
Synchronization

15-740
Oct. 20, 2014

Topics
• Locks
• Barriers
• Hardware primitives

740 ‘F14 – 2 –

Types of Synchronization

Mutual Exclusion
• Locks

Event Synchronization
• Global or group-based (barriers)
• Point-to-point (producer-Consumer)

740 ‘F14 – 3 –

Memory

Simple Producer-Consumer Example

sd xdata, (xdatap)
li xflag, 1
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
 beqz xflag, spin
 ld xdata, (xdatap)

data
flag Producer Consumer

Is this correct?

xflagp

xdatap

xflagp

xdatap

Initially flag=0

740 ‘F14 – 4 –

Memory Model

Sequential ISA only specifies that each
processor sees its own memory operations in
program order

Memory model describes what values can be
returned by load instructions across multiple
threads

4

740 ‘F14 – 5 –

Simple Producer-Consumer Example

5

sd xdata, (xdatap)
li xflag, 1
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
 beqz xflag, spin
 ld xdata, (xdatap)

data
flag

Producer Consumer

Can consumer read flag=1 before data
written by producer?

Initially flag=0

740 ‘F14 – 6 –

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of any execution is the
same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in the order specified by the program”
 Leslie Lamport

Sequential Consistency = arbitrary order-preserving interleaving of
memory references of sequential programs

M

P P P P P P

740 ‘F14 – 7 –

Simple Producer-Consumer Example

sd xdata, (xdatap)
li xflag, 1
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
 beqz xflag, spin
 ld xdata, (xdatap)

data
flag

Producer Consumer

Initially flag =0

Dependencies from sequential ISA

Dependencies added by sequentially
consistent memory model

740 ‘F14 – 8 –

Implementing SC in hardware

Only a few commercial systems implemented SC
• Neither x86 nor ARM are SC

Requires either severe performance penalty
• Wait for stores to complete before issuing new store

Or, complex hardware
• Speculatively issue loads but squash if memory inconsistency

with later-issued store discovered (MIPS R10K)

740 ‘F14 – 9 –

Software reorders too!

• Compiler can reorder/remove memory
operations unless made aware of memory
model

• Instruction scheduling, move loads before stores if to
different address

• Register allocation, cache load value in register, don’t check
memory

• Prohibiting these optimizations would result in
very poor performance

//Producer code
*datap = x/y;
*flagp = 1;

//Consumer code
while (!*flagp)
 ;
d = *datap;

740 ‘F14 – 10 –

Relaxed Memory Models
• Not all dependencies assumed by SC are
supported, and software has to explicitly
insert additional dependencies were needed

• Which dependencies are dropped depends on
the particular memory model

• IBM370, TSO, PSO, WO, PC, Alpha, RMO, …

• How to introduce needed dependencies varies
by system
– Explicit FENCE instructions (sometimes called sync or memory

barrier instructions)
– Implicit effects of atomic memory instructions

• Programmers supposed to work with this????

740 ‘F14 – 11 –

Fences in Producer-Consumer Ex

sd xdata, (xdatap)
li xflag, 1
fence.w.w //Write-write fence
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
 beqz xflag, spin
 fence.r.r //Read-read fence
 ld xdata, (xdatap)

data
flag

Producer Consumer

Initially flag =0

740 ‘F14 – 12 –

Memory

Simple Mutual-Exclusion Example

// Both threads execute:
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)

data
Thread 1 Thread 2

Is this correct?

xdatap xdatap

740 ‘F14 – 13 –

Mutual Exclusion Using Ld/St

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
 ...
c1=1;

L: if c2=1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1=1 then go to L
 < critical section>
c2=0;

Deadlock!

740 ‘F14 – 14 –

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability
 a livelock may occur.

• An unlucky process may never get to enter the
 critical section ⇒ starvation

Process 1
 ...

L: c1=1;
if c2=1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1=1 then

 { c2=0; go to L}
 < critical section>
c2=0

740 ‘F14 – 15 –

A Protocol for Mutual Exclusion
T. Dekker, 1 966

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion
 Solution for n processes was given by Dijkstra
 and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

740 ‘F14 – 16 –

Busy Waiting vs. Blocking
• Above algorithms don’t require special ops, but

• May need fences for weaker models
• Don’t scale
• Complex

• They Busy-wait. Is this ok?
• Busy-waiting is preferable when:

• scheduling overhead is larger than expected wait time
• processor resources are not needed for other tasks
• schedule-based blocking is inappropriate

– e.g., in OS kernel

740 ‘F14 – 17 –

Need Atomic Primitive!

• Test&Set
• Swap
• Fetch&Op

• Fetch&Incr, Fetch&Decr, …

• Compare&Swap
• Load-linked/Store-Conditional (LL/SC)

• LL: return value of an adr
• SC: if value of adr unchanged, store value -> return 1
 else, nop -> return 0

740 ‘F14 – 18 –

Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion Example

// Both threads execute:
 li xone, 1
spin: amoswap xlock, xone, (xlockp)
 bnez xlock, spin
 ld xdata, (xdatap)
 add xdata, 1
 sd xdata, (xdatap)
 sd x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

Assumes SC memory model

740 ‘F14 – 19 –
Release Lock

Acquire Lock

Critical Section

Memory

Mutual-Exclusion with Relaxed MM

// Both threads execute:
 li xone, 1
spin: amoswap xlock, xone, (xlockp)
 bnez xlock, spin
 fence.r.r
 ld xdata, (xdatap)
 add xdata, 1
 sd xdata, (xdatap)
 fence.w.w
 sd x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

740 ‘F14 – 20 –

Test&Set based lock
lock: t&s register, location
 bnz lock
 ret

unlock: st location, #0
 ret

740 ‘F14 – 21 –

How to Evaluate?

• Scalability
• Network load
• Single-processor latency
• Space Requirements
• Fairness
• Required atomic operations
• Sensitivity to co-scheduling

740 ‘F14 – 22 –

Evaluation of Test&Set based lock
lock: t&s register, location
 bnz lock
 ret

unlock: st location, #0
 ret

• Scalability poor
• Network load large
• Single-processor latency good
• Space Requirements good
• Fairness poor
• Required atomic operations T&S
• Sensitivity to co-scheduling good?

740 ‘F14 – 23 –

T&S Lock Performance
Code: lock; delay(c); unlock;
Same total no. of lock calls as p increases; measure time per transfer

Number of processors

T i
m

e
(µ

 s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
 T est&set, c = 0
 T est&set, exponential backof f, c = 3.64
 T est&set, exponential backof f, c = 0
 Ideal

9 7 5 3

740 ‘F14 – 24 –

Test and Test and Set

A: while (lock != free);
 if (test&set(lock) == free) {
 critical section;
 }
 else goto A;

(+) spinning happens in cache
(-) can still generate a lot of traffic when
many processors go to do test&set

740 ‘F14 – 25 –

Test and Set with Backoff
Upon failure, delay for a while before retrying

• either constant delay or exponential backoff

Tradeoffs:
(+) much less network traffic
(-) exponential backoff can cause starvation for high-contention locks

– new requestors back off for shorter times

But exponential found to work best in practice

740 ‘F14 – 26 –

T&S Lock Performance
Code: lock; delay(c); unlock;
Same total no. of lock calls as p increases; measure time per transfer

Number of processors

T i
m

e
(µ

 s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
 T est&set, c = 0
 T est&set, exponential backof f, c = 3.64
 T est&set, exponential backof f, c = 0
 Ideal

9 7 5 3

740 ‘F14 – 27 –

Test and Set with Update
Test and Set sends updates to processors that cache
the lock

Tradeoffs:

(+) good for bus-based machines
(-) still lots of traffic on distributed networks

Main problem with test&set-based schemes:

• a lock release causes all waiters to try to get the lock,
using a test&set to try to get it.

740 ‘F14 – 28 –

Release Lock

Acquire Lock

Critical Section

Two counters:
• next_ticket (number of requestors)
• now_serving (number of releases that have happened)

Algorithm:
• ticket = F&I(next_ticket)
• while (ticket != now_serving) delay(x)
• // I have lock
• now_serving++

Ticket Lock (fetch&incr based)

740 ‘F14 – 29 –

Ticket Lock (fetch&incr based)
Two counters:

• next_ticket (number of requestors)
• now_serving (number of releases that have happened)

Algorithm:
• ticket = F&I(next_ticket)
• while (ticket != now_serving) delay(x);
• // I have lock
• now_serving++;

What delay to use?
• Not exponential!
• Can use now_serving-next_ticket.

740 ‘F14 – 30 –

Ticket Lock (fetch&incr based)
Two counters:

• next_ticket (number of requestors)
• now_serving (number of releases that have happened)

Algorithm:
• ticket = F&I(next_ticket)
• while (ticket != now_serving) delay(x);
• // I have lock
• now_serving++;

(+) guaranteed FIFO order; no starvation possible
(+) latency can be low if fetch&incr is cacheable
(+) traffic can be quite low, but contention on polling
(-) but traffic is not guaranteed to be O(1) per lock acquire

740 ‘F14 – 31 –

Release Lock

Acquire Lock

Critical Section

Array-Based Queueing Locks
Every process spins on a unique location, rather than
on a single now_serving counter

 next-slot Wait Lock Wait Wait Wait

my-slot = F&I(next-slot)

my-slot = my-slot % num_procs

while (slots[my-slot] == Wait);

slots[my-slot] = Wait;

critical section;

slots[(my-slot+1)%num_procs] = Lock;

740 ‘F14 – 32 –

List-Base Queueing Locks (MCS)

All other good things + O(1) traffic even
without coherent caches (spin locally)

Uses compare&swap to build linked lists in
software

Locally-allocated flag per list node to spin on
Can work with fetch&store, but loses FIFO
guarantee

Tradeoffs:
(+) less storage than array-based locks
(+) O(1) traffic even without coherent caches
(-) compare&swap not easy to implement

740 ‘F14 – 34 –

Barriers

We will discuss five barriers:
• centralized
• software combining tree
• dissemination barrier
• tournament barrier
• MCS tree-based barrier

740 ‘F14 – 35 –

Centralized Barrier
Basic idea:

• notify a single shared counter when you arrive
• poll that shared location until all have arrived

Simple version require polling/spinning twice:

• first to ensure that all procs have left previous barrier
• second to ensure that all procs have arrived at current barrier

Solution to get one spin: sense reversal

740 ‘F14 – 36 –

Software Combining Tree Barrier

• Writes into one tree for barrier arrival
• Reads from another tree to allow procs to continue
• Sense reversal to distinguish consecutive barriers

Flat Tree structured

Contention Little contention

740 ‘F14 – 37 –

Dissemination Barrier
log P rounds of synchronization
In round k, proc i synchronizes with proc (i+2k) mod P

Advantage:

• Can statically allocate flags to avoid remote spinning

740 ‘F14 – 38 –

Minimum Barrier Traffic

What is the minimum number of messages
needed to implement a barrier with N
processors?

P1 … P2 P3 P4 PN

740 ‘F14 – 39 –

Tournament Barrier
Binary combining tree

Representative processor at a node is statically chosen

• no fetch&op needed

In round k, proc i=2k sets a flag for proc j=i-2k

• i then drops out of tournament and j proceeds in next round
• i waits for global flag signalling completion of barrier to be set

– could use combining wakeup tree

740 ‘F14 – 40 –

MCS Software Barrier

Modifies tournament barrier to allow static
allocation in wakeup tree, and to use sense
reversal

Every processor is a node in two P-node
trees:
• has pointers to its parent building a fanin-4 arrival tree
• has pointers to its children to build a fanout-2 wakeup tree

740 ‘F14 – 41 –

Barrier Recommendations

Criteria:
• length of critical path
• number of network transactions
• space requirements
• atomic operation requirements

740 ‘F14 – 42 –

Space Requirements

Centralized:
• constant

MCS, combining tree:
• O(P)

Dissemination, Tournament:
• O(PlogP)

740 ‘F14 – 43 –

Network Transactions

Centralized, combining tree:
• O(P) if broadcast and coherent caches;
• unbounded otherwise

Dissemination:
• O(PlogP)

Tournament, MCS:
• O(P)

740 ‘F14 – 44 –

Critical Path Length

If independent parallel network paths
available:
• all are O(logP) except centralized, which is O(P)

Otherwise (e.g., shared bus):
• linear factors dominate

740 ‘F14 – 45 –

Primitives Needed

Centralized and combining tree:
• atomic increment
• atomic decrement

Others:
• atomic read
• atomic write

740 ‘F14 – 46 –

Barrier Recommendations

Without broadcast on distributed memory:
• Dissemination

– MCS is good, only critical path length is about 1.5X longer
– MCS has somewhat better network load and space requirements

Cache coherence with broadcast (e.g., a bus):
• MCS with flag wakeup

– centralized is best for modest numbers of processors

Big advantage of centralized barrier:
• adapts to changing number of processors across barrier calls

740 ‘F14 – 47 –

Synchronization

• Required for concurrent programs
• mutual exclusion
• producer-consumer
• barrier

• Hardware support
• ISA
• Cache
• memory

• Complex interactions
• Scalability, Efficiency, Indirect effects

• What about message passing?

	Synchronization��15-740�Oct. 20, 2014
	Types of Synchronization
	Simple Producer-Consumer Example
	Memory Model
	Simple Producer-Consumer Example
	Sequential Consistency�A Memory Model
	Simple Producer-Consumer Example
	Implementing SC in hardware
	Software reorders too!
	Relaxed Memory Models
	Fences in Producer-Consumer Ex
	Simple Mutual-Exclusion Example
	Mutual Exclusion Using Ld/St
	Mutual Exclusion: second attempt
	A Protocol for Mutual Exclusion�T. Dekker, 1966
	Busy Waiting vs. Blocking
	Need Atomic Primitive!
	Lock for Mutual-Exclusion Example
	Mutual-Exclusion with Relaxed MM
	Test&Set based lock
	How to Evaluate?
	Evaluation of Test&Set based lock
	T&S Lock Performance
	Test and Test and Set
	Test and Set with Backoff
	T&S Lock Performance
	Test and Set with Update
	Ticket Lock (fetch&incr based)
	Ticket Lock (fetch&incr based)
	Ticket Lock (fetch&incr based)
	Array-Based Queueing Locks
	List-Base Queueing Locks (MCS)
	Barriers
	Centralized Barrier
	Software Combining Tree Barrier
	Dissemination Barrier
	Minimum Barrier Traffic
	Tournament Barrier
	MCS Software Barrier
	Barrier Recommendations
	Space Requirements
	Network Transactions
	Critical Path Length
	Primitives Needed
	Barrier Recommendations
	Synchronization

