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Topics 
• Locks 
• Barriers 
• Hardware primitives 
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Types of Synchronization 

Mutual Exclusion 
• Locks 

Event Synchronization 
• Global or group-based (barriers) 
• Point-to-point (producer-Consumer) 
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Memory 

Simple Producer-Consumer Example 

sd xdata, (xdatap) 
li xflag, 1 
sd xflag, (xflagp) 

spin: ld xflag, (xflagp) 
 beqz xflag, spin 
 ld xdata, (xdatap) 
 

data 
flag Producer Consumer 

Is this correct? 

xflagp 

xdatap 

xflagp 

xdatap 

Initially flag=0 
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Memory Model 

Sequential ISA only specifies that each 
processor sees its own memory operations in 
program order 

Memory model describes what values can be 
returned by load instructions across multiple 
threads 

4 
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Simple Producer-Consumer Example 

5 

sd xdata, (xdatap) 
li xflag, 1 
sd xflag, (xflagp) 

spin: ld xflag, (xflagp) 
 beqz xflag, spin 
 ld xdata, (xdatap) 
 

data 
flag 

Producer Consumer 

Can consumer read flag=1 before data 
written by producer? 

Initially flag=0 
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Sequential Consistency 
A Memory Model 

“ A system is sequentially consistent if the result of any execution is the 
same as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual processor 
appear in the order specified by the program” 
      Leslie Lamport 
 
Sequential Consistency = arbitrary order-preserving interleaving of 
memory references of sequential programs 

M 

P P P P P P 
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Simple Producer-Consumer Example 

sd xdata, (xdatap) 
li xflag, 1 
sd xflag, (xflagp) 

spin: ld xflag, (xflagp) 
 beqz xflag, spin 
 ld xdata, (xdatap) 
 

data 
flag 

Producer Consumer 

Initially flag =0 

Dependencies from sequential ISA 

Dependencies added by sequentially 
consistent memory model 
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Implementing SC in hardware 

Only a few commercial systems implemented SC 
• Neither x86 nor ARM are SC 

Requires either severe performance penalty 
• Wait for stores to complete before issuing new store 

Or, complex hardware 
• Speculatively issue loads but squash if memory inconsistency 

with later-issued store discovered (MIPS R10K) 
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Software reorders too! 

• Compiler can reorder/remove memory 
operations unless made aware of memory 
model 

• Instruction scheduling, move loads before stores if to 
different address 

• Register allocation, cache load value in register, don’t check 
memory 

• Prohibiting these optimizations would result in 
very poor performance 

//Producer code 
*datap = x/y; 
*flagp = 1; 

//Consumer code 
while (!*flagp) 
 ; 
d = *datap; 
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Relaxed Memory Models 
• Not all dependencies assumed by SC are 
supported, and software has to explicitly 
insert additional dependencies were needed 

• Which dependencies are dropped depends on 
the particular memory model 

• IBM370, TSO, PSO, WO, PC, Alpha, RMO, … 

• How to introduce needed dependencies varies 
by system 
– Explicit FENCE instructions (sometimes called sync or memory 

barrier instructions) 
– Implicit effects of atomic memory instructions 

• Programmers supposed to work with this???? 
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Fences in Producer-Consumer Ex 

sd xdata, (xdatap) 
li xflag, 1 
fence.w.w //Write-write fence 
sd xflag, (xflagp) 

spin: ld xflag, (xflagp) 
 beqz xflag, spin 
 fence.r.r //Read-read fence 
 ld xdata, (xdatap) 
 

data 
flag 

Producer Consumer 

Initially flag =0 



740 ‘F14 – 12 – 

Memory 

Simple Mutual-Exclusion Example 

// Both threads execute: 
ld xdata, (xdatap) 
add xdata, 1 
sd xdata, (xdatap) 

data 
Thread 1 Thread 2 

Is this correct? 

xdatap xdatap 
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Mutual Exclusion Using Ld/St 

A protocol based on two shared variables c1 and c2.  
Initially, both c1 and c2 are 0 (not busy) 

What is wrong? 

Process 1 
 ... 
c1=1; 

L:  if c2=1 then go to L 
  < critical section> 
c1=0; 

Process 2 
 ... 
c2=1; 

L:  if c1=1 then go to L 
  < critical section> 
c2=0; 

Deadlock! 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation  
(i.e. Process 1 sets c1 to 0) while waiting. 

• Deadlock is not possible but with a low probability  
  a livelock may occur. 
 
• An unlucky process may never get to enter the  
  critical section  ⇒  starvation 

Process 1 
 ... 

L:  c1=1; 
if c2=1 then  

 { c1=0; go to L} 
  < critical section> 
c1=0 

Process 2 
 ... 

L:  c2=1; 
if c1=1 then  

 { c2=0; go to L} 
  < critical section> 
c2=0 
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A Protocol for Mutual Exclusion 
T.  Dekker,  1 966 

Process 1 
... 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

A protocol based on 3 shared variables c1, c2 and turn.  
Initially, both c1 and c2 are 0 (not busy) 

• turn = i ensures that only process i can wait  
• variables c1 and c2 ensure mutual exclusion 
 Solution for n processes was given by Dijkstra  
           and is quite tricky! 

Process 2 
... 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 
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Busy Waiting vs. Blocking 
• Above algorithms don’t require special ops, but 

• May need fences for weaker models 
• Don’t scale 
• Complex 

• They Busy-wait.  Is this ok? 
• Busy-waiting is preferable when: 

• scheduling overhead is larger than expected wait time 
• processor resources are not needed for other tasks 
• schedule-based blocking is inappropriate  

– e.g., in OS kernel 
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Need Atomic Primitive! 

• Test&Set 
• Swap 
• Fetch&Op 

• Fetch&Incr, Fetch&Decr, … 

• Compare&Swap 
• Load-linked/Store-Conditional (LL/SC) 

• LL: return value of an adr 
• SC: if value of adr unchanged, store value -> return 1 
       else, nop -> return 0 
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Release Lock 

Acquire Lock 

Critical Section 

Memory 

Lock for Mutual-Exclusion Example 

// Both threads execute: 
 li xone, 1 
spin:  amoswap xlock, xone, (xlockp) 
 bnez xlock, spin 
 ld xdata, (xdatap) 
 add xdata, 1 
 sd xdata, (xdatap) 
 sd x0, (xlockp) 

data 
Thread 1 Thread 2 
xdatap xdatap 

lock 
xlockp xlockp 

Assumes SC memory model 
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Release Lock 

Acquire Lock 

Critical Section 

Memory 

Mutual-Exclusion with Relaxed MM 

// Both threads execute: 
 li xone, 1 
spin:  amoswap xlock, xone, (xlockp) 
 bnez xlock, spin 
 fence.r.r 
 ld xdata, (xdatap) 
 add xdata, 1 
 sd xdata, (xdatap) 
 fence.w.w 
 sd x0, (xlockp) 

data 
Thread 1 Thread 2 
xdatap xdatap 

lock 
xlockp xlockp 
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Test&Set based lock 
lock:  t&s register, location   
   bnz lock 
   ret 
 
unlock: st  location, #0 
   ret 
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How to Evaluate? 

• Scalability 
• Network load 
• Single-processor latency 
• Space Requirements 
• Fairness 
• Required atomic operations 
• Sensitivity to co-scheduling 
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Evaluation of Test&Set based lock 
lock:  t&s register, location   
   bnz lock 
   ret 
 
unlock: st  location, #0 
   ret 

• Scalability poor 
• Network load large 
• Single-processor latency good 
• Space Requirements good 
• Fairness poor 
• Required atomic operations T&S 
• Sensitivity to co-scheduling good? 
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T&S Lock Performance 
Code:        lock; delay(c); unlock; 
Same total no. of lock calls as p increases; measure time per transfer 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

  

 

 

 
  

 

 
 

 

 

 
   

 

 

 

 

 
 

 

 

 
 

 

 

 
                                                                                                                           

Number of processors 

T i
m

e 
( µ

 s)
 

11 13 15 
0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 
 T est&set,  c  = 0 
 T est&set, exponential backof f,  c  = 3.64 
 T est&set, exponential backof f,  c  = 0 
 Ideal 

9 7 5 3 



740 ‘F14 – 24 – 

Test and Test and Set 

A:  while (lock != free); 
   if (test&set(lock) == free)   { 
    critical section; 
   } 
   else goto A; 
 
(+) spinning happens in cache 
(-) can still generate a lot of traffic when 
many processors go to do test&set 
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Test and Set with Backoff 
Upon failure, delay for a while before retrying 

• either constant delay or exponential backoff 

Tradeoffs: 
(+) much less network traffic 
(-) exponential backoff can cause starvation for high-contention locks 

– new requestors back off for shorter times 

But exponential found to work best in practice 
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T&S Lock Performance 
Code:        lock; delay(c); unlock; 
Same total no. of lock calls as p increases; measure time per transfer 
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Test and Set with Update 
Test and Set sends updates to processors that cache 
the lock 

 
Tradeoffs: 

(+) good for bus-based machines 
(-) still lots of traffic on distributed networks 

 
Main problem with test&set-based schemes: 

• a lock release causes all waiters to try to get the lock, 
using a test&set to try to get it. 
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Release Lock 

Acquire Lock 

Critical Section 

Two counters: 
• next_ticket (number of requestors) 
• now_serving (number of releases that have happened) 

Algorithm: 
• ticket = F&I(next_ticket) 
• while (ticket != now_serving) delay(x) 
• // I have lock 
• now_serving++ 

Ticket Lock (fetch&incr based) 
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Ticket Lock (fetch&incr based) 
Two counters: 

• next_ticket (number of requestors) 
• now_serving (number of releases that have happened) 

Algorithm: 
• ticket = F&I(next_ticket) 
• while (ticket != now_serving) delay(x); 
• // I have lock 
• now_serving++; 

What delay to use? 
• Not exponential! 
• Can use now_serving-next_ticket. 
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Ticket Lock (fetch&incr based) 
Two counters: 

• next_ticket (number of requestors) 
• now_serving (number of releases that have happened) 

Algorithm: 
• ticket = F&I(next_ticket) 
• while (ticket != now_serving) delay(x); 
• // I have lock 
• now_serving++; 

(+) guaranteed FIFO order; no starvation possible 
(+) latency can be low if fetch&incr is cacheable 
(+) traffic can be quite low, but contention on polling 
(-) but traffic is not guaranteed to be O(1) per lock acquire 
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Release Lock 

Acquire Lock 

Critical Section 

Array-Based Queueing Locks 
Every process spins on a unique location, rather than 
on a single now_serving counter 

 
 next-slot Wait Lock Wait Wait Wait 

my-slot = F&I(next-slot) 

my-slot = my-slot % num_procs 

while (slots[my-slot] == Wait); 

slots[my-slot] = Wait; 

critical section; 

slots[(my-slot+1)%num_procs] = Lock; 
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List-Base Queueing Locks (MCS) 

All other good things + O(1) traffic even 
without coherent caches (spin locally) 

Uses compare&swap to build linked lists in 
software 

Locally-allocated flag per list node to spin on 
Can work with fetch&store, but loses FIFO 
guarantee 

Tradeoffs: 
(+) less storage than array-based locks 
(+) O(1) traffic even without coherent caches 
(-) compare&swap not easy to implement 



740 ‘F14 – 34 – 

Barriers 

We will discuss five barriers: 
• centralized 
• software combining tree 
• dissemination barrier 
• tournament barrier 
• MCS tree-based barrier 
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Centralized Barrier 
Basic idea: 

• notify a single shared counter when you arrive 
• poll that shared location until all have arrived 

 
Simple version require polling/spinning twice: 

• first to ensure that all procs have left previous barrier 
• second to ensure that all procs have arrived at current barrier 

 
Solution to get one spin: sense reversal 
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Software Combining Tree Barrier 

• Writes into one tree for barrier arrival 
• Reads from another tree to allow procs to continue 
• Sense reversal to distinguish consecutive barriers 

Flat Tree structured

Contention Little contention
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Dissemination Barrier 
log P rounds of synchronization 
In round k, proc i synchronizes with proc (i+2k) mod P 
 
Advantage: 

• Can statically allocate flags to avoid remote spinning 
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Minimum Barrier Traffic 

What is the minimum number of messages 
needed to implement a barrier with N 
processors? 

P1 … P2 P3 P4 PN 
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Tournament Barrier 
Binary combining tree 
 
Representative processor at a node is statically chosen 

• no fetch&op needed 
 
In round k, proc i=2k sets a flag for proc j=i-2k 

• i then drops out of tournament and j proceeds in next round 
• i waits for global flag signalling completion of barrier to be set 

– could use combining wakeup tree 
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MCS Software Barrier 

Modifies tournament barrier to allow static 
allocation in wakeup tree, and to use sense 
reversal 

Every processor is a node in two P-node 
trees: 
• has pointers to its parent building a fanin-4 arrival tree 
• has pointers to its children to build a fanout-2 wakeup tree 
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Barrier Recommendations 

Criteria: 
• length of critical path 
• number of network transactions 
• space requirements 
• atomic operation requirements 
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Space Requirements 

Centralized: 
• constant 

MCS, combining tree: 
• O(P) 

Dissemination, Tournament: 
• O(PlogP) 
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Network Transactions 

Centralized, combining tree: 
• O(P) if broadcast and coherent caches; 
• unbounded otherwise 

Dissemination: 
• O(PlogP) 

Tournament, MCS: 
• O(P) 
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Critical Path Length 

If independent parallel network paths 
available: 
• all are O(logP) except centralized, which is O(P) 

Otherwise (e.g., shared bus): 
• linear factors dominate 
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Primitives Needed 

Centralized and combining tree: 
• atomic increment 
• atomic decrement 

Others: 
• atomic read 
• atomic write 
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Barrier Recommendations 

Without broadcast on distributed memory: 
• Dissemination 

– MCS is good, only critical path length is about 1.5X longer 
– MCS has somewhat better network load and space requirements 

Cache coherence with broadcast (e.g., a bus): 
• MCS with flag wakeup 

– centralized is best for modest numbers of processors 

Big advantage of centralized barrier: 
• adapts to changing number of processors across barrier calls 
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Synchronization 

• Required for concurrent programs 
• mutual exclusion 
• producer-consumer 
• barrier 

• Hardware support 
• ISA 
• Cache 
• memory 

• Complex interactions 
• Scalability, Efficiency, Indirect effects 

• What about message passing? 
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