
Computer Architecture:
Interconnects:

Off-Chip and On-Chip

15-740
Carnegie Mellon University

Interconnect Basics

2

Interconnect in a Multi-Core System

3

Shared
Storage

Where Is Interconnect Used?
 To connect components

 Many examples

 Processors and processors
 Processors and memories (banks)
 Processors and caches (banks)
 Caches and caches
 I/O devices

4

Interconnection network

Why Is It Important?
 Affects the scalability of the system

 How large of a system can you build?
 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?
 How long are the latencies to memory?
 How much energy is spent on communication?

5

Interconnection Network Basics
 Topology

 Specifies the way switches are wired
 Affects routing, reliability, throughput, latency, cost

 Routing (algorithm)
 How does a message get from source to destination
 Static or adaptive

 Buffering and Flow Control
 What do we store within the network?

 Entire packets, parts of packets, etc?
 How do we throttle during oversubscription?
 Tightly coupled with routing strategy
 6

Topology
 Bus (simplest)
 Point-to-point connections (ideal and most costly)
 Crossbar (less costly)
 Ring
 Tree
 Omega
 Hypercube
 Mesh
 Torus
 Butterfly
 …

7

Metrics to Evaluate Interconnect Topology

 Cost
 Latency (in hops, in nanoseconds)
 Contention

 Many others exist you should think about

 Energy
 Bandwidth
 Overall system performance

8

Bus
+ Simple
+ Cost effective for a small number of nodes
+ Easy to implement coherence (snooping and serialization)
- Not scalable to large number of nodes (limited bandwidth,

electrical loading  reduced frequency)
- High contention  fast saturation

9

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7

Point-to-Point
Every node connected to every other

+ Lowest contention
+ Potentially lowest latency
+ Ideal, if cost is not an issue

-- Highest cost
 O(N) connections/ports
 per node
 O(N2) links
-- Not scalable
-- How to lay out on chip?
 10

0

1

2

3

4

5

6

7

Crossbar
 Every node connected to every other (non-blocking) except

only one can be using the connection at any given time
 Enables concurrent sends to non-conflicting destinations
 Good for small number of nodes

+ Low latency and high throughput
- Expensive
- Not scalable  O(N2) cost
- Difficult to arbitrate as N increases

Used in core-to-cache-bank
networks in
- IBM POWER5
- Sun Niagara I/II

11

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

13

Buffered Crossbar

14

Output
Arbiter

Output
Arbiter

Output
Arbiter

Output
Arbiter

Flow
Control

Flow
Control

Flow
Control

Flow
Control

NI

NI

NI

NI

Buffered
Crossbar

0

1

2

3

NI

NI

NI

NI

Bufferless
Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?
 Yet still have low contention?

 Idea: Multistage networks

15

Multistage Logarithmic Networks
 Idea: Indirect networks with multiple layers of switches

between terminals/nodes
 Cost: O(NlogN), Latency: O(logN)
 Many variations (Omega, Butterfly, Benes, Banyan, …)
 Omega Network:

16

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Omega Net w or k

conflict

Handling Contention

 Two packets trying to use the same link at the same time
 What do you do?

 Buffer one
 Drop one
 Misroute one (deflection)

 Assume buffering for now

17

Aside: Circuit vs. Packet Switching
 Circuit switching sets up full path

 Establish route then send data
 (no one else can use those links)

 Packet switching routes per packet
 Route each packet individually (possibly via different paths)
 if link is free, any packet can use it

18

Aside: Circuit vs. Packet Switching
 Circuit switching sets up full path

 Establish route then send data
 (no one else can use those links)
+ faster arbitration
-- setting up and bringing down links takes time

 Packet switching routes per packet
 Route each packet individually (possibly via different paths)
 if link is free, any packet can use it
-- potentially slower --- must dynamically switch
+ no setup, bring down time
+ more flexible, does not underutilize links

19

Switching vs. Topology
 Circuit/packet switching choice independent of topology
 It is a higher-level protocol on how a message gets sent to

a destination

 However, some topologies are more amenable to circuit vs.
packet switching

20

Multistage Circuit Switched

 More restrictions on feasible concurrent Tx-Rx pairs
 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly

 21

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Packet Switched

 Packets “hop” from router to router, pending availability of

the next-required switch and buffer
 22

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Another Example: Delta Network
 Single path from source to

destination

 Does not support all possible
permutations

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

23

8x8 Delta network

Another Example: Omega Network
 Single path from source to

destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer-designing a
MIMD, shared-memory
parallel machine,” ISCA
1982.

24

Ring
+ Cheap: O(N) cost
- High latency: O(N)
- Not easy to scale
 - Bisection bandwidth remains constant

Used in Intel Haswell, Intel Larrabee, IBM Cell, many

commercial systems today

25

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring

 Simple topology and implementation
 Reasonable performance if N and performance needs

(bandwidth & latency) still moderately low
 O(N) cost
 N/2 average hops; latency depends on utilization

26

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings
+ Reduces latency
+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

27

Mesh
 O(N) cost
 Average latency: O(sqrt(N))
 Easy to layout on-chip: regular and equal-length links
 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core
 And many on-chip network
 prototypes

30

Torus
 Mesh is not symmetric on edges: performance very

sensitive to placement of task on edge vs. middle
 Torus avoids this problem
+ Higher path diversity (and bisection bandwidth) than mesh
- Higher cost
- Harder to lay out on-chip
 - Unequal link lengths

31

Torus, continued
 Weave nodes to make inter-node latencies ~constant

32

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology
Latency: O(logN)
Good for local traffic
+ Cheap: O(N) cost
+ Easy to Layout
- Root can become a bottleneck

Trees

33

Planar, hierarchical topology
Latency: O(logN)
Good for local traffic
+ Cheap: O(N) cost
+ Easy to Layout
- Root can become a bottleneck
 Fat trees avoid this problem (CM-5)

Trees

34

Fat Tree

CM-5 Fat Tree
 Fat tree based on 4x2 switches
 Randomized routing on the way up
 Combining, multicast, reduction operators supported in

hardware
 Thinking Machines Corp., “The Connection Machine CM-5

Technical Summary,” Jan. 1992.

35

Hypercube

 Latency: O(logN)
 Radix: O(logN)
 #links: O(NlogN)
+ Low latency
- Hard to lay out in 2D/3D

36

00
00

01
01

01
00

00
01

00
11

00
10

01
10

01
11

10
00

11
01

11
00

10
01

10
11

10
10

11
10

11
11

Caltech Cosmic Cube
 64-node message passing

machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

37

Handling Contention

 Two packets trying to use the same link at the same time
 What do you do?

 Buffer one
 Drop one
 Misroute one (deflection)

 Assume buffering for now

38

Flow Control Methods
 Circuit switching

 Store and forward (Packet based)

 Virtual cut through (Packet based)

 Wormhole (Flit based)

39

Circuit Switching Revisited
 Resource allocation granularity is high

 Idea: Pre-allocate resources across multiple switches for a

given “flow”
 Need to send a probe to set up the path for pre-allocation

+ No need for buffering
+ No contention (flow’s performance is isolated)
+ Can handle arbitrary message sizes
- Lower link utilization: two flows cannot use the same link
- Handshake overhead to set up a “circuit”

40

Store and Forward Flow Control
 Packet based flow control
 Store and Forward

 Packet copied entirely into network router before moving to
the next node

 Flow control unit is the entire packet
 Leads to high per-packet latency
 Requires buffering for entire packet in each node

41

Can we do better?

S

D

Cut through Flow Control
 Another form of packet based flow control
 Start forwarding as soon as header is received and

resources (buffer, channel, etc) allocated
 Dramatic reduction in latency

 Still allocate buffers and channel bandwidth for full packets

 What if packets are large?

42

S

D

Cut through Flow Control
 What to do if output port is blocked?
 Lets the tail continue when the head is blocked, absorbing

the whole message into a single switch.
 Requires a buffer large enough to hold the largest packet.

 Degenerates to store-and-forward with high contention

 Can we do better?

43

Wormhole Flow Control
 Packets broken into (potentially)

smaller flits (buffer/bw allocation unit)
 Flits are sent across the fabric in a

wormhole fashion
 Body follows head, tail follows body
 Pipelined
 If head blocked, rest of packet stops
 Routing (src/dest) information only in

head

 How does body/tail know where to go?
 Latency almost independent of distance

for long messages

44

H

B

B

T

Wormhole Flow Control
 Advantages over “store and forward” flow control

+ Lower latency
+ More efficient buffer utilization

 Limitations
- Occupies resources across multiple routers
- Suffers from head of line blocking
 - if head flit cannot move due to contention, another worm cannot

proceed even though links may be idle

45

1 2

1 2 1

2

Switching Fabric Input Queues Outputs

1

2
1

2
HOL Blocking

Idle!

Head of Line Blocking

46

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Head of Line Blocking
 A worm can be before another in the router input buffer
 Due to FIFO nature, the second worm cannot be scheduled

even though it may need to access another output port

47

Karo et al., “Input Versus Output Queuing on a Space-Division
Packet Switch,” IEEE Transactions on Communications 1987

Virtual Channel Flow Control
 Idea: Multiplex multiple channels over one physical channel
 Divide up the input buffer into multiple buffers sharing a

single physical channel
 Dally, “Virtual Channel Flow Control,” ISCA 1990.

48

Virtual Channel Flow Control
 Idea: Multiplex multiple channels over one physical channel
 Divide up the input buffer into multiple buffers sharing a

single physical channel
 Dally, “Virtual Channel Flow Control,” ISCA 1990.

49

Virtual Channel Flow Control

50

Blocked by other
packets

Buffer full: blue
cannot proceed

A Modern Virtual Channel Based Router

51

Other Uses of Virtual Channels
 Deadlock avoidance

 Enforcing switching to a different set of virtual channels on
some “turns” can break the cyclic dependency of resources
 Enforce order on VCs

 Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

 Protocol level deadlock: Ensure address and data packets use
different VCs  prevent cycles due to intermixing of different
packet classes

 Prioritization of traffic classes
 Some virtual channels can have higher priority than others

52

Routing Algorithm
 Types

 Deterministic: always chooses the same path for a
communicating source-destination pair

 Oblivious: chooses different paths, without considering
network state

 Adaptive: can choose different paths, adapting to the state
of the network

 How to adapt
 Local/global feedback
 Minimal or non-minimal paths

53

Deterministic Routing
 All packets between the same (source, dest) pair take the

same path

 Dimension-order routing
 E.g., XY routing (used in Cray T3D, and many on-chip

networks)
 First traverse dimension X, then traverse dimension Y

+ Simple
+ Deadlock freedom (no cycles in resource allocation)
- Could lead to high contention
- Does not exploit path diversity

54

Deadlock
 No forward progress
 Caused by circular dependencies on resources
 Each packet waits for a buffer occupied by another packet

downstream

55

Handling Deadlock
 Avoid cycles in routing

 Dimension order routing
 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

56

Turn Model to Avoid Deadlock
 Idea

 Analyze directions in which packets can turn in the network
 Determine the cycles that such turns can form
 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

57

Oblivious Routing: Valiant’s Algorithm
 An example of oblivious algorithm
 Goal: Balance network load
 Idea: Randomly choose an intermediate destination, route

to it first, then route from there to destination
 Between source-intermediate and intermediate-dest, can use

dimension order routing

+ Randomizes/balances network load
- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load
 Restrict the intermediate node to be close (in the same quadrant)

58

Adaptive Routing
 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion
- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive
 “Misroute” packets to non-productive output ports based on

network state
+ Can achieve better network utilization and load balance
- Need to guarantee livelock freedom

59

On-Chip Networks

60

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc) PE

• Connect cores, caches, memory
controllers, etc
– Buses and crossbars are not scalable

• Packet switched
• 2D mesh: Most commonly used

topology
• Primarily serve cache misses and

memory requests

© Onur Mutlu, 2009, 2010

On-chip Networks

61

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1
VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North
To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects
 On-chip advantages

 Low latency between cores
 No pin constraints
 Rich wiring resources
 Very high bandwidth
 Simpler coordination

 On-chip constraints/disadvantages

 2D substrate limits implementable topologies
 Energy/power consumption a key concern
 Complex algorithms undesirable
 Logic area constrains use of wiring resources

 62

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects (II)
 Cost

 Off-chip: Channels, pins, connectors, cables
 On-chip: Cost is storage and switches (wires are plentiful)
 Leads to networks with many wide channels, few buffers

 Channel characteristics
 On chip short distance  low latency
 On chip RC lines  need repeaters every 1-2mm

 Can put logic in repeaters

 Workloads
 Multi-core cache traffic vs. supercomputer interconnect traffic

63

Motivation for Efficient Interconnect
 In many-core chips, on-chip interconnect (NoC)

consumes significant power
 Intel Terascale: ~28% of chip power
 Intel SCC: ~10%
 MIT RAW: ~36%

64

Core L1

L2 Slice Router

Packet Scheduling in Multicore?
 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits
 Which input port?
 Which virtual channel?
 Which application’s packet?

 Common strategies
 Round robin across virtual channels
 Oldest packet first (or an approximation)
 Prioritize some virtual channels over others

 Better policies in a multi-core environment
 Use application characteristics
 Minimize energy

65

The Problem: Packet Scheduling

Network-on-Chip

L2$ L2$
L2$

L2$

Bank
mem
cont
Memory

Controller

P

Accelerator
L2$

Bank
L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource
shared by multiple applications

App1 App2 App N App N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

The Problem: Packet Scheduling

R

PE
R

PE

R

PE

R

PE

R

PE
R

PE

R

PE
R

PE

R

PE
R

PE

R

PE

R

PE

R

PE
R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
he

du
le

r

Conceptual

View

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling
 Existing scheduling policies

 Round Robin
 Age

 Problem 1: Local to a router
 Lead to contradictory decision making between routers:

packets from one application may be prioritized at one router,
to be delayed at next.

 Problem 2: Application oblivious
 Treat all applications packets equally
 But applications are heterogeneous

 Solution : Application-aware global scheduling policies.

Das, Mutlu, Moscibroda, and Das, "Application-Aware Prioritization Mechanisms
for On-Chip Networks,“ MICRO 2009

http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

 Applications are not homogenous

 Applications have different criticality with respect to the
network
 Some applications are network latency sensitive
 Some applications are network latency tolerant

 Application’s Stall Time Criticality (STC) can be measured
by its average network stall time per packet (i.e.
NST/packet)
 Network Stall Time (NST) is number of cycles the processor

stalls waiting for network transactions to complete

72

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

 Why do applications have different network stall time
criticality (STC)?

 Memory Level Parallelism (MLP)

 Lower MLP leads to higher criticality

 Shortest Job First Principle (SJF)
 Lower network load leads to higher criticality

73

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

 Observation 1: Packet Latency != Network Stall Time

74

STALL STALL

STALL of Red Packet = 0

LATENCY
LATENCY

LATENCY

Application with high MLP

Compute

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

 Observation 1: Packet Latency != Network Stall Time
 Observation 2: A low MLP application’s packets have

higher criticality than a high MLP application’s

75

STALL STALL

STALL of Red Packet = 0

LATENCY
LATENCY

LATENCY

Application with high MLP

Compute

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

© Onur Mutlu, 2009, 2010

STC Principle 2: Shortest-Job-First

76

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput (weighted speedup) increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

© Onur Mutlu, 2009, 2010

Solution: Application-Aware Policies

 Idea
 Identify critical applications (i.e. network

sensitive applications) and prioritize their packets
in each router.

 Key components of scheduling policy:
 Application Ranking
 Packet Batching

 Propose low-hardware complexity solution

 77

© Onur Mutlu, 2009, 2010

Component 1: Ranking

 Ranking distinguishes applications based on Stall Time
Criticality (STC)

 Periodically rank applications based on STC

 Explored many heuristics for estimating STC
 Heuristic based on outermost private cache Misses Per

Instruction (L1-MPI) is the most effective
 Low L1-MPI => high STC => higher rank

 Why Misses Per Instruction (L1-MPI)?

 Easy to Compute (low complexity)
 Stable Metric (unaffected by interference in network)

78

© Onur Mutlu, 2009, 2010

Component 1 : How to Rank?
 Execution time is divided into fixed “ranking intervals”

 Ranking interval is 350,000 cycles

 At the end of an interval, each core calculates their L1-MPI
and sends it to the Central Decision Logic (CDL)
 CDL is located in the central node of mesh

 CDL forms a rank order and sends back its rank to each core
 Two control packets per core every ranking interval

 Ranking order is a “partial order”

 Rank formation is not on the critical path
 Ranking interval is significantly longer than rank computation time
 Cores use older rank values until new ranking is available

79

© Onur Mutlu, 2009, 2010

Component 2: Batching
 Problem: Starvation

 Prioritizing a higher ranked application can lead to starvation
of lower ranked application

 Solution: Packet Batching
 Network packets are grouped into finite sized batches
 Packets of older batches are prioritized over younger

batches

 Time-Based Batching
 New batches are formed in a periodic, synchronous manner

across all nodes in the network, every T cycles

80

© Onur Mutlu, 2009, 2010

Putting it all together: STC Scheduling Policy

 Before injecting a packet into the network, it is tagged with
 Batch ID (3 bits)

 Rank ID (3 bits)

 Three tier priority structure at routers
 Oldest batch first (prevent starvation)
 Highest rank first (maximize performance)
 Local Round-Robin (final tie breaker)

 Simple hardware support: priority arbiters
 Global coordinated scheduling

 Ranking order and batching order are same across all routers

81

© Onur Mutlu, 2009, 2010

STC Scheduling Example

82

4 8

5

1 7

2

1

6 2

1

3

Router

Sc
he

du
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

© Onur Mutlu, 2009, 2010

STC Scheduling Example

83

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
3 2 8 7 6

STALL CYCLES Avg
RR 8 6 11 8.3
Age
STC

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

84

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg
RR 8 6 11 8.3
Age 4 6 11 7.0
STC

Time

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

85

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg
RR 8 6 11 8.3
Age 4 6 11 7.0
STC 1 3 11 5.0

Time

Time

Time

Rank order

© Onur Mutlu, 2009, 2010

STC Evaluation Methodology
 64-core system

 x86 processor model based on Intel Pentium M
 2 GHz processor, 128-entry instruction window
 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers
 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model
 2-stage routers (with speculation and look ahead routing)
 Wormhole switching (8 flit data packets)
 Virtual channel flow control (6 VCs, 5 flit buffer depth)
 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
 Multiprogrammed scientific, server, desktop workloads (35 applications)
 96 workload combinations

86

© Onur Mutlu, 2009, 2010

Comparison to Previous Policies
 Round Robin & Age (Oldest-First)

 Local and application oblivious
 Age is biased towards heavy applications

 heavy applications flood the network
 higher likelihood of an older packet being from heavy application

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system
performance

 Penalizes heavy and bursty applications
 Each application gets equal and fixed quota of flits (credits) in each batch.
 Heavy application quickly run out of credits after injecting into all active

batches & stalls until oldest batch completes and frees up fresh credits.
 Underutilization of network resources

87

© Onur Mutlu, 2009, 2010

STC System Performance and Fairness

 9.1% improvement in weighted speedup over the best
existing policy (averaged across 96 workloads)

88

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 S
ys

te
m

 S
pe

ed
up

LocalRR LocalAge
GSF STC

0

2

4

6

8

10

N
et

w
or

k
U

nf
ai

rn
es

s

LocalRR LocalAge
GSF STC

© Onur Mutlu, 2009, 2010

Application Aware Packet Scheduling: Summary

 Packet scheduling policies critically impact performance and
fairness of NoCs

 Existing packet scheduling policies are local and application
oblivious

 STC is a new, global, application-aware approach to
packet scheduling in NoCs
 Ranking: differentiates applications based on their criticality
 Batching: avoids starvation due to rank-based prioritization

 Proposed framework
 provides higher system performance and fairness than existing

policies
 can enforce OS assigned priorities in network-on-chip

90

	Computer Architecture:�Interconnects:�Off-Chip and On-Chip
	Interconnect Basics
	Interconnect in a Multi-Core System
	Where Is Interconnect Used?
	Why Is It Important?
	Interconnection Network Basics
	Topology
	Metrics to Evaluate Interconnect Topology
	Bus
	Point-to-Point
	Crossbar
	Sun UltraSPARC T2 Core-to-Cache Crossbar
	Buffered Crossbar
	Can We Get Lower Cost than A Crossbar?
	Multistage Logarithmic Networks
	Handling Contention
	Aside: Circuit vs. Packet Switching
	Aside: Circuit vs. Packet Switching
	Switching vs. Topology
	Multistage Circuit Switched
	Multistage Packet Switched
	Another Example: Delta Network
	Another Example: Omega Network
	Ring
	Unidirectional Ring
	Bidirectional Rings
	Mesh
	Torus
	Torus, continued
	Trees
	Trees
	CM-5 Fat Tree
	Hypercube
	Caltech Cosmic Cube
	Handling Contention
	Flow Control Methods
	Circuit Switching Revisited
	Store and Forward Flow Control
	Cut through Flow Control
	Cut through Flow Control
	Wormhole Flow Control
	Wormhole Flow Control
	Head of Line Blocking
	Head of Line Blocking
	Virtual Channel Flow Control
	Virtual Channel Flow Control
	Virtual Channel Flow Control
	A Modern Virtual Channel Based Router
	Other Uses of Virtual Channels
	Routing Algorithm
	Deterministic Routing
	Deadlock
	Handling Deadlock
	Turn Model to Avoid Deadlock
	Oblivious Routing: Valiant’s Algorithm
	Adaptive Routing
	On-Chip Networks
	On-chip Networks
	On-Chip vs. Off-Chip Interconnects
	On-Chip vs. Off-Chip Interconnects (II)
	Motivation for Efficient Interconnect
	Packet Scheduling in Multicore?
	The Problem: Packet Scheduling
	The Problem: Packet Scheduling
	The Problem: Packet Scheduling
	The Problem: Packet Scheduling
	Slide Number 70
	The Problem: Packet Scheduling
	Motivation: Stall-Time Criticality
	Motivation: Stall-Time Criticality
	STC Principle 1: MLP�
	STC Principle 1: MLP�
	STC Principle 2: Shortest-Job-First
	Solution: Application-Aware Policies
	Component 1: Ranking
	Component 1 : How to Rank?
	Component 2: Batching
	Putting it all together: STC Scheduling Policy
	STC Scheduling Example
	STC Scheduling Example
	STC Scheduling Example
	STC Scheduling Example
	STC Evaluation Methodology
	Comparison to Previous Policies
	STC System Performance and Fairness
	Application Aware Packet Scheduling: Summary

