
Computer Architecture: 
Interconnects: 

Off-Chip and On-Chip 
 

15-740 
Carnegie Mellon University 

 



Interconnect Basics 

2 



Interconnect in a Multi-Core System 
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Where Is Interconnect Used? 
 To connect components 

 
 Many examples 

 Processors and processors 
 Processors and memories (banks) 
 Processors and caches (banks) 
 Caches and caches 
 I/O devices 
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Why Is It Important? 
 Affects the scalability of the system 

 How large of a system can you build? 
 How easily can you add more processors? 

 
 Affects performance and energy efficiency 

 How fast can processors, caches, and memory communicate? 
 How long are the latencies to memory? 
 How much energy is spent on communication? 
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Interconnection Network Basics 
 Topology 

 Specifies the way switches are wired 
 Affects routing, reliability, throughput, latency, cost 
 

 Routing (algorithm) 
 How does a message get from source to destination 
 Static or adaptive  
 

 Buffering and Flow Control 
 What do we store within the network? 

 Entire packets, parts of packets, etc? 
 How do we throttle during oversubscription? 
 Tightly coupled with routing strategy 
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Topology 
 Bus (simplest) 
 Point-to-point connections (ideal and most costly) 
 Crossbar (less costly) 
 Ring 
 Tree 
 Omega 
 Hypercube 
 Mesh 
 Torus 
 Butterfly 
 … 
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Metrics to Evaluate Interconnect Topology 

 Cost 
 Latency (in hops, in nanoseconds) 
 Contention 

 
 Many others exist you should think about 

 Energy 
 Bandwidth 
 Overall system performance 
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Bus 
+ Simple 
+ Cost effective for a small number of nodes 
+ Easy to implement coherence (snooping and serialization) 
- Not scalable to large number of nodes (limited bandwidth, 

electrical loading  reduced frequency) 
- High contention  fast saturation 
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Point-to-Point  
Every node connected to every other 
 
+ Lowest contention 
+ Potentially lowest latency 
+ Ideal, if cost is not an issue 
 
-- Highest cost 
   O(N) connections/ports  
   per node 
   O(N2) links 
-- Not scalable 
-- How to lay out on chip? 
    10 
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Crossbar 
 Every node connected to every other (non-blocking) except 

only one can be using the connection at any given time 
 Enables concurrent sends to non-conflicting destinations  
 Good for small number of nodes 

 
+ Low latency and high throughput 
- Expensive 
- Not scalable  O(N2) cost 
- Difficult to arbitrate as N increases 
 
Used in core-to-cache-bank 
networks in 
- IBM POWER5 
- Sun Niagara I/II 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 
 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 
 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Buffered Crossbar 

14 

Output 
Arbiter 

Output 
Arbiter 

Output 
Arbiter 

Output 
Arbiter 

Flow 
Control 

Flow 
Control 

Flow 
Control 

Flow 
Control 

NI 

NI 

NI 

NI 

Buffered 
Crossbar 

0 

1 

2 

3 

NI 

NI 

NI 

NI 

Bufferless 
Crossbar 

0 

1 

2 

3 

+ Simpler 
arbitration/ 
scheduling 

 

+ Efficient 
support for 
variable-size 
packets 
 

-  Requires  
N2 buffers 

 
 
 
 



Can We Get Lower Cost than A Crossbar? 
 Yet still have low contention? 

 
 Idea: Multistage networks 
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Multistage Logarithmic Networks 
 Idea: Indirect networks with multiple layers of switches 

between terminals/nodes 
 Cost: O(NlogN), Latency: O(logN) 
 Many variations (Omega, Butterfly, Benes, Banyan, …) 
 Omega Network: 
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Handling Contention 
 
 
 
 
 
 

 Two packets trying to use the same link at the same time 
 What do you do? 

 Buffer one 
 Drop one 
 Misroute one (deflection) 

 Assume buffering for now 
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Aside: Circuit vs. Packet Switching 
 Circuit switching sets up full path 

 Establish route then send data 
 (no one else can use those links) 
 
 
 

 Packet switching routes per packet 
 Route each packet individually (possibly via different paths) 
 if link is free, any packet can use it 
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Aside: Circuit vs. Packet Switching 
 Circuit switching sets up full path 

 Establish route then send data 
 (no one else can use those links) 
+ faster arbitration 
-- setting up and bringing down links takes time 
 

 Packet switching routes per packet 
 Route each packet individually (possibly via different paths) 
 if link is free, any packet can use it 
-- potentially slower --- must dynamically switch 
+ no setup, bring down time 
+ more flexible, does not underutilize links 
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Switching vs. Topology 
 Circuit/packet switching choice independent of topology 
 It is a higher-level protocol on how a message gets sent to 

a destination 
 

 However, some topologies are more amenable to circuit vs. 
packet switching 
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Multistage Circuit Switched 

 
 
 
 
 
 
 
 
 

 
 More restrictions on feasible concurrent Tx-Rx pairs 
 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly 
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Multistage Packet Switched 

 
 
 
 
 
 
 
 
 

 
 Packets “hop” from router to router, pending availability of 

the next-required switch and buffer 
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Another Example: Delta Network 
 Single path from source to 

destination 
 

 Does not support all possible 
permutations 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Another Example: Omega Network 
 Single path from source to 

destination 
 

 All stages are the same 
 

 Used in NYU 
Ultracomputer 
 

 Gottlieb et al. “The NYU 
Ultracomputer-designing a 
MIMD, shared-memory 
parallel machine,” ISCA 
1982. 
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Ring 
+ Cheap: O(N) cost 
- High latency: O(N) 
- Not easy to scale 
   - Bisection bandwidth remains constant 
 
Used in Intel Haswell, Intel Larrabee, IBM Cell, many 

commercial systems today 
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Unidirectional Ring 
 
 
 
 
 
 
 

 Simple topology and implementation 
 Reasonable performance if N and performance needs 

(bandwidth & latency) still moderately low 
 O(N) cost 
 N/2 average hops; latency depends on utilization 
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Bidirectional Rings 
+ Reduces latency 
+ Improves scalability 

 
- Slightly more complex injection policy (need to select which 
ring to inject a packet into) 
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Mesh 
 O(N) cost 
 Average latency: O(sqrt(N)) 
 Easy to layout on-chip: regular and equal-length links 
 Path diversity: many ways to get from one node to another 

 
 Used in Tilera 100-core 
 And many on-chip network 
   prototypes 
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Torus 
 Mesh is not symmetric on edges: performance very 

sensitive to placement of task on edge vs. middle 
 Torus avoids this problem 
+ Higher path diversity (and bisection bandwidth) than mesh 
- Higher cost 
- Harder to lay out on-chip 
  - Unequal link lengths 
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Torus, continued 
 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 
Latency: O(logN) 
Good for local traffic 
+ Cheap: O(N) cost 
+ Easy to Layout 
- Root can become a bottleneck 
   

Trees 
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Planar, hierarchical topology 
Latency: O(logN) 
Good for local traffic 
+ Cheap: O(N) cost 
+ Easy to Layout 
- Root can become a bottleneck 
  Fat trees avoid this problem (CM-5) 
 

Trees 
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CM-5 Fat Tree 
 Fat tree based on 4x2 switches 
 Randomized routing on the way up 
 Combining, multicast, reduction operators supported in 

hardware 
 Thinking Machines Corp., “The Connection Machine CM-5 

Technical Summary,” Jan. 1992. 
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Hypercube 
 
 
 
 

 Latency: O(logN) 
 Radix: O(logN) 
 #links: O(NlogN) 
+ Low latency 
- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 
 64-node message passing 

machine 
 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Handling Contention 
 
 
 
 
 
 

 Two packets trying to use the same link at the same time 
 What do you do? 

 Buffer one 
 Drop one 
 Misroute one (deflection) 

 Assume buffering for now 
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Flow Control Methods 
 Circuit switching 

 
 Store and forward (Packet based) 

 
 Virtual cut through (Packet based) 

 
 Wormhole (Flit based) 
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Circuit Switching Revisited 
 Resource allocation granularity is high 

 
 Idea: Pre-allocate resources across multiple switches for a 

given “flow” 
 Need to send a probe to set up the path for pre-allocation 

 
+ No need for buffering 
+ No contention (flow’s performance is isolated) 
+ Can handle arbitrary message sizes 
- Lower link utilization: two flows cannot use the same link 
- Handshake overhead to set up a “circuit” 
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Store and Forward Flow Control 
 Packet based flow control 
 Store and Forward 

 Packet copied entirely into network router before moving to 
the next node 

 Flow control unit is the entire packet 
 Leads to high per-packet latency 
 Requires buffering for entire packet in each node 
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Cut through Flow Control 
 Another form of packet based flow control 
 Start forwarding as soon as header is received and 

resources (buffer, channel, etc) allocated 
 Dramatic reduction in latency 

 Still allocate buffers and channel bandwidth for full packets 
 

 
 
 
 
 

 What if packets are large? 
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Cut through Flow Control 
 What to do if output port is blocked? 
 Lets the tail continue when the head is blocked, absorbing 

the whole message into a single switch.  
 Requires a buffer large enough to hold the largest packet. 

 Degenerates to store-and-forward with high contention 
 

 Can we do better? 
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Wormhole Flow Control 
 Packets broken into (potentially) 

smaller flits (buffer/bw allocation unit) 
 Flits are sent across the fabric in a 

wormhole fashion 
 Body follows head, tail follows body 
 Pipelined 
 If head blocked, rest of packet stops 
 Routing (src/dest) information only in 

head 
 

 How does body/tail know where to go? 
 Latency almost independent of distance 

for long messages 
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Wormhole Flow Control 
 Advantages over “store and forward” flow control 

+ Lower latency 
+ More efficient buffer utilization 

 Limitations 
- Occupies resources across multiple routers  
- Suffers from head of line blocking 
   - if head flit cannot move due to contention, another worm cannot 

proceed even though links may be idle  
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Head of Line Blocking 

46 

Blocked by other 
packets 

Channel idle but 
red packet blocked 

behind blue 

Buffer full: blue 
cannot proceed 

Red holds this channel: 
channel remains idle 
until read proceeds 



Head of Line Blocking 
 A worm can be before another in the router input buffer 
 Due to FIFO nature, the second worm cannot be scheduled 

even though it may need to access another output port  
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Virtual Channel Flow Control 
 Idea: Multiplex multiple channels over one physical channel 
 Divide up the input buffer into multiple buffers sharing a 

single physical channel 
 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
 Idea: Multiplex multiple channels over one physical channel 
 Divide up the input buffer into multiple buffers sharing a 

single physical channel 
 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
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A Modern Virtual Channel Based Router 
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Other Uses of Virtual Channels 
 Deadlock avoidance 

 Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources 
 Enforce order on VCs 

 Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC.  

 Protocol level deadlock: Ensure address and data packets use 
different VCs  prevent cycles due to intermixing of different 
packet classes 
 

 Prioritization of traffic classes 
 Some virtual channels can have higher priority than others 
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Routing Algorithm 
 Types 

 Deterministic: always chooses the same path for a 
communicating source-destination pair 

 Oblivious: chooses different paths, without considering 
network state 

 Adaptive: can choose different paths, adapting to the state 
of the network 
 

 How to adapt 
 Local/global feedback 
 Minimal or non-minimal paths 
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Deterministic Routing 
 All packets between the same (source, dest) pair take the 

same path 
 

 Dimension-order routing 
 E.g., XY routing (used in Cray T3D, and many on-chip 

networks) 
 First traverse dimension X, then traverse dimension Y 

 
+ Simple 
+ Deadlock freedom (no cycles in resource allocation) 
- Could lead to high contention 
- Does not exploit path diversity 
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Deadlock 
 No forward progress 
 Caused by circular dependencies on resources 
 Each packet waits for a buffer occupied by another packet 

downstream 
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Handling Deadlock 
 Avoid cycles in routing 

 Dimension order routing 
 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 
 

 
 Avoid deadlock by adding more buffering (escape paths) 
 
 
 Detect and break deadlock 

 Preemption of buffers 
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Turn Model to Avoid Deadlock 
 Idea 

 Analyze directions in which packets can turn in the network 
 Determine the cycles that such turns can form 
 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 
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Oblivious Routing: Valiant’s Algorithm 
 An example of oblivious algorithm 
 Goal: Balance network load  
 Idea: Randomly choose an intermediate destination, route 

to it first, then route from there to destination 
 Between source-intermediate and intermediate-dest, can use 

dimension order routing 
 

+ Randomizes/balances network load 
- Non minimal (packet latency can increase) 
 
 Optimizations: 

 Do this on high load 
 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 
 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 
- Minimality restricts achievable link utilization (load balance) 
 

 Non-minimal (fully) adaptive 
 “Misroute” packets to non-productive output ports based on 

network state 
+ Can achieve better network utilization and load balance 
- Need to guarantee livelock freedom 
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On-Chip Networks 
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On-chip Networks 
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On-Chip vs. Off-Chip Interconnects 
 On-chip advantages 

 Low latency between cores 
 No pin constraints 
 Rich wiring resources 
 Very high bandwidth 
 Simpler coordination 

 
 On-chip constraints/disadvantages 

 2D substrate limits implementable topologies 
 Energy/power consumption a key concern 
 Complex algorithms undesirable 
 Logic area constrains use of wiring resources 
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On-Chip vs. Off-Chip Interconnects (II) 
 Cost 

 Off-chip: Channels, pins, connectors, cables 
 On-chip: Cost is storage and switches (wires are plentiful) 
 Leads to networks with many wide channels, few buffers 
 

 Channel characteristics 
 On chip short distance  low latency 
 On chip RC lines  need repeaters every 1-2mm 

 Can put logic in repeaters 
 

 Workloads 
 Multi-core cache traffic vs. supercomputer interconnect traffic 
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Motivation for Efficient Interconnect 
 In many-core chips, on-chip interconnect (NoC)    

consumes significant power 
 Intel Terascale: ~28% of chip power 
 Intel SCC:    ~10%  
 MIT RAW:    ~36% 
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Packet Scheduling in Multicore? 
 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 
 Which input port? 
 Which virtual channel? 
 Which application’s packet? 

 

 Common strategies 
 Round robin across virtual channels 
 Oldest packet first (or an approximation) 
 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 
 Use application characteristics 
 Minimize energy 
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The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 
 Existing scheduling policies  

 Round Robin 
 Age 

 Problem 1: Local to a router 
 Lead to contradictory decision making between routers: 

packets from one application may be prioritized at one router, 
to be delayed at next.  

 Problem 2: Application oblivious 
 Treat all applications packets equally 
 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 

 
 
 

Das, Mutlu, Moscibroda, and Das, "Application-Aware Prioritization Mechanisms 
for On-Chip Networks,“ MICRO 2009 
 

http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
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Motivation: Stall-Time Criticality 

 Applications are not homogenous 
 

 Applications have different criticality with respect to the 
network 
 Some applications are network latency sensitive  
 Some applications are network latency tolerant 
 

 Application’s Stall Time Criticality (STC) can be measured 
by its average network stall time per packet (i.e. 
NST/packet) 
 Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 
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Motivation: Stall-Time Criticality 

 Why do applications have different network stall time 
criticality (STC)?  
 
 Memory Level Parallelism (MLP)  

 Lower MLP leads to higher criticality 
 

 Shortest Job First Principle (SJF)  
 Lower network load leads to higher criticality 

 

 
 

 

73 



© Onur Mutlu, 2009, 2010 

STC Principle 1: MLP 
  

 
 
 
 
 
 

 
 

 Observation 1: Packet Latency != Network Stall Time 
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STC Principle 1: MLP 
  

 
 
 
 
 
 

 
 

 Observation 1: Packet Latency != Network Stall Time 
 Observation 2: A low MLP application’s  packets have 

higher criticality than a high MLP application’s 
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STC Principle 2: Shortest-Job-First 
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Solution: Application-Aware Policies 

 Idea 
 Identify critical applications (i.e. network 

sensitive applications) and prioritize their packets 
in each router. 

 
 Key components of scheduling policy: 
 Application Ranking 
 Packet Batching 

 
 Propose low-hardware complexity solution 
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Component 1: Ranking 

 Ranking distinguishes applications based on Stall Time 
Criticality (STC) 

 Periodically rank applications based on STC 
 

 Explored many heuristics for estimating STC 
 Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 
 Low L1-MPI => high STC => higher rank 

 
 Why Misses Per Instruction (L1-MPI)? 

 Easy to Compute (low complexity) 
 Stable Metric (unaffected by interference in network) 
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Component 1 : How to Rank? 
 Execution time is divided into fixed “ranking intervals” 

 Ranking interval is 350,000 cycles  

 At the end of an interval, each core calculates their L1-MPI 
and sends it to the Central Decision Logic (CDL) 
 CDL is located in the central node of mesh 

 CDL forms a rank order and sends back its rank to each core 
 Two control packets per core every ranking interval 

 Ranking order is a “partial order” 
 

 Rank formation is not on the critical path 
 Ranking interval is significantly longer than rank computation time 
 Cores use older rank values until new ranking is available 
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Component 2: Batching 
 Problem: Starvation 

 Prioritizing a higher ranked application can lead to starvation 
of lower ranked application 
 

 Solution: Packet Batching 
 Network packets are grouped into finite sized batches  
 Packets of older batches are prioritized over younger 

batches 
 

 Time-Based Batching 
 New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  
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Putting it all together: STC Scheduling Policy 

 Before injecting a packet into the network, it is tagged with  
 Batch ID (3 bits) 

 Rank ID (3 bits) 
 

 Three tier priority structure at routers 
 Oldest batch first (prevent starvation) 
 Highest rank first   (maximize performance) 
 Local Round-Robin    (final tie breaker) 

 
 Simple hardware support: priority arbiters 
 Global coordinated scheduling 

 Ranking order and batching order are same across all routers 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Evaluation Methodology 
 64-core system 

 x86 processor model based on Intel Pentium M 
 2 GHz processor, 128-entry instruction window 
 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers 
 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers 
 

 Detailed Network-on-Chip model  
 2-stage routers (with speculation  and look ahead routing) 
 Wormhole switching (8 flit data packets) 
 Virtual channel flow control (6 VCs, 5 flit buffer depth) 
 8x8 Mesh (128 bit bi-directional channels) 
 

 Benchmarks 
 Multiprogrammed scientific, server, desktop workloads (35 applications) 
 96 workload combinations 
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Comparison to Previous Policies 
 Round Robin & Age (Oldest-First) 

 Local and application oblivious 
 Age is biased towards heavy applications 

 heavy applications flood the network 
 higher likelihood of an older packet being from heavy application 

 

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008] 

 Provides bandwidth fairness at the expense of system 
performance 

 Penalizes heavy and bursty applications  
 Each application gets equal and fixed quota of flits (credits) in each batch. 
 Heavy application quickly run out of credits after injecting into all active 

batches & stalls until oldest batch completes and frees up fresh credits. 
 Underutilization of network resources 
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STC System Performance and Fairness 
 
 
 
 
 
 
 
 
 
 

 9.1% improvement in weighted speedup over the best 
existing policy (averaged across 96 workloads) 
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Application Aware Packet Scheduling: Summary 

 Packet scheduling policies critically impact performance and 
fairness of NoCs 

 Existing packet scheduling policies are local and application 
oblivious  
 

 STC is a new, global, application-aware approach to         
packet scheduling in NoCs 
 Ranking: differentiates applications based on their criticality 
 Batching: avoids starvation due to rank-based prioritization 

 

 Proposed framework  
 provides higher system performance and fairness than existing 

policies 
 can enforce OS assigned priorities in network-on-chip  
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