
740: Computer Architecture
Memory Consistency

&
Cache Coherence

Carnegie Mellon University

Review: Multiprocessor Types
 Loosely coupled multiprocessors

 No shared global memory address space
 Multicomputer network

 Network-based multiprocessors
 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors
 Shared global memory address space
 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors
 Programming model similar to uniprocessors (i.e., multitasking

uniprocessor) except
 Operations on shared data require synchronization

4

Review: Main Issues in Tightly-Coupled MP

 Shared memory synchronization
 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations
 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning
 Communication: Interconnection networks
 Load imbalance

5

Review: Caveats of Parallelism
 Amdahl’s Law

 f: Parallelizable fraction of a program
 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck
 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)
 Load imbalance overhead (imperfect parallelization)
 Resource sharing overhead (contention among N processors)

 6

Speedup =
1

+ 1 - f f
N

Bottlenecks in Parallel Portion
 Synchronization: Operations manipulating shared data

cannot be parallelized
 Locks, mutual exclusion, barrier synchronization
 Communication: Tasks may need values from each other
- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other
 Replicating all resources (e.g., memory) expensive
- Additional latency not present when each task runs alone

 7

Difficulty in Parallel Programming
 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications
 Multimedia, physical simulation, graphics
 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly
 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about
 Designing machines that overcome the sequential and parallel

bottlenecks to achieve higher performance and efficiency
 Making programmer’s job easier in writing correct and high-

performance parallel programs
8

Ordering of Operations
 Operations: A, B, C, D

 In what order should the hardware execute (and report the
results of) these operations?

 A contract between programmer and microarchitect
 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware
designer’s life difficult
 Especially if the goal is to design a high performance processor: Load-store

queues in out of order execution

 10

Memory Ordering in a Single Processor
 Specified by the von Neumann model
 Sequential order

 Hardware executes the load and store operations in the order
specified by the sequential program

 Out-of-order execution does not change the semantics
 Hardware retires (reports to software the results of) the load

and store operations in the order specified by the sequential
program

 Advantages: 1) Architectural state is precise within an execution. 2)
Architectural state is consistent across different runs of the program 
Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces
performance

11

Memory Ordering in a Dataflow Processor
 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if

they have no dependency

 Advantage: Lots of parallelism  high performance
 Disadvantage: Order can change across runs of the same

program  Very hard to debug

12

Memory Ordering in a MIMD Processor
 Each processor’s memory operations are in sequential order

with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations
concurrently

 How does the memory see the order of operations from all

processors?
 In other words, what is the ordering of operations across

different processors?

 13

Shared Memory Model
 Many parallel programs communicate through shared memory
 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone
 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

14

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Why Does This Even Matter?
 Ease of debugging

 It is nice to have the same execution done at different times
have the same order of memory operations

 Correctness
 Can we have incorrect execution if the order of memory

operations is different from the point of view of different
processors?

 Performance and overhead
 Enforcing a strict “sequential ordering” can make life harder

for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

15

Protecting Shared Data
 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at
a given time
 Mutual exclusion principle

 A multiprocessor should provide the correct execution of

synchronization primitives to enable the programmer to
protect shared data

16

How Can We Solve The Problem?
 Idea: Sequential consistency

 All processors see the same order of operations to memory
 i.e., all memory operations happen in an order (called the

global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

23

Sequential Consistency
 Lamport, “How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 A multiprocessor system is sequentially consistent if:
 the result of any execution is the same as if the operations of all

the processors were executed in some sequential order
AND
 the operations of each individual processor appear in this

sequence in the order specified by its program

 This is a memory ordering model, or memory model
 Specified by the ISA

24

Programmer’s Abstraction
 Memory is a switch that services one load or store at a time

form any processor
 All processors see the currently serviced load or store at the

same time
 Each processor’s operations are serviced in program order

25

Sequentially Consistent Operation Orders
 Potential correct global orders (all are correct):

 A B X Y
 A X B Y
 A X Y B
 X A B Y
 X A Y B
 X Y A B

 Which order (interleaving) is observed depends on

implementation and dynamic latencies

26

Consequences of Sequential Consistency
 Corollaries

1. Within the same execution, all processors see the same

global order of operations to memory
  No correctness issue
  Satisfies the “happened before” intuition

2. Across different executions, different global orders can be

observed (each of which is sequentially consistent)
  Debugging is still difficult (as order changes across runs)

27

Issues with Sequential Consistency?
 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements
 Limits the aggressiveness of performance enhancement

techniques

 Is the total global order requirement too strong?
 Do we need a global order across all operations and all

processors?
 How about a global order only across all stores?

 Total store order memory model; unique store order model
 How about a enforcing a global order only at the boundaries

of synchronization?
 Relaxed memory models
 Acquire-release consistency model

 28

Weaker Memory Consistency
 The ordering of operations is important when the order

affects operations on shared data  i.e., when processors
need to synchronize to execute a “program region”

 Weak consistency
 Idea: Programmer specifies regions in which memory

operations do not need to be ordered
 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before the
fence is executed

 All memory operations after the fence must wait for the fence to
complete

 Fences complete in program order
 All synchronization operations act like a fence

29

Tradeoffs: Weaker Consistency
 Advantage

 No need to guarantee a very strict order of memory
operations

  Enables the hardware implementation of performance
 enhancement techniques to be simpler

  Can be higher performance than stricter ordering

 Disadvantage
 More burden on the programmer or software (need to get the

“fences” correct)

 Another example of the programmer-microarchitect tradeoff

30

Issues with Sequential Consistency?
 Performance enhancement techniques that could make SC

implementation difficult

 Out-of-order execution
 Loads happen out-of-order with respect to each other and

with respect to independent stores

 Caching
 A memory location is now present in multiple places
 Prevents the effect of a store to be seen by other processors

31

Shared Memory Model
 Many parallel programs communicate through shared memory
 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone
 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

32

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence
 Basic question: If multiple processors cache the same

block, how do they ensure they all see a consistent state?

33

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

34

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

35

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

36

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

1000 2000

The Cache Coherence Problem

37

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

1000 2000

ld r5, x

Should NOT
load 1000

Cache Coherence: Whose Responsibility?
 Software

 Can the programmer ensure coherence if caches are invisible to
software?

 What if the ISA provided a cache flush instruction?
 FLUSH-LOCAL A: Flushes/invalidates the cache block containing

address A from a processor’s local cache.
 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing

address A from all other processors’ caches.
 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware
 Simplifies software’s job
 One idea: Invalidate all other copies of block A when a processor writes

to it

38

A Very Simple Coherence Scheme
 Caches “snoop” (observe) each other’s write/read

operations. If a processor writes to a block, all others
invalidate it from their caches.

 A simple protocol:

39

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

ObservedEvent/Action

(Non-)Solutions to Cache Coherence
 No hardware based coherence

 Keeping caches coherent is software’s responsibility
+ Makes microarchitect’s life easier
-- Makes average programmer’s life much harder

 need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software

 All caches are shared between all processors
+ No need for coherence
-- Shared cache becomes the bandwidth bottleneck
-- Very hard to design a scalable system with low-latency cache

access this way

40

Maintaining Coherence
 Need to guarantee that all processors see a consistent

value (i.e., consistent updates) for the same memory
location

 Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some
order

 Coherence needs to provide:
 Write propagation: guarantee that updates will propagate
 Write serialization: provide a consistent global order seen

by all processors

 Need a global point of serialization for this store ordering
 41

Hardware Cache Coherence
 Basic idea:

 A processor/cache broadcasts its write/update to a memory
location to all other processors

 Another cache that has the location either updates or
invalidates its local copy

42

Coherence: Update vs. Invalidate
 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies
 Option 2 (Invalidate protocol): ensure there is only one

copy (local), update it

 On a Read:
 If local copy isn’t valid, put out request
 (If another node has a copy, it returns it, otherwise

memory does)

43

Coherence: Update vs. Invalidate (II)
 On a Write:

 Read block into cache as before
Update Protocol:

 Write to block, and simultaneously broadcast written
data to sharers

 (Other nodes update their caches if data was present)
Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation
of address to sharers

 (Other nodes clear block from cache)

44

Update vs. Invalidate Tradeoffs
 Which do we want?

 Write frequency and sharing behavior are critical
 Update

+ If sharer set is constant and updates are infrequent, avoids
the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,
updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate
+ After invalidation broadcast, core has exclusive access rights
+ Only cores that keep reading after each write retain a copy
- If write contention is high, leads to ping-ponging (rapid

mutual invalidation-reacquire)

45

Two Cache Coherence Methods
 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests
 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]
 Single point of serialization per block, distributed among nodes
 Processors make explicit requests for blocks
 Directory tracks ownership (sharer set) for each block
 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

46

Snoopy Cache Coherence

47

Snoopy Cache Coherence
 Idea:

 All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

 Each cache block has “coherence metadata” associated with it
in the tag store of each cache

 Easy to implement if all caches share a common bus

 Each cache broadcasts its read/write operations on the bus
 Good for small-scale multiprocessors
 What if you would like to have a 1000-node multiprocessor?

48

A Simple Snoopy Cache Coherence Protocol
 Caches “snoop” (observe) each other’s write/read

operations
 A simple protocol:

50

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

A More Sophisticated Protocol: MSI
 Extend single valid bit per block to three states:

 M(odified): cache line is only copy and is dirty
 S(hared): cache line is one of several copies
 I(nvalid): not present

 Read miss makes a Read request on bus, transitions to S
 Write miss makes a ReadEx request, transitions to M state
 When a processor snoops ReadEx from another writer, it

must invalidate its own copy (if any)
 SM upgrade can be made without re-reading data from

memory (via Invalidations)

51

MSI State Machine

52

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI
 A block is in no cache to begin with
 Problem: On a read, the block immediately goes to

“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

 Why is this a problem?
 Suppose the cache that read the block wants to write to it at

some point
 It needs to broadcast “invalidate” even though it has the only

cached copy!
 If the cache knew it had the only cached copy in the system,

it could have written to the block without notifying any other
cache  saves unnecessary broadcasts of invalidations

 53

The Solution: MESI
 Idea: Add another state indicating that this is the only

cached copy and it is clean.
 Exclusive state

 Block is placed into the exclusive state if, during BusRd, no

other cache had it
 Wired-OR “shared” signal on bus can determine this:

snooping caches assert the signal if they also have a copy

 Silent transition ExclusiveModified is possible on write

 MESI is also called the Illinois protocol
 Papamarcos and Patel, “A low-overhead coherence solution for

multiprocessors with private cache memories,” ISCA 1984.

 54

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

57

M

E

S

I

[Culler/Singh96]

Modified:
• 1 owner
• dirty data
• R/W access

Exlusive:
• 1 owner
• clean data
• R/W access

Shared:
• >=1 owner(s)
• clean data
• RO access

Invalid:
• Not present
• No data
• No access

Snoopy Invalidation Tradeoffs
 Should a downgrade from M go to S or I?

 S: if data is likely to be reused (before it is written to by another
processor)

 I: if data is likely to be not reused (before it is written to by another)
 Cache-to-cache transfer

 On a BusRd, should data come from another cache or memory?
 Another cache

 may be faster, if memory is slow or highly contended
 Memory

 Simpler: no need to wait to see if cache has data first
 Less contention at the other caches
 Requires writeback on M downgrade

 Writeback on Modified->Shared: necessary?
 One possibility: Owner (O) state (MOESI protocol)

 One cache owns the latest data (memory is not updated)
 Memory writeback happens when all caches evict copies

61

The Problem with MESI
 Shared state requires the data to be clean

 i.e., all caches that have the block have the up-to-date copy
and so does the memory

 Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

 Why is this a problem?
 Memory can be updated unnecessarily  some other

processor may want to write to the block again while it is
cached

62

Improving on MESI

 Idea 1: Do not transition from MS on a BusRd. Invalidate
the copy and supply the modified block to the requesting
processor directly without updating memory

 Idea 2: Transition from MS, but designate one cache as
the owner (O), who will write the block back when it is
evicted
 Now “Shared” means “Shared and potentially dirty”
 This is a version of the MOESI protocol

63

Tradeoffs in Sophisticated Cache Coherence Protocols

 The protocol can be optimized with more states and
prediction mechanisms to
+ Reduce unnecessary invalidates and transfers of blocks

 However, more states and optimizations
-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)
-- Provide diminishing returns

64

Directory Based
Cache Coherence

65

Directory Based Coherence
 Idea: A logically-central directory keeps track of where the

copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory
 One bit for each cache, indicating whether the block is in cache
 Exclusive bit: indicates that a cache has the only copy of the

block and can update it without notifying others
 On a read: set the cache’s bit and arrange the supply of data
 On a write: invalidate all caches that have the block and reset

their bits
 Have an “exclusive bit” associated with each block in each

cache
66

Directory-Based Protocols
 Especially desirable when scaling the system past the

capacity of a single bus
 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

69

Directory: Data Structures

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance
 Most accurate (and expensive): full bit-vector
 Compressed representation, linked list, Bloom filters are all

possible

70

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Directory: Basic Operations
 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:
 Receives Read, ReadEx, Upgrade requests from nodes
 Sends Inval/Downgrade messages to sharers if needed
 Forwards request to memory if needed
 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation
 For example, do cache-to-cache transfer?

71

MESI Directory Transaction: Read

72

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

73

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

74

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 
3. RdEx 4. Invl

5a. Rev

5b. DatEx



Issues with Contention Resolution
 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries
 Original requestor retries

 OR, queuing requests and granting in sequence
 (Or some combination thereof)

 Fairness

 Which requestor should be preferred in a conflict?
 Interconnect delivery order, and distance, both matter

75

Revisiting Two Cache Coherence Methods
 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests
 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]
 Single point of serialization per block, distributed among nodes
 Processors make explicit requests for blocks
 Directory tracks ownership (sharer set) for each block
 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

76

Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: miss  bus transaction to memory
+ Global serialization is easy: bus provides this already (arbitration)
+ Simple: adapt bus-based uniprocessors easily
- Relies on broadcast messages to be seen by all caches (in same order):
  single point of serialization (bus): not scalable
  need a virtual bus (or a totally-ordered interconnect)

 Directory
- Adds indirection to miss latency (critical path): request  dir.  mem.
- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK)
- Protocols and race conditions are more complex (for high-performance)
+ Does not require broadcast to all caches
+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
77

	740: Computer Architecture�Memory Consistency�&�Cache Coherence
	Review: Multiprocessor Types
	Review: Main Issues in Tightly-Coupled MP
	Review: Caveats of Parallelism
	Bottlenecks in Parallel Portion
	Difficulty in Parallel Programming
	Ordering of Operations
	Memory Ordering in a Single Processor
	Memory Ordering in a Dataflow Processor
	Memory Ordering in a MIMD Processor
	Shared Memory Model
	Why Does This Even Matter?
	Protecting Shared Data
	How Can We Solve The Problem?
	Sequential Consistency
	Programmer’s Abstraction
	Sequentially Consistent Operation Orders
	Consequences of Sequential Consistency
	Issues with Sequential Consistency?
	Weaker Memory Consistency
	Tradeoffs: Weaker Consistency
	Issues with Sequential Consistency?
	Shared Memory Model
	Cache Coherence
	The Cache Coherence Problem
	The Cache Coherence Problem
	The Cache Coherence Problem
	The Cache Coherence Problem
	Cache Coherence: Whose Responsibility?
	A Very Simple Coherence Scheme
	(Non-)Solutions to Cache Coherence
	Maintaining Coherence
	Hardware Cache Coherence
	Coherence: Update vs. Invalidate
	Coherence: Update vs. Invalidate (II)
	Update vs. Invalidate Tradeoffs
	Two Cache Coherence Methods
	Snoopy Cache Coherence
	Snoopy Cache Coherence
	A Simple Snoopy Cache Coherence Protocol
	A More Sophisticated Protocol: MSI
	MSI State Machine
	The Problem with MSI
	The Solution: MESI
	MESI State Machine
	Snoopy Invalidation Tradeoffs
	The Problem with MESI
	Improving on MESI
	Tradeoffs in Sophisticated Cache Coherence Protocols
	Directory Based �Cache Coherence
	Directory Based Coherence
	Directory-Based Protocols
	Directory: Data Structures
	Directory: Basic Operations
	MESI Directory Transaction: Read
	RdEx with Former Owner
	Contention Resolution (for Write)
	Issues with Contention Resolution
	Revisiting Two Cache Coherence Methods
	Snoopy Cache vs. Directory Coherence

