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Review: Multiprocessor Types 
 Loosely coupled multiprocessors 

 No shared global memory address space 
 Multicomputer network 

 Network-based multiprocessors 
 Usually programmed via message passing 

 Explicit calls (send, receive) for communication 
 

 Tightly coupled multiprocessors 
 Shared global memory address space 
 Traditional multiprocessing: symmetric multiprocessing (SMP) 

 Existing multi-core processors, multithreaded processors 
 Programming model similar to uniprocessors (i.e., multitasking 

uniprocessor) except 
 Operations on shared data require synchronization 
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Review: Main Issues in Tightly-Coupled MP  

 Shared memory synchronization 
 Locks, atomic operations 

 
 Cache consistency 

 More commonly called cache coherence 
 

 Ordering of memory operations  
 What should the programmer expect the hardware to provide? 

 
 Resource sharing, contention, partitioning 
 Communication: Interconnection networks 
 Load imbalance 
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Review: Caveats of Parallelism 
 Amdahl’s Law 

 f: Parallelizable fraction of a program 
 N: Number of processors 

 
 
 
 

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 
 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 
 Load imbalance overhead (imperfect parallelization) 
 Resource sharing overhead (contention among N processors) 
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Bottlenecks in Parallel Portion 
 Synchronization: Operations manipulating shared data 

cannot be parallelized 
 Locks, mutual exclusion, barrier synchronization 
 Communication: Tasks may need values from each other 
- Causes thread serialization when shared data is contended 

 
 Load Imbalance: Parallel tasks may have different lengths 

 Due to imperfect parallelization or microarchitectural effects 
- Reduces speedup in parallel portion 
 

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 
 Replicating all resources (e.g., memory) expensive 
- Additional latency not present when each task runs alone 
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Difficulty in Parallel Programming 
 Little difficulty if parallelism is natural 

 “Embarrassingly parallel” applications 
 Multimedia, physical simulation, graphics 
 Large web servers, databases? 

 
 Difficulty is in  

 Getting parallel programs to work correctly 
 Optimizing performance in the presence of bottlenecks 
 

 Much of parallel computer architecture is about 
 Designing machines that overcome the sequential and parallel 

bottlenecks to achieve higher performance and efficiency 
 Making programmer’s job easier in writing correct and high-

performance parallel programs 
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Ordering of Operations 
 Operations: A, B, C, D 

 In what order should the hardware execute (and report the 
results of) these operations? 

 

 A contract between programmer and microarchitect 
 Specified by the ISA 
 

 Preserving an “expected” (more accurately, “agreed upon”) 
order simplifies programmer’s life 
 Ease of debugging; ease of state recovery, exception handling 
 

 Preserving an “expected” order usually makes the hardware 
designer’s life difficult 
 Especially if the goal is to design a high performance processor: Load-store 

queues in out of order execution 
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Memory Ordering in a Single Processor 
 Specified by the von Neumann model 
 Sequential order 

 Hardware executes the load and store operations in the order 
specified by the sequential program 
 

 Out-of-order execution does not change the semantics 
 Hardware retires (reports to software the results of) the load 

and store operations in the order specified by the sequential 
program 
 

 Advantages: 1) Architectural state is precise within an execution. 2) 
Architectural state is consistent across different runs of the program  
Easier to debug programs 

 Disadvantage: Preserving order adds overhead, reduces 
performance 
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Memory Ordering in a Dataflow Processor 
 A memory operation executes when its operands are ready 

 
 Ordering specified only by data dependencies 

 
 Two operations can be executed and retired in any order if 

they have no dependency 
 

 Advantage: Lots of parallelism  high performance 
 Disadvantage: Order can change across runs of the same 

program  Very hard to debug 
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Memory Ordering in a MIMD Processor 
 Each processor’s memory operations are in sequential order 

with respect to the “thread” running on that processor 
(assume each processor obeys the von Neumann model) 
 

 Multiple processors execute memory operations 
concurrently 

 
 How does the memory see the order of operations from all 

processors?  
 In other words, what is the ordering of operations across 

different processors? 
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Shared Memory Model 
 Many parallel programs communicate through shared memory 
 Proc 0 writes to an address, followed by Proc 1 reading 

 This implies communication between the two 
 
 
 
 
 
 
 

 Each read should receive the value last written by anyone 
 This requires synchronization (what does last written mean?) 

 What if Mem[A] is cached (at either end)? 
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Proc 0 
Mem[A] = 1 

Proc 1 
… 
 
Print Mem[A] 



Why Does This Even Matter? 
 Ease of debugging 

 It is nice to have the same execution done at different times 
have the same order of memory operations 
 

 Correctness 
 Can we have incorrect execution if the order of memory 

operations is different from the point of view of different 
processors? 
 

 Performance and overhead 
 Enforcing a strict “sequential ordering” can make life harder 

for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches) 
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Protecting Shared Data 
 Threads are not allowed to update shared data concurrently 

 For correctness purposes 
 

 Accesses to shared data are encapsulated inside  
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables) 

 

 Only one thread can execute a critical section at  
a given time 
 Mutual exclusion principle 

 
 A multiprocessor should provide the correct execution of 

synchronization primitives to enable the programmer to 
protect shared data 
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How Can We Solve The Problem? 
 Idea: Sequential consistency 

 
 All processors see the same order of operations to memory 
 i.e., all memory operations happen in an order (called the 

global total order) that is consistent across all processors 
 

 Assumption: within this global order, each processor’s 
operations appear in sequential order with respect to its 
own operations. 
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Sequential Consistency 
 Lamport, “How to Make a Multiprocessor Computer That 

Correctly Executes Multiprocess Programs,” IEEE Transactions on 
Computers, 1979 
 

 A multiprocessor system is sequentially consistent if: 
 the result of any execution is the same as if the operations of all 

the processors were executed in some sequential order 
AND 
 the operations of each individual processor appear in this 

sequence in the order specified by its program 
 

 This is a memory ordering model, or memory model 
 Specified by the ISA 
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Programmer’s Abstraction 
 Memory is a switch that services one load or store at a time 

form any processor 
 All processors see the currently serviced load or store at the 

same time 
 Each processor’s operations are serviced in program order 
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Sequentially Consistent Operation Orders 
 Potential correct global orders (all are correct): 

 
 A B X Y 
 A X B Y 
 A X Y B 
 X A B Y 
 X A Y B 
 X Y A B 

 
 Which order (interleaving) is observed depends on 

implementation and dynamic latencies 
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Consequences of Sequential Consistency 
 Corollaries 

 
1. Within the same execution, all processors see the same 

global order of operations to memory 
      No correctness issue 
      Satisfies the “happened before” intuition 
 
 
2. Across different executions, different global orders can be 

observed (each of which is sequentially consistent) 
      Debugging is still difficult (as order changes across runs) 
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Issues with Sequential Consistency? 
 Nice abstraction for programming, but two issues: 

 Too conservative ordering requirements 
 Limits the aggressiveness of performance enhancement 

techniques 
 

 Is the total global order requirement too strong? 
 Do we need a global order across all operations and all 

processors? 
 How about a global order only across all stores? 

 Total store order memory model; unique store order model 
 How about a enforcing a global order only at the boundaries 

of synchronization? 
 Relaxed memory models 
 Acquire-release consistency model 
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Weaker Memory Consistency 
 The ordering of operations is important when the order 

affects operations on shared data  i.e., when processors 
need to synchronize to execute a “program region” 
 

 Weak consistency 
 Idea: Programmer specifies regions in which memory 

operations do not need to be ordered 
 “Memory fence” instructions delineate those regions 

 All memory operations before a fence must complete before the 
fence is executed 

 All memory operations after the fence must wait for the fence to 
complete 

 Fences complete in program order 
 All synchronization operations act like a fence 
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Tradeoffs: Weaker Consistency 
 Advantage 

 No need to guarantee a very strict order of memory 
operations 

     Enables the hardware implementation of performance      
   enhancement techniques to be simpler  

     Can be higher performance than stricter ordering 
 

 Disadvantage 
 More burden on the programmer or software (need to get the 

“fences” correct) 
 

 Another example of the programmer-microarchitect tradeoff 
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Issues with Sequential Consistency? 
 Performance enhancement techniques that could make SC 

implementation difficult 
 

 Out-of-order execution  
 Loads happen out-of-order with respect to each other and 

with respect to independent stores 
 

 Caching  
 A memory location is now present in multiple places 
 Prevents the effect of a store to be seen by other processors 

 

31 



Shared Memory Model 
 Many parallel programs communicate through shared memory 
 Proc 0 writes to an address, followed by Proc 1 reading 

 This implies communication between the two 
 
 
 
 
 
 
 

 Each read should receive the value last written by anyone 
 This requires synchronization (what does last written mean?) 

 What if Mem[A] is cached (at either end)? 
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Proc 0 
Mem[A] = 1 

Proc 1 
… 
 
Print Mem[A] 



Cache Coherence  
 Basic question: If multiple processors cache the same 

block, how do they ensure they all see a consistent state? 
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The Cache Coherence Problem 
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The Cache Coherence Problem 
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The Cache Coherence Problem 
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The Cache Coherence Problem 
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Cache Coherence: Whose Responsibility? 
 Software 

 Can the programmer ensure coherence if caches are invisible to 
software? 

 What if the ISA provided a cache flush instruction? 
 FLUSH-LOCAL A: Flushes/invalidates the cache block containing 

address A from a processor’s local cache.  
 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 

address A from all other processors’ caches.  
 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X. 

 

 Hardware 
 Simplifies software’s job 
 One idea: Invalidate all other copies of block A when a processor writes 

to it 
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A Very Simple Coherence Scheme 
 Caches “snoop” (observe) each other’s write/read 

operations. If a processor writes to a block, all others 
invalidate it from their caches. 

 A simple protocol: 
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 Write-through, no-
write-allocate 
cache 

 Actions: PrRd, 
PrWr, BusRd, 
BusWr 

PrWr / BusWr 

Valid 

BusWr 
 
 

Invalid 

PrWr / BusWr 

PrRd / BusRd 

PrRd/-- 

ObservedEvent/Action 



(Non-)Solutions to Cache Coherence 
 No hardware based coherence 

 Keeping caches coherent is software’s responsibility 
+ Makes microarchitect’s life easier 
-- Makes average programmer’s life much harder  

 need to worry about hardware caches to maintain program 
correctness? 

-- Overhead in ensuring coherence in software 
 

 All caches are shared between all processors 
+ No need for coherence 
-- Shared cache becomes the bandwidth bottleneck 
-- Very hard to design a scalable system with low-latency cache 

access this way 
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Maintaining Coherence 
 Need to guarantee that all processors see a consistent 

value (i.e., consistent updates) for the same memory 
location 
 

 Writes to location A by P0 should be seen by P1 
(eventually), and all writes to A should appear in some 
order 
 

 Coherence needs to provide: 
 Write propagation: guarantee that updates will propagate 
 Write serialization: provide a consistent global order seen 

by all processors 
 

 Need a global point of serialization for this store ordering 
 41 



Hardware Cache Coherence 
 Basic idea: 

 A processor/cache broadcasts its write/update to a memory 
location to all other processors 

 Another cache that has the location either updates or 
invalidates its local copy 
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Coherence: Update vs. Invalidate 
 How can we safely update replicated data? 

 Option 1 (Update protocol): push an update to all copies 
 Option 2 (Invalidate protocol): ensure there is only one 

copy (local), update it 
 

 On a Read: 
 If local copy isn’t valid, put out request 
 (If another node has a copy, it returns it, otherwise 

memory does) 
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Coherence: Update vs. Invalidate (II) 
 On a Write: 

 Read block into cache as before 
Update Protocol: 

 Write to block, and simultaneously broadcast written 
data to sharers 

 (Other nodes update their caches if data was present) 
Invalidate Protocol: 

 Write to block, and simultaneously broadcast invalidation 
of address to sharers 

 (Other nodes clear block from cache) 
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Update vs. Invalidate Tradeoffs 
 Which do we want? 

 Write frequency and sharing behavior are critical 
 Update 

+ If sharer set is constant and updates are infrequent, avoids 
the cost of invalidate-reacquire (broadcast update pattern) 

- If data is rewritten without intervening reads by other cores, 
updates were useless 

- Write-through cache policy  bus becomes bottleneck 

 Invalidate 
+ After invalidation broadcast, core has exclusive access rights 
+ Only cores that keep reading after each write retain a copy 
- If write contention is high, leads to ping-ponging (rapid 

mutual invalidation-reacquire) 
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Two Cache Coherence Methods  
 How do we ensure that the proper caches are updated? 

 
 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984] 

 Bus-based, single point of serialization for all requests 
 Processors observe other processors’ actions 

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A 
 

 Directory [Censier and Feautrier, IEEE ToC 1978] 
 Single point of serialization per block, distributed among nodes 
 Processors make explicit requests for blocks 
 Directory tracks ownership (sharer set) for each block 
 Directory coordinates invalidation appropriately 

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1 
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Snoopy Cache Coherence 
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Snoopy Cache Coherence 
 Idea:  

 All caches “snoop” all other caches’ read/write requests and 
keep the cache block coherent 

 Each cache block has “coherence metadata” associated with it 
in the tag store of each cache 

 
 Easy to implement if all caches share a common bus 

 Each cache broadcasts its read/write operations on the bus 
 Good for small-scale multiprocessors 
 What if you would like to have a 1000-node multiprocessor? 
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A Simple Snoopy Cache Coherence Protocol 
 Caches “snoop” (observe) each other’s write/read 

operations 
 A simple protocol: 
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 Write-through, no-
write-allocate 
cache 

 Actions: PrRd, 
PrWr, BusRd, 
BusWr 

PrWr / BusWr 

Valid 

BusWr 

Invalid 

PrWr / BusWr 

PrRd / BusRd 

PrRd/-- 



A More Sophisticated Protocol: MSI 
 Extend single valid bit per block to three states: 

 M(odified): cache line is only copy and is dirty 
 S(hared): cache line is one of several copies 
 I(nvalid): not present 

 
 

 Read miss makes a Read request on bus, transitions to S 
 Write miss makes a ReadEx request, transitions to M state 
 When a processor snoops ReadEx from another writer, it 

must invalidate its own copy (if any) 
 SM upgrade can be made without re-reading data from 

memory (via Invalidations) 
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MSI State Machine 
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M 

S I 

BusRdX/-- 

[Culler/Singh96] 

PrRd/-- 
BusRd/-- 

PrRd/BusRd 

PrWr/BusRdX 

PrWr/BusRdX 

BusRdX/Flush 

PrRd/-- 
PrWr/-- 

BusRd/Flush 

ObservedEvent/Action 



The Problem with MSI 
 A block is in no cache to begin with 
 Problem: On a read, the block immediately goes to 

“Shared” state although it may be the only copy to be 
cached (i.e., no other processor will cache it) 
 

 Why is this a problem? 
 Suppose the cache that read the block wants to write to it at 

some point 
 It needs to broadcast “invalidate” even though it has the only 

cached copy! 
 If the cache knew it had the only cached copy in the system, 

it could have written to the block without notifying any other 
cache  saves unnecessary broadcasts of invalidations 
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The Solution: MESI 
 Idea: Add another state indicating that this is the only 

cached copy and it is clean. 
 Exclusive state 

 
 Block is placed into the exclusive state if, during BusRd, no 

other cache had it 
 Wired-OR “shared” signal on bus can determine this: 

snooping caches assert the signal if they also have a copy 
 

 Silent transition ExclusiveModified is possible on write 
 
 MESI is also called the Illinois protocol  
 Papamarcos and Patel, “A low-overhead coherence solution for 

multiprocessors with private cache memories,” ISCA 1984. 
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PrWr/BusRdX 

PrRd (S’)/BusRd 

PrRd (S)/BusRd 

PrWr/BusRdX 

PrWr/-- 

BusRd/ $ Transfer 

BusRd/Flush 

BusRdX/Flush (all incoming) 

MESI State Machine 
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M 

E 

S 

I 

[Culler/Singh96] 

Modified: 
• 1 owner 
• dirty data 
• R/W access  

Exlusive: 
• 1 owner 
• clean data 
• R/W access  

Shared: 
• >=1 owner(s) 
• clean data 
• RO access  

Invalid: 
• Not present 
• No data 
• No access  



Snoopy Invalidation Tradeoffs 
 Should a downgrade from M go to S or I? 

 S: if data is likely to be reused (before it is written to by another 
processor) 

 I: if data is likely to be not reused (before it is written to by another) 
 Cache-to-cache transfer 

 On a BusRd, should data come from another cache or memory? 
 Another cache 

 may be faster, if memory is slow or highly contended 
 Memory 

 Simpler: no need to wait to see if cache has data first 
 Less contention at the other caches 
 Requires writeback on M downgrade 

 Writeback on Modified->Shared: necessary? 
 One possibility: Owner (O) state (MOESI protocol) 

 One cache owns the latest data (memory is not updated) 
 Memory writeback happens when all caches evict copies 
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The Problem with MESI 
 Shared state requires the data to be clean  

 i.e., all caches that have the block have the up-to-date copy 
and so does the memory 

 Problem: Need to write the block to memory when BusRd 
happens when the block is in Modified state 
 

 Why is this a problem? 
 Memory can be updated unnecessarily  some other 

processor may want to write to the block again while it is 
cached 
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Improving on MESI 
 

 Idea 1: Do not transition from MS on a BusRd. Invalidate 
the copy and supply the modified block to the requesting 
processor directly without updating memory 
 

 Idea 2: Transition from MS, but designate one cache as 
the owner (O), who will write the block back when it is 
evicted 
 Now “Shared” means “Shared and potentially dirty” 
 This is a version of the MOESI protocol 
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Tradeoffs in Sophisticated Cache Coherence Protocols 

 The protocol can be optimized with more states and 
prediction mechanisms to 
+ Reduce unnecessary invalidates and transfers of blocks 
 

 However, more states and optimizations  
-- Are more difficult to design and verify (lead to more cases to 
take care of, race conditions) 
-- Provide diminishing returns 
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Directory Based  
Cache Coherence 
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Directory Based Coherence 
 Idea: A logically-central directory keeps track of where the 

copies of each cache block reside. Caches consult this 
directory to ensure coherence. 

 
 An example mechanism: 

 For each cache block in memory, store P+1 bits in directory 
 One bit for each cache, indicating whether the block is in cache 
 Exclusive bit: indicates that a cache has the only copy of the 

block and can update it without notifying others 
 On a read: set the cache’s bit and arrange the supply of data  
 On a write: invalidate all caches that have the block and reset 

their bits 
 Have an “exclusive bit” associated with each block in each 

cache 
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Directory-Based Protocols 
 Especially desirable when scaling the system past the 

capacity of a single bus 
 Distributed, but: 

 Coherence still requires single point of serialization (for write 
serialization) 

 Serialization location can be different for every block (striped 
across nodes) 
 

 We can reason about the protocol for a single block: one 
server (directory node), many clients (private caches) 
 

 Directory receives Read and ReadEx requests, and sends 
Invl requests: invalidation is explicit (as opposed to snoopy 
buses) 
 

69 



Directory: Data Structures 

 
 Key operation to support is set inclusion test 

 False positives are OK: want to know which caches may contain 
a copy of a block, and spurious invalidations are ignored 

 False positive rate determines performance 
 Most accurate (and expensive): full bit-vector 
 Compressed representation, linked list, Bloom filters are all 

possible 
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0x00 
0x04 
0x08 
0x0C 
… 

Shared: {P0, P1, P2} 
--- 
Exclusive: P2 
--- 
--- 
 



Directory: Basic Operations 
 Follow semantics of snoop-based system 

 but with explicit request, reply messages 
 

 Directory: 
 Receives Read, ReadEx, Upgrade requests from nodes 
 Sends Inval/Downgrade messages to sharers if needed 
 Forwards request to memory if needed 
 Replies to requestor and updates sharing state 

 
 Protocol design is flexible 

 Exact forwarding paths depend on implementation 
 For example, do cache-to-cache transfer? 
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MESI Directory Transaction: Read 
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P0 Home 

1. Read 

2. DatEx (DatShr) 

Culler/Singh Fig. 8.16 

P0 acquires an address for reading: 

P1 



RdEx with Former Owner 
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Contention Resolution (for Write) 
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P0 Home 

1a. RdEx 

2a. DatEx 

P1 

1b. RdEx 

2b. NACK 
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3. RdEx 4. Invl 

5a. Rev 

5b. DatEx 

 



Issues with Contention Resolution 
 Need to escape race conditions by: 

 NACKing requests to busy (pending invalidate) entries 
 Original requestor retries 

 OR, queuing requests and granting in sequence 
 (Or some combination thereof) 

 
 Fairness 

 Which requestor should be preferred in a conflict? 
 Interconnect delivery order, and distance, both matter 
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Revisiting Two Cache Coherence Methods  
 How do we ensure that the proper caches are updated? 

 
 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984] 

 Bus-based, single point of serialization for all requests 
 Processors observe other processors’ actions 

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A 
 

 Directory [Censier and Feautrier, IEEE ToC 1978] 
 Single point of serialization per block, distributed among nodes 
 Processors make explicit requests for blocks 
 Directory tracks ownership (sharer set) for each block 
 Directory coordinates invalidation appropriately 

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1 
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Snoopy Cache vs. Directory Coherence 
 Snoopy Cache 

+ Miss latency (critical path) is short: miss  bus transaction to memory 
+ Global serialization is easy: bus provides this already (arbitration) 
+ Simple: adapt bus-based uniprocessors easily 
- Relies on broadcast messages to be seen by all caches (in same order):  
  single point of serialization (bus): not scalable 
  need a virtual bus (or a totally-ordered interconnect) 

 

 Directory 
- Adds indirection to miss latency (critical path): request  dir.  mem. 
- Requires extra storage space to track sharer sets 

 Can be approximate (false positives are OK) 
- Protocols and race conditions are more complex (for high-performance) 
+ Does not require broadcast to all caches 
+ Exactly as scalable as interconnect and directory storage 

(much more scalable than bus) 
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