
Multi-Core Processors: Why? 

 
 

Carnegie Mellon University 
10/1/14 

 



Moore’s Law 

2 

Moore, “Cramming more components onto integrated circuits,”  
Electronics, 1965. 



3 



Conventional Processors Stop Scaling 
Performance by 50% each year  

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

Bill Dally 



Multi-Core 
 Idea: Put multiple processors on the same die.  

 
 Technology scaling (Moore’s Law) enables more transistors 

to be placed on the same die area 
 

 What else could you do with the die area you dedicate to 
multiple processors? 
 Have a bigger, more powerful core 
 Have larger caches in the memory hierarchy 
 Simultaneous multithreading 
 Integrate platform components on chip (e.g., network 

interface, memory controllers) 
 … 

 5 



Why Not a Better Single Core? 
 Alternative: Bigger, more powerful single core 

 Larger superscalar issue width, larger instruction window, 
more execution units, large trace caches, large branch 
predictors, etc 

 
  

6 



Detour: OoO/Multithreading/SMT 

 

7 



Functional Unit Utilization 
 
 
 
 
 
 

 Data dependencies reduce functional unit utilization in 
pipelined processors 

8 

Time 



Functional Unit Utilization in Superscalar 
 
 
 
 
 
 
 
 
 
 

 Functional unit utilization becomes lower in superscalar, 
OoO machines. Finding 4 instructions in parallel is not 
always possible 

9 

Time 



Predicated Execution 
 
 
 
 
 
 
 
 
 
 

 Idea: Convert control dependencies into data dependencies 
 Improves FU utilization, but some results are thrown away 

10 

Time 



Chip Multiprocessor 
 
 
 
 
 
 
 
 

 
 

 Idea: Partition functional units across cores 
 Still limited FU utilization within a single thread; limited 

single-thread performance 
11 

Time 



Fine-grained Multithreading 
 
 
 
 
 
 
 
 
 
 

 Still low utilization due to intra-thread dependencies 
 Single thread performance suffers 

12 

Time 



Simultaneous Multithreading 
 
 
 
 
 
 
 
 
 
 

 Idea: Utilize functional units with independent operations 
from the same or different threads 

13 

Time 



Horizontal vs. Vertical Waste 

 
 
 
 
 
 
 
 
 

 
 Why is there horizontal and vertical waste? 
 How do you reduce each? 

14 Slide from Joel Emer 



Simultaneous Multithreading 
 Reduces both horizontal and vertical waste 
 Required hardware 

 The ability to dispatch instructions from multiple threads 
simultaneously into different functional units 

 
 Superscalar, OoO processors already have this machinery 

 Dynamic instruction scheduler searches the scheduling 
window to wake up and select ready instructions 

 As long as dependencies are correctly tracked (via renaming 
and memory disambiguation), scheduler can be thread-
agnostic 

 

 

15 



Basic Superscalar OoO Pipeline 
 

16 

Fetch Decode
/Map 

Queue Reg 
Read 

Execute Dcache/
Store 
Buffer 

Reg 
Write 

Retire 

PC 

Icache 

Register 
Map 

Dcache 
Regs Regs 

Thread-
blind 



SMT Pipeline 
 Physical register file needs to become larger. Why? 

 

17 

Fetch Decode
/Map 

Queue Reg 
Read 

Execute Dcache/
Store 
Buffer 

Reg 
Write 

Retire 

Icache 
Dcache 

PC 

Register 
Map 

Regs Regs 



Changes to Pipeline for SMT 
 Replicated resources 

 Program counter 
 Register map 
 Return address stack 
 Global history register 

 
 Shared resources 

 Register file (size increased) 
 Instruction queue (scheduler) 
 First and second level caches 
 Translation lookaside buffers 
 Branch predictor 

 
 18 



Why Not a Better Single Core? 
 Alternative: Bigger, more powerful single core 

 Larger superscalar issue width, larger instruction window, 
more execution units, large trace caches, large branch 
predictors, etc 

 
+ Improves single-thread performance transparently to 

programmer, compiler 
- Very difficult to design (Scalable algorithms for improving 

single-thread performance elusive) 
- Power hungry – many out-of-order execution structures 

consume significant power/area when scaled. Why?  
- Diminishing returns on performance  
- Does not significantly help memory-bound application 

performance (Scalable algorithms for this elusive) 
  19 



Large Superscalar+OoO vs. Multi-Core 
 Olukotun et al., “The Case for a Single-Chip 

Multiprocessor,” ASPLOS 1996. 

20 



Multi-Core vs. Large Superscalar+OoO 
 Multi-core advantages 

+ Simpler cores  more power efficient, lower complexity, 
easier to design and replicate, higher frequency (shorter 
wires, smaller structures) 

+ Higher system throughput on multiprogrammed workloads  
reduced context switches 

+ Higher system performance in parallel applications  
 

 Multi-core disadvantages 
- Requires parallel tasks/threads to improve performance 

(parallel programming) 
- Resource sharing can reduce single-thread performance 
- Shared hardware resources need to be managed 
- Number of pins limits data supply for increased demand 

21 



Large Superscalar vs. Multi-Core 
 Olukotun et al., “The Case for a Single-Chip 

Multiprocessor,” ASPLOS 1996. 
 

 Technology push 
 Instruction issue queue size limits the cycle time of the 

superscalar, OoO processor  diminishing performance 
 Quadratic increase in complexity with issue width 

 Large, multi-ported register files to support large instruction 
windows and issue widths  reduced frequency or longer RF 
access, diminishing performance 

 Application pull 
 Integer applications: little parallelism? 
 FP applications: abundant loop-level parallelism 
 Others (transaction proc., multiprogramming): CMP better fit 

 22 



Comparison Points… 

23 



Why Not bigger caches? 
 Alternative: Bigger caches 

 
+ Improves single-thread performance transparently to 

programmer, compiler 
+ Simple to design 
 
- Diminishing single-thread performance returns from cache size. 

Why? 
- Multiple levels complicate memory hierarchy  

24 



Cache vs. Core 
 

25 

Time

N
um

be
r o

f T
ra

ns
is

to
rs

Cache

Microprocessor



Why Not Multitheading? 
 Alternative: (Simultaneous) Multithreading 

 
+ Exploits thread-level parallelism (just like multi-core) 
+ Good single-thread performance with SMT 
+ No need to have an entire core for another thread 
+ Parallel performance aided by tight sharing of caches 
 
- Scalability is limited: need bigger register files, more function 

units,  larger issue width (and associated costs) to have many 
threads  complex with many threads 

- Parallel performance limited by shared fetch bandwidth 
- Extensive resource sharing at the pipeline and memory system 

reduces both single-thread and parallel application 
performance 

 
 
 

26 



Why Not System on a Chip? 
 Alternative: Integrate platform components on chip instead 

 
+ Speeds up many system functions (e.g., network interface 

cards, Ethernet controller, memory controller, I/O controller) 
 
- Not all applications benefit (e.g., CPU intensive code sections) 
 

27 



Why Not Clustering? 
 Alternative: More scalable superscalar, out-of-order engines 

 Clustered superscalar processors (with multithreading) 
 

+ Simpler to design than superscalar, more scalable than 
simultaneous multithreading (less resource sharing) 

+ Can improve both single-thread and parallel application 
performance 

 
- Diminishing performance returns on single thread: Clustering 

reduces IPC performance compared to monolithic superscalar. 
Why? 

- Parallel performance limited by shared fetch bandwidth 
- Difficult to design 
 

28 



Clustering (I) 
 

29 Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.  



 
 
 
 
 
 
 
 
 
 

 Palacharla et al., “Complexity 
Effective Superscalar 
Processors,” ISCA 1997.  

 

Clustering (II) 

30 

Each scheduler is a FIFO 
+ Simpler  
+ Can have N FIFOs 
   (OoO w.r.t. each other) 
+ Reduces scheduling  
complexity 
-- More dispatch stalls 
 

Inter-cluster bypass: Results 
produced by an FU in 
Cluster 0 is not individually 
forwarded to each FU in 
another cluster. 
 



Clustering (III) 
 Scheduling within each cluster can be out of order 

31 

Brown, “Reducing Critical Path Execution Time by Breaking Critical Loops,” UT-Austin 2005.  



Clustered Superscalar+OoO Processors 
 

 Clustering (e.g., Alpha 21264 integer units) 
 Divide the scheduling window (and register file) into multiple clusters 
 Instructions steered into clusters (e.g. based on dependence) 
 Clusters schedule instructions out-of-order, within cluster scheduling 

can be in-order 
 Inter-cluster communication happens via register files (no full bypass) 
 
+ Smaller scheduling windows, simpler wakeup algorithms 
+ Fewer ports into register files 
+ Faster within-cluster bypass 
 
-- Extra delay when instructions require across-cluster communication 
-- inherent difficulty of steering logic 

 32 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 



Why Not Multi-Chip symmetric Multiproc?  
 Alternative: Traditional symmetric multiprocessors 

 
+ Smaller die size (for the same processing core) 
+ More memory bandwidth (no pin bottleneck) 
+ Fewer shared resources  less contention between threads 
 
- Long latencies between cores (need to go off chip)  shared 

data accesses limit performance  parallel application 
scalability is limited 

- Worse resource efficiency due to less sharing  worse 
power/energy efficiency  
 

 

33 



Why Multi-Core? 
 Other alternatives? 

 Dataflow? 
 VLIW? 
 Vector processors (SIMD)? 
 Streaming processors? 
 Integrating DRAM on chip? 
 Reconfigurable logic? (general purpose?) 

 
 
 
 

34 



Review: Multi-Core Alternatives 
 Bigger, more powerful single core 
 Bigger caches 
 (Simultaneous) multithreading 
 Integrate platform components on chip instead 
 More scalable superscalar, out-of-order engines 
 Traditional symmetric multiprocessors 
 Dataflow? 
 Vector processors (SIMD)? 
 Integrating DRAM on chip? 
 Reconfigurable logic? (general purpose?) 
 Other alternatives? 
 Your solution? 

 
 
 

35 



Why Multi-Core (Cynically) 
 Huge investment and need ROI 
 Have to offer some kind of upgrade path 
 It is easy for the processor manufacturers 

 

36 



Why Multi-Core (Cynically) 
 Huge investment and need ROI 
 Have to offer some kind of upgrade path 
 It is easy for the processor manufacturers 

 
 But, Seriously: 
 Some easy parallelism 

 Most general purpose machines run multiple tasks at a time 
 Some (very important) Apps have easy parallelism 

 Power is a real issue 
 Design complexity is very costly 

 
 Is it the right solution? 

37 



Computer Architecture Today (I) 
 Today is a very exciting time to study computer architecture 

 

 Industry is in a large paradigm shift (to multi-core and 
beyond) – many different potential system designs possible 
 

 Many difficult problems motivating and caused by the shift 
 Power/energy constraints  multi-core?, accelerators? 
 Complexity of design  multi-core? 
 Difficulties in technology scaling  new technologies? 
 Memory wall/gap 
 Reliability wall/issues 
 Programmability wall/problem  single-core? 

 

 No clear, definitive answers to these problems 
38 



Computer Architecture Today (II) 
 These problems affect all parts of the computing stack – if 

we do not change the way we design systems 
 
 
 
 
 
 
 
 
 

 
 

 No clear, definitive answers to these problems 
39 

Microarchitecture 

ISA 

Program/Language 

Algorithm 

Problem 

Runtime System 
(VM, OS, MM) 

User 

Logic 
 Circuits 
Electrons 



Computer Architecture Today (III) 
 You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly) 
 

 You can invent new paradigms for computation, 
communication, and storage 

 
 Recommended book: Kuhn, “The Structure of Scientific 

Revolutions” (1962) 
 Pre-paradigm science: no clear consensus in the field 
 Normal science: dominant theory used to explain things 

(business as usual); exceptions considered anomalies 
 Revolutionary science: underlying assumptions re-examined 

40 



Related Videos 
 Multi-Core Systems and Heterogeneity 

 http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1 

 http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2 
 
 

45 

http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2

	Multi-Core Processors: Why?
	Moore’s Law
	Slide Number 3
	Conventional Processors Stop Scaling�Performance by 50% each year 
	Multi-Core
	Why Not a Better Single Core?
	Detour: OoO/Multithreading/SMT
	Functional Unit Utilization
	Functional Unit Utilization in Superscalar
	Predicated Execution
	Chip Multiprocessor
	Fine-grained Multithreading
	Simultaneous Multithreading
	Horizontal vs. Vertical Waste
	Simultaneous Multithreading
	Basic Superscalar OoO Pipeline
	SMT Pipeline
	Changes to Pipeline for SMT
	Why Not a Better Single Core?
	Large Superscalar+OoO vs. Multi-Core
	Multi-Core vs. Large Superscalar+OoO
	Large Superscalar vs. Multi-Core
	Comparison Points…
	Why Not bigger caches?
	Cache vs. Core
	Why Not Multitheading?
	Why Not System on a Chip?
	Why Not Clustering?
	Clustering (I)
	Clustering (II)
	Clustering (III)
	Clustered Superscalar+OoO Processors
	Why Not Multi-Chip symmetric Multiproc? 
	Why Multi-Core?
	Review: Multi-Core Alternatives
	Why Multi-Core (Cynically)
	Why Multi-Core (Cynically)
	Computer Architecture Today (I)
	Computer Architecture Today (II)
	Computer Architecture Today (III)
	Related Videos

