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Interconnect in a Multi-Core System 
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Where Is Interconnect Used? 
 To connect components 

 
 Many examples 

 Processors and processors 
 Processors and memories (banks) 
 Processors and caches (banks) 
 Caches and caches 
 I/O devices 
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Interconnection network 



Why Is It Important? 
 Affects the scalability of the system 

 How large of a system can you build? 
 How easily can you add more processors? 

 
 Affects performance and energy efficiency 

 How fast can processors, caches, and memory communicate? 
 How long are the latencies to memory? 
 How much energy is spent on communication? 
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Interconnection Network Basics 
 Topology 

 Specifies the way switches are wired 
 Affects routing, reliability, throughput, latency, cost 
 

 Routing (algorithm) 
 How does a message get from source to destination 
 Static or adaptive  
 

 Buffering and Flow Control 
 What do we store within the network? 

 Entire packets, parts of packets, etc? 
 How do we throttle during oversubscription? 
 Tightly coupled with routing strategy 
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Topology 
 Bus (simplest) 
 Point-to-point connections (ideal and most costly) 
 Crossbar (less costly) 
 Ring 
 Tree 
 Omega 
 Hypercube 
 Mesh 
 Torus 
 Butterfly 
 … 

7 



Metrics to Evaluate Interconnect Topology 

 Cost 
 Latency (in hops, in nanoseconds) 
 Contention 

 
 Many others exist you should think about 

 Energy 
 Bandwidth 
 Overall system performance 
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Bus 
+ Simple 
+ Cost effective for a small number of nodes 
+ Easy to implement coherence (snooping and serialization) 
- Not scalable to large number of nodes (limited bandwidth, 

electrical loading  reduced frequency) 
- High contention  fast saturation 
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Point-to-Point  
Every node connected to every other 
 
+ Lowest contention 
+ Potentially lowest latency 
+ Ideal, if cost is not an issue 
 
-- Highest cost 
   O(N) connections/ports  
   per node 
   O(N2) links 
-- Not scalable 
-- How to lay out on chip? 
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Crossbar 
 Every node connected to every other (non-blocking) except 

only one can be using the connection at any given time 
 Enables concurrent sends to non-conflicting destinations  
 Good for small number of nodes 

 
+ Low latency and high throughput 
- Expensive 
- Not scalable  O(N2) cost 
- Difficult to arbitrate as N increases 
 
Used in core-to-cache-bank 
networks in 
- IBM POWER5 
- Sun Niagara I/II 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 
 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 
 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Buffered Crossbar 
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+ Efficient 
support for 
variable-size 
packets 
 

-  Requires  
N2 buffers 

 
 
 
 



Can We Get Lower Cost than A Crossbar? 
 Yet still have low contention? 

 
 Idea: Multistage networks 
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Multistage Logarithmic Networks 
 Idea: Indirect networks with multiple layers of switches 

between terminals/nodes 
 Cost: O(NlogN), Latency: O(logN) 
 Many variations (Omega, Butterfly, Benes, Banyan, …) 
 Omega Network: 
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Handling Contention 
 
 
 
 
 
 

 Two packets trying to use the same link at the same time 
 What do you do? 

 Buffer one 
 Drop one 
 Misroute one (deflection) 

 Assume buffering for now 
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Aside: Circuit vs. Packet Switching 
 Circuit switching sets up full path 

 Establish route then send data 
 (no one else can use those links) 
 
 
 

 Packet switching routes per packet 
 Route each packet individually (possibly via different paths) 
 if link is free, any packet can use it 
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Aside: Circuit vs. Packet Switching 
 Circuit switching sets up full path 

 Establish route then send data 
 (no one else can use those links) 
+ faster arbitration 
-- setting up and bringing down links takes time 
 

 Packet switching routes per packet 
 Route each packet individually (possibly via different paths) 
 if link is free, any packet can use it 
-- potentially slower --- must dynamically switch 
+ no setup, bring down time 
+ more flexible, does not underutilize links 
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Switching vs. Topology 
 Circuit/packet switching choice independent of topology 
 It is a higher-level protocol on how a message gets sent to 

a destination 
 

 However, some topologies are more amenable to circuit vs. 
packet switching 
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Multistage Circuit Switched 

 
 
 
 
 
 
 
 
 

 
 More restrictions on feasible concurrent Tx-Rx pairs 
 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly 
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Multistage Packet Switched 

 
 
 
 
 
 
 
 
 

 
 Packets “hop” from router to router, pending availability of 

the next-required switch and buffer 
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Another Example: Delta Network 
 Single path from source to 

destination 
 

 Does not support all possible 
permutations 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Another Example: Omega Network 
 Single path from source to 

destination 
 

 All stages are the same 
 

 Used in NYU 
Ultracomputer 
 

 Gottlieb et al. “The NYU 
Ultracomputer-designing a 
MIMD, shared-memory 
parallel machine,” ISCA 
1982. 
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Ring 
+ Cheap: O(N) cost 
- High latency: O(N) 
- Not easy to scale 
   - Bisection bandwidth remains constant 
 
Used in Intel Haswell, Intel Larrabee, IBM Cell, many 

commercial systems today 
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Unidirectional Ring 
 
 
 
 
 
 
 

 Simple topology and implementation 
 Reasonable performance if N and performance needs 

(bandwidth & latency) still moderately low 
 O(N) cost 
 N/2 average hops; latency depends on utilization 
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Bidirectional Rings 
+ Reduces latency 
+ Improves scalability 

 
- Slightly more complex injection policy (need to select which 
ring to inject a packet into) 
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Mesh 
 O(N) cost 
 Average latency: O(sqrt(N)) 
 Easy to layout on-chip: regular and equal-length links 
 Path diversity: many ways to get from one node to another 

 
 Used in Tilera 100-core 
 And many on-chip network 
   prototypes 
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Torus 
 Mesh is not symmetric on edges: performance very 

sensitive to placement of task on edge vs. middle 
 Torus avoids this problem 
+ Higher path diversity (and bisection bandwidth) than mesh 
- Higher cost 
- Harder to lay out on-chip 
  - Unequal link lengths 
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Torus, continued 
 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 
Latency: O(logN) 
Good for local traffic 
+ Cheap: O(N) cost 
+ Easy to Layout 
- Root can become a bottleneck 
   

Trees 
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Planar, hierarchical topology 
Latency: O(logN) 
Good for local traffic 
+ Cheap: O(N) cost 
+ Easy to Layout 
- Root can become a bottleneck 
  Fat trees avoid this problem (CM-5) 
 

Trees 
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CM-5 Fat Tree 
 Fat tree based on 4x2 switches 
 Randomized routing on the way up 
 Combining, multicast, reduction operators supported in 

hardware 
 Thinking Machines Corp., “The Connection Machine CM-5 

Technical Summary,” Jan. 1992. 
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Hypercube 
 
 
 
 

 Latency: O(logN) 
 Radix: O(logN) 
 #links: O(NlogN) 
+ Low latency 
- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 
 64-node message passing 

machine 
 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Handling Contention 
 
 
 
 
 
 

 Two packets trying to use the same link at the same time 
 What do you do? 

 Buffer one 
 Drop one 
 Misroute one (deflection) 

 Assume buffering for now 
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Flow Control Methods 
 Circuit switching 

 
 Store and forward (Packet based) 

 
 Virtual cut through (Packet based) 

 
 Wormhole (Flit based) 

39 



Circuit Switching Revisited 
 Resource allocation granularity is high 

 
 Idea: Pre-allocate resources across multiple switches for a 

given “flow” 
 Need to send a probe to set up the path for pre-allocation 

 
+ No need for buffering 
+ No contention (flow’s performance is isolated) 
+ Can handle arbitrary message sizes 
- Lower link utilization: two flows cannot use the same link 
- Handshake overhead to set up a “circuit” 
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Store and Forward Flow Control 
 Packet based flow control 
 Store and Forward 

 Packet copied entirely into network router before moving to 
the next node 

 Flow control unit is the entire packet 
 Leads to high per-packet latency 
 Requires buffering for entire packet in each node 
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Cut through Flow Control 
 Another form of packet based flow control 
 Start forwarding as soon as header is received and 

resources (buffer, channel, etc) allocated 
 Dramatic reduction in latency 

 Still allocate buffers and channel bandwidth for full packets 
 

 
 
 
 
 

 What if packets are large? 
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Cut through Flow Control 
 What to do if output port is blocked? 
 Lets the tail continue when the head is blocked, absorbing 

the whole message into a single switch.  
 Requires a buffer large enough to hold the largest packet. 

 Degenerates to store-and-forward with high contention 
 

 Can we do better? 
 
 

 

43 



Wormhole Flow Control 
 Packets broken into (potentially) 

smaller flits (buffer/bw allocation unit) 
 Flits are sent across the fabric in a 

wormhole fashion 
 Body follows head, tail follows body 
 Pipelined 
 If head blocked, rest of packet stops 
 Routing (src/dest) information only in 

head 
 

 How does body/tail know where to go? 
 Latency almost independent of distance 

for long messages 
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Wormhole Flow Control 
 Advantages over “store and forward” flow control 

+ Lower latency 
+ More efficient buffer utilization 

 Limitations 
- Occupies resources across multiple routers  
- Suffers from head of line blocking 
   - if head flit cannot move due to contention, another worm cannot 

proceed even though links may be idle  
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Head of Line Blocking 
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Head of Line Blocking 
 A worm can be before another in the router input buffer 
 Due to FIFO nature, the second worm cannot be scheduled 

even though it may need to access another output port  
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Virtual Channel Flow Control 
 Idea: Multiplex multiple channels over one physical channel 
 Divide up the input buffer into multiple buffers sharing a 

single physical channel 
 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
 Idea: Multiplex multiple channels over one physical channel 
 Divide up the input buffer into multiple buffers sharing a 

single physical channel 
 Dally, “Virtual Channel Flow Control,” ISCA 1990. 

49 



Virtual Channel Flow Control 
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A Modern Virtual Channel Based Router 
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Other Uses of Virtual Channels 
 Deadlock avoidance 

 Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources 
 Enforce order on VCs 

 Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC.  

 Protocol level deadlock: Ensure address and data packets use 
different VCs  prevent cycles due to intermixing of different 
packet classes 
 

 Prioritization of traffic classes 
 Some virtual channels can have higher priority than others 
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Routing Algorithm 
 Types 

 Deterministic: always chooses the same path for a 
communicating source-destination pair 

 Oblivious: chooses different paths, without considering 
network state 

 Adaptive: can choose different paths, adapting to the state 
of the network 
 

 How to adapt 
 Local/global feedback 
 Minimal or non-minimal paths 
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Deterministic Routing 
 All packets between the same (source, dest) pair take the 

same path 
 

 Dimension-order routing 
 E.g., XY routing (used in Cray T3D, and many on-chip 

networks) 
 First traverse dimension X, then traverse dimension Y 

 
+ Simple 
+ Deadlock freedom (no cycles in resource allocation) 
- Could lead to high contention 
- Does not exploit path diversity 
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Deadlock 
 No forward progress 
 Caused by circular dependencies on resources 
 Each packet waits for a buffer occupied by another packet 

downstream 
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Handling Deadlock 
 Avoid cycles in routing 

 Dimension order routing 
 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 
 

 
 Avoid deadlock by adding more buffering (escape paths) 
 
 
 Detect and break deadlock 

 Preemption of buffers 
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Turn Model to Avoid Deadlock 
 Idea 

 Analyze directions in which packets can turn in the network 
 Determine the cycles that such turns can form 
 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 

57 



Oblivious Routing: Valiant’s Algorithm 
 An example of oblivious algorithm 
 Goal: Balance network load  
 Idea: Randomly choose an intermediate destination, route 

to it first, then route from there to destination 
 Between source-intermediate and intermediate-dest, can use 

dimension order routing 
 

+ Randomizes/balances network load 
- Non minimal (packet latency can increase) 
 
 Optimizations: 

 Do this on high load 
 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 
 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 
- Minimality restricts achievable link utilization (load balance) 
 

 Non-minimal (fully) adaptive 
 “Misroute” packets to non-productive output ports based on 

network state 
+ Can achieve better network utilization and load balance 
- Need to guarantee livelock freedom 
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On-Chip Networks 
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On-chip Networks 
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On-Chip vs. Off-Chip Interconnects 
 On-chip advantages 

 Low latency between cores 
 No pin constraints 
 Rich wiring resources 
 Very high bandwidth 
 Simpler coordination 

 
 On-chip constraints/disadvantages 

 2D substrate limits implementable topologies 
 Energy/power consumption a key concern 
 Complex algorithms undesirable 
 Logic area constrains use of wiring resources 
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On-Chip vs. Off-Chip Interconnects (II) 
 Cost 

 Off-chip: Channels, pins, connectors, cables 
 On-chip: Cost is storage and switches (wires are plentiful) 
 Leads to networks with many wide channels, few buffers 
 

 Channel characteristics 
 On chip short distance  low latency 
 On chip RC lines  need repeaters every 1-2mm 

 Can put logic in repeaters 
 

 Workloads 
 Multi-core cache traffic vs. supercomputer interconnect traffic 
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Motivation for Efficient Interconnect 
 In many-core chips, on-chip interconnect (NoC)    

consumes significant power 
 Intel Terascale: ~28% of chip power 
 Intel SCC:    ~10%  
 MIT RAW:    ~36% 
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Packet Scheduling in Multicore? 
 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 
 Which input port? 
 Which virtual channel? 
 Which application’s packet? 

 

 Common strategies 
 Round robin across virtual channels 
 Oldest packet first (or an approximation) 
 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 
 Use application characteristics 
 Minimize energy 
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The Problem: Packet Scheduling 
 Existing scheduling policies  

 Round Robin 
 Age 

 Problem 1: Local to a router 
 Lead to contradictory decision making between routers: 

packets from one application may be prioritized at one router, 
to be delayed at next.  

 Problem 2: Application oblivious 
 Treat all applications packets equally 
 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 

 
 
 

Das, Mutlu, Moscibroda, and Das, "Application-Aware Prioritization Mechanisms 
for On-Chip Networks,“ MICRO 2009 
 

http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
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Motivation: Stall-Time Criticality 

 Applications are not homogenous 
 

 Applications have different criticality with respect to the 
network 
 Some applications are network latency sensitive  
 Some applications are network latency tolerant 
 

 Application’s Stall Time Criticality (STC) can be measured 
by its average network stall time per packet (i.e. 
NST/packet) 
 Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 
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Motivation: Stall-Time Criticality 

 Why do applications have different network stall time 
criticality (STC)?  
 
 Memory Level Parallelism (MLP)  

 Lower MLP leads to higher criticality 
 

 Shortest Job First Principle (SJF)  
 Lower network load leads to higher criticality 
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STC Principle 1: MLP 
  

 
 
 
 
 
 

 
 

 Observation 1: Packet Latency != Network Stall Time 
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STC Principle 1: MLP 
  

 
 
 
 
 
 

 
 

 Observation 1: Packet Latency != Network Stall Time 
 Observation 2: A low MLP application’s  packets have 

higher criticality than a high MLP application’s 
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STC Principle 2: Shortest-Job-First 
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Solution: Application-Aware Policies 

 Idea 
 Identify critical applications (i.e. network 

sensitive applications) and prioritize their packets 
in each router. 

 
 Key components of scheduling policy: 
 Application Ranking 
 Packet Batching 

 
 Propose low-hardware complexity solution 
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Component 1: Ranking 

 Ranking distinguishes applications based on Stall Time 
Criticality (STC) 

 Periodically rank applications based on STC 
 

 Explored many heuristics for estimating STC 
 Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 
 Low L1-MPI => high STC => higher rank 

 
 Why Misses Per Instruction (L1-MPI)? 

 Easy to Compute (low complexity) 
 Stable Metric (unaffected by interference in network) 
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Component 1 : How to Rank? 
 Execution time is divided into fixed “ranking intervals” 

 Ranking interval is 350,000 cycles  

 At the end of an interval, each core calculates their L1-MPI 
and sends it to the Central Decision Logic (CDL) 
 CDL is located in the central node of mesh 

 CDL forms a rank order and sends back its rank to each core 
 Two control packets per core every ranking interval 

 Ranking order is a “partial order” 
 

 Rank formation is not on the critical path 
 Ranking interval is significantly longer than rank computation time 
 Cores use older rank values until new ranking is available 
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Component 2: Batching 
 Problem: Starvation 

 Prioritizing a higher ranked application can lead to starvation 
of lower ranked application 
 

 Solution: Packet Batching 
 Network packets are grouped into finite sized batches  
 Packets of older batches are prioritized over younger 

batches 
 

 Time-Based Batching 
 New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  
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Putting it all together: STC Scheduling Policy 

 Before injecting a packet into the network, it is tagged with  
 Batch ID (3 bits) 

 Rank ID (3 bits) 
 

 Three tier priority structure at routers 
 Oldest batch first (prevent starvation) 
 Highest rank first   (maximize performance) 
 Local Round-Robin    (final tie breaker) 

 
 Simple hardware support: priority arbiters 
 Global coordinated scheduling 

 Ranking order and batching order are same across all routers 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Evaluation Methodology 
 64-core system 

 x86 processor model based on Intel Pentium M 
 2 GHz processor, 128-entry instruction window 
 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers 
 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers 
 

 Detailed Network-on-Chip model  
 2-stage routers (with speculation  and look ahead routing) 
 Wormhole switching (8 flit data packets) 
 Virtual channel flow control (6 VCs, 5 flit buffer depth) 
 8x8 Mesh (128 bit bi-directional channels) 
 

 Benchmarks 
 Multiprogrammed scientific, server, desktop workloads (35 applications) 
 96 workload combinations 
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Comparison to Previous Policies 
 Round Robin & Age (Oldest-First) 

 Local and application oblivious 
 Age is biased towards heavy applications 

 heavy applications flood the network 
 higher likelihood of an older packet being from heavy application 

 

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008] 

 Provides bandwidth fairness at the expense of system 
performance 

 Penalizes heavy and bursty applications  
 Each application gets equal and fixed quota of flits (credits) in each batch. 
 Heavy application quickly run out of credits after injecting into all active 

batches & stalls until oldest batch completes and frees up fresh credits. 
 Underutilization of network resources 
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STC System Performance and Fairness 
 
 
 
 
 
 
 
 
 
 

 9.1% improvement in weighted speedup over the best 
existing policy (averaged across 96 workloads) 
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Application Aware Packet Scheduling: Summary 

 Packet scheduling policies critically impact performance and 
fairness of NoCs 

 Existing packet scheduling policies are local and application 
oblivious  
 

 STC is a new, global, application-aware approach to         
packet scheduling in NoCs 
 Ranking: differentiates applications based on their criticality 
 Batching: avoids starvation due to rank-based prioritization 

 

 Proposed framework  
 provides higher system performance and fairness than existing 

policies 
 can enforce OS assigned priorities in network-on-chip  
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