Queue Reg Execute Dcache/ Reg Retire
/Map Read Store Write
Buffer

A 4

Regs

Regs

Dcache

|99 |

v

Thread-
blind

A

SMT Pipeline

= Physical register file needs to become larger. Why?

Fetch Decode Queue Reg Execute Dcache/ Reg Retire
/Map Read Store Write
Buffer

Dcache Regs

17

Changes to Pipeline for SM'T

Replicated resources

o Program counter

o Register map

o Return address stack
o Global history register

Shared resources

o Register file (size increased)
o Instruction queue (scheduler)
o First and second level caches
o Translation lookaside buffers
o Branch predictor

18

Why Not a Better Single Core?

Alternative: Bigger, more powerful single core

o Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry — many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

19

Large Superscalar+Oo0O vs. Multi-Core

= Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

- 21 mm - - 21 mm
i i k T-ache #1 1BR) | FLacne 72 SR
Instruction
Extarnal - Cache External
Instruction Interface
nterf ()
TLE — Processor | Processor ———— —
o #1 #2 %
— w0
@ Inst. Decode & Data iy @ L n
o Rename Cache ‘E: o ﬁ &
o (32 KB) o o =
a1 mm od % 21 mm s O-Cache &1 (BK] | D-Cache #2 [8K]) m
E’ (] Eﬂ U-Cache #3 (BK} [D-Cache #4 [8H) - 2
= = =
Jé Reorder Buffer, i '§ = 3
5 Instruction Queues, = E— o o JEZ-
and Out-of-Order Logic | > O 5 O
e - Processor | Processor = =
= o #3 #4 E o
[&)
Floating Point g |
Lnit
L] L) |-Cache #3 |BK) | |-Cache #4 [BH]

Figure 2. Floorplan for the six-issue dynamic superscalar

MiCroprocessor. multiprocessor.

Figure 3. Floorplan for the four-way single-chip

Multi-Core vs. Large Superscalar+OoO

Multi-core advantages

+ Simpler cores > more power efficient, lower complexity,
easier to design and replicate, higher frequency (shorter
wires, smaller structures)

+ Higher system throughput on multiprogrammed workloads -
reduced context switches

+ Higher system performance in parallel applications

Multi-core disadvantages

- Requires parallel tasks/threads to improve performance
(parallel programming)

- Resource sharing can reduce single-thread performance
- Shared hardware resources need to be managed

- Number of pins limits data supply for increased demand
21

Large Superscalar vs. Multi-Core

Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

Technology push

o Instruction issue queue size limits the cycle time of the
superscalar, 000 processor = diminishing performance

Quadratic increase in complexity with issue width

o Large, multi-ported register files to support large instruction
windows and issue widths - reduced frequency or longer RF
access, diminishing performance

Application pull
o Integer applications: little parallelism?
o FP applications: abundant loop-level parallelism

o Others (transaction proc., multiprogramming): CMP better fit
22

Comparison Points...

6-way S5 4x2-way MP
of CPUs 1 4
Degree superscalar 6 4x2
of architectural registers 32int / 321p 4 x32nt/ 32Mp
of physical registers 160int / 160fp 4 x 40int / 401fp
of integer functional units 3 4x1
of floating pt. functional vunits 3 4x1
of load/store ports 8 (one per bank) 4x1
BTB size 2048 entries 4 x 512 entries
Return stack size 32 entries 4 x § entries
Instruction issue queue size 128 entries 4 x 8§ entries

I cache 32KB,2-way S.A. 4x8KB,2-way 5. A.
D cache 32KB,2-way 5. A. 4z 8KB,2-way 5. A.
L1 hit time 2 cycles (4 ns) 1 cycle (2 ns)

L1 cache interleaving 8 banks N/A

Unified 1.2 cache

256 KB, 2-way 5. A.

256 KB, 2-way S_A.

L2 hit time /L1 penalty 4 cycles (8 ns) 5 cycles (10 ns)
Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns)
T_1L1_- 1 o - i P _ar_ o _0PaW a2 Wi a4

23

Why Not bigger caches?

Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from cache size.
Why?
- Multiple levels complicate memory hierarchy

24

Cache vs. Core

Cache

B Microprocessor

Number of Transistors

.
Time

Why Not Multitheading?

Alternative: (Simultaneous) Multithreading

+ EXploits thread-level parallelism (just like multi-core)
+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches

- Scalabllity is limited: need bigger register files, more function
units, larger issue width (and associated costs) to have many
threads - complex with many threads

- Parallel performance limited by shared fetch bandwidth

- Extensive resource sharing at the pipeline and memory system
reduces both single-thread and parallel application
performance

26

Why Not System on a Chip?

Alternative: Integrate platform components on chip instead

+ Speeds up many system functions (e.g., network interface
cards, Ethernet controller, memory controller, 1/0 controller)

- Not all applications benefit (e.g., CPU intensive code sections)

27

Why Not Clustering?

Alternative: More scalable superscalar, out-of-order engines
o Clustered superscalar processors (with multithreading)

+ Simpler to design than superscalar, more scalable than
simultaneous multithreading (less resource sharing)

+ Can improve both single-thread and parallel application
performance

- Diminishing performance returns on single thread: Clustering

reduces IPC performance compared to monolithic superscalar.
Why?

- Parallel performance limited by shared fetch bandwidth
- Difficult to design

28

Clustering (I)

o o N 2
= = 21V 2
P 5 5 !
o = \ o}
L/ -
EXECUTE| DCACHE |REG WRITE
FETCH | DECODE | RENAME BYPASS | ACCESS | COMMIT
— - oW
— ke 2 N = 2 S
13 2| 5! 5 5 tE L.
v 3 R : Z M=] !
[= e o [&2 N =
—_— - e 13 - =
ez / 2
\ FIFOS
| RENAME | WAKEUP . _|ExXECUTE| DCACHE |[REG WRITE
FETCH | DECODE | “opeg &Wéﬂ BYPASS | ACCESS | COMMIT

Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.

29

Clustering (1I)

RENAMED INSTRUCTIONS

L
. SN = S U W BT
= = £ & / e = 7 -D >
] & = o . D D] = 5
o 3 S = : <3 Z = - &
(= ety S \— = = e [\ =z
—_ = ol = ¥ =
o | 1/ -
FIFOS
_ . RENAME | WAKEUP . __, |EXECUTE| DCACHE |REG WRITE
FETCH | DECODE | “orppp™ | gerpeT [FECREAD B5pacs’| ACCESS | conaT
LOCAL BYPASSES
FIFOs
2 .
B = Z FUI
&= =
e = FU2
mm =
— [» l:.d'_‘,!
7N\ Z
[S CLUSTER 0 =
- il
Z | Z
! E |I :_1
\ B / e
\\i/ FIFOs ! __'
j:|:|:|—~ -] FUS
2 2
& = FUG
EE=t
T o
CLUSTEE. 1 LOCAL BYPASSES

Each scheduler is a FIFO

+ Simpler

+ Can have N FIFOs
(000 w.r.t. each other)

+ Reduces scheduling

complexity

-- More dispatch stalls

Inter-cluster bypass: Results
produced by an FU in
Cluster 0 is not individually
forwarded to each FU in
another cluster.

Palacharla et al., “Complexity
Effective Superscalar
Processors,” ISCA 1997.

30

Clustering (I111)

Scheduling within each cluster can be out of order

SCHED
WINDOW

SCHED

REG
FILE

WINDOW

FU

FU

REG
FILE

/

SCHED
WINDOW

Jfast bypass

FU

FU

REG
FILE

Jast bypass

FU

FU

Sfast bypass

slow bypass

Brown, “Reducing Critical Path Execution Time by Breaking Critical Loops,” UT-Austin 2005.

31

Clustered Superscalar+OoO Processors

Clustering (e.g., Alpha 21264 integer units)
o Divide the scheduling window (and register file) into multiple clusters
o Instructions steered into clusters (e.g. based on dependence)

o Clusters schedule instructions out-of-order, within cluster scheduling
can be in-order

o Inter-cluster communication happens via register files (no full bypass)

+ Smaller scheduling windows, simpler wakeup algorithms
+ Fewer ports into register files
+ Faster within-cluster bypass

-- Extra delay when instructions require across-cluster communication
-- Inherent difficulty of steering logic

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 32

Why Not Multi-Chip symmetric Multiproc?

Alternative: Traditional symmetric multiprocessors

+ Smaller die size (for the same processing core)
+ More memory bandwidth (no pin bottleneck)
+ Fewer shared resources - less contention between threads

- Long latencies between cores (need to go off chip) - shared
data accesses limit performance - parallel application
scalabllity is limited

- Worse resource efficiency due to less sharing - worse
power/energy efficiency

33

Why Multi-Core?

Other alternatives?

Dataflow?

VLIW?

Vector processors (SIMD)?

Streaming processors?

Integrating DRAM on chip?
Reconfigurable logic? (general purpose?)

o o 0o 0O 0O O

34

Review: Multi-Core Alternatives

Bigger, more powerful single core

Bigger caches

(Simultaneous) multithreading

Integrate platform components on chip instead
More scalable superscalar, out-of-order engines
Traditional symmetric multiprocessors
Dataflow?

Vector processors (SIMD)?

Integrating DRAM on chip?

Reconfigurable logic? (general purpose?)
Other alternatives?

Your solution?

35

Why Multi-Core (Cynically)

Huge investment and need ROI
Have to offer some kind of upgrade path
It is easy for the processor manufacturers

36

Why Multi-Core (Cynically)

Huge investment and need ROI
Have to offer some kind of upgrade path
It is easy for the processor manufacturers

But, Seriously:

Some easy parallelism
o Most general purpose machines run multiple tasks at a time
o Some (very important) Apps have easy parallelism

Power is a real issue
Design complexity is very costly

Is it the right solution?

37

Computer Architecture Today (I)

Today is a very exciting time to study computer architecture

Industry is in a large paradigm shift (to multi-core and
beyond) — many different potential system designs possible

Many difficult problems motivating and caused by the shift
Power/energy constraints - multi-core?, accelerators?

Complexity of design - multi-core?

Difficulties in technology scaling - new technologies?

Memory wall/gap

Reliability wall/issues

Programmability wall/problem - single-core?

o 0O O O 0O O

No clear, definitive answers to these problems
38

Computer Architecture Today (1I)

= These problems affect all parts of the computing stack — if
we do not change the way we design systems

Problem

Algorithm

Program/Language

N

Runtime System
(VM, OS, MM)

ISA

= No clear, definitive answers to these problems

39

Computer Architecture Today (I111)

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)

o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined

40

Related Videos

= Multi-Core Systems and Heterogeneity

o http://www.youtube.com/watch?v=LIDxTOhPI2U&Ilist=PLVngZ
7BemHHV6NOe|HhwOfLwTr80-UKXj&index=1

o http://www.youtube.com/watch?v=00zyLVnzkrM&list=PLVnqZ
7BemHHV6NOe|HhwOfLwTr80Q-UKXj&index=2

45

http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2

	Multi-Core Processors: Why?
	Moore’s Law
	Slide Number 3
	Conventional Processors Stop Scaling�Performance by 50% each year
	Multi-Core
	Why Not a Better Single Core?
	Detour: OoO/Multithreading/SMT
	Functional Unit Utilization
	Functional Unit Utilization in Superscalar
	Predicated Execution
	Chip Multiprocessor
	Fine-grained Multithreading
	Simultaneous Multithreading
	Horizontal vs. Vertical Waste
	Simultaneous Multithreading
	Basic Superscalar OoO Pipeline
	SMT Pipeline
	Changes to Pipeline for SMT
	Why Not a Better Single Core?
	Large Superscalar+OoO vs. Multi-Core
	Multi-Core vs. Large Superscalar+OoO
	Large Superscalar vs. Multi-Core
	Comparison Points…
	Why Not bigger caches?
	Cache vs. Core
	Why Not Multitheading?
	Why Not System on a Chip?
	Why Not Clustering?
	Clustering (I)
	Clustering (II)
	Clustering (III)
	Clustered Superscalar+OoO Processors
	Why Not Multi-Chip symmetric Multiproc?
	Why Multi-Core?
	Review: Multi-Core Alternatives
	Why Multi-Core (Cynically)
	Why Multi-Core (Cynically)
	Computer Architecture Today (I)
	Computer Architecture Today (II)
	Computer Architecture Today (III)
	Related Videos

