
Computer Architecture:
Static Instruction Scheduling

Prof. Onur Mutlu (Editted by Seth)
Carnegie Mellon University

Key Questions
Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?
e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate?
i.e., have the ability to fetch more instructions per cycle

2

Key Questions
Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?
e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy
elimination, …

Q3. How do we increase the instruction fetch rate?
i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
instructions that will be executed straight line (without branches
getting in the way) eases all of the above

3

VLIW (Very Long Instruction Word
 Simple hardware with multiple function units

 Reduced hardware complexity
 Little or no scheduling done in hardware, e.g., in-order
 Hopefully, faster clock and less power

 Compiler required to group and schedule instructions
(compare to OoO superscalar)
 Predicated instructions to help with scheduling (trace, etc.)
 More registers (for software pipelining, etc.)

 Example machines:
 Multiflow, Cydra 5 (8-16 ops per VLIW)
 IA-64 (3 ops per bundle)
 TMS32xxxx (5+ ops per VLIW)
 Crusoe (4 ops per VLIW)

4

Comparison between SS VLIW

From Mark Smotherman, “Understanding EPIC Architectures and Implementations”

Comparison: CISC, RISC, VLIW

EPIC – Intel IA-64 Architecture
 Gets rid of lock-step execution of instructions within a VLIW

instruction
 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions
(explicitly parallel)

+ No lock-step execution
+ Static reordering of stores and loads + dynamic checking
-- Hardware needs to perform dependency checking (albeit aided by

software)
-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct
2000.

9

IA-64 Instructions
 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits
 Contains three IA-64 instructions
 Template bits in each bundle specify dependencies within a

bundle

\

 IA-64 Instruction
 Fixed-length 41 bits long
 Contains three 7-bit register specifiers
 Contains a 6-bit field for specifying one of the 64 one-bit

predicate registers

10

IA-64 Instruction Bundles and Groups
 Groups of instructions can be

executed safely in parallel
 Marked by “stop bits”

 Bundles are for packaging
 Groups can span multiple bundles

 Alleviates recompilation need
somewhat

11

VLIW: Finding Independent Operations
 Within a basic block, there is limited instruction-level

parallelism
 To find multiple instructions to be executed in parallel, the

compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the
frequently-executed paths
 Trace scheduling
 Superblock scheduling
 Hyperblock scheduling
 Software Pipelining

13

It’s all about the compiler
and how to schedule the
instructions to maximize
parallelism

List Scheduling: For 1 basic block
 Assign priority to each instruction
 Initialize ready list that holds all ready instructions

 Ready = data ready and can be scheduled
 Choose one ready instruction I from ready list with the

highest priority
 Possibly using tie-breaking heuristics

 Insert I into schedule
 Making sure resource constraints are satisfied

 Add those instructions whose precedence constraints are
now satisfied into the ready list

14

Data Precedence Graph

15

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2

Instruction Prioritization Heuristics
 Number of descendants in precedence graph
 Maximum latency from root node of precedence graph
 Length of operation latency
 Ranking of paths based on importance
 Combination of above

16

VLIW List Scheduling
 Assign Priorities
 Compute Data Ready List - all operations whose predecessors have

been scheduled.
 Select from DRL in priority order while checking resource constraints
 Add newly ready operations to DRL and repeat for next instruction

17

1
5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}

Extending the scheduling domain
 Basic block is too small to get any real parallelism
 How to extend the basic block?

 Why do we have basic blocks in the first place?
 Loops

 Loop unrolling
 Software pipelining

 Non-loops
 Will almost always involve some speculation
 And, thus, profiling may be very important

18

Safety and Legality in Code Motion
 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur
 Legality: whether or not result will be always correct

 Four possible types of code motion:

19

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3

Code Movement Constraints
 Downward

 When moving an operation from a BB to one of its dest BB’s,
 all the other dest basic blocks should still be able to use the result

of the operation
 the other source BB’s of the dest BB should not be disturbed

 Upward
 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be
destroyed

 the movement must not cause new exceptions

20

Trace Scheduling
 Trace: A frequently executed path in the control-flow graph

(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack
into VLIW instructions.
 Traces determined via profiling
 Compiler adds fix-up code for correctness (if a side entrance

or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

21

Trace Scheduling Idea

22

Trace Scheduling (II)
 There may be conditional branches from the middle of the

trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE TC 1981.

23

Trace Scheduling (III)

24

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 2
Instr 3
Instr 4
Instr 1
Instr 5

What bookeeping is required when Instr 1
is moved below the side entrance in the trace?

Trace Scheduling (IV)

25

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 2
Instr 3
Instr 4
Instr 1
Instr 5

Instr 3
Instr 4

Trace Scheduling (V)

26

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 1
Instr 5
Instr 2
Instr 3
Instr 4

What bookeeping is required when Instr 5
moves above the side entrance in the trace?

Trace Scheduling (VI)

27

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 1
Instr 5
Instr 2
Instr 3
Instr 4

Instr 5

Trace Scheduling Fixup Code Issues
 Sometimes need to copy instructions more than once to

ensure correctness on all paths (see C below)

28

A
B
C
D
E

X

Y

D
B
E
A
C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB
C
D Y

Correctness

C’’’

Trace Scheduling Overview
 Trace Selection

 select seed block (the highest frequency basic block)
 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

 don’t cross loop back edge
 bound max_trace_length heuristically

 Trace Scheduling
 build data precedence graph for a whole trace
 perform list scheduling and allocate registers
 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)
 move an instruction above a branch if safe

29

Trace Scheduling Example (I)

30

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6 fsub f2, f3, f7st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

Trace Scheduling Example (II)

31

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

Trace Scheduling Example (III)

32

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4 B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

Trace Scheduling Example (IV)

33

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split
add r2, r2, 4
beq r2, $0
fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

Trace Scheduling Example (V)

34

fdiv f1, f2, f3
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5
ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)
add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

Trace Scheduling Tradeoffs
 Advantages

+ Enables the finding of more independent instructions fewer
NOPs in a VLIW instruction

 Disadvantages
-- Profile dependent

-- What if dynamic path deviates from trace lots of NOPs in the
VLIW instructions

-- Code bloat and additional fix-up code executed
-- Due to side entrances and side exits
-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches
-- Unbiased branches smaller traces less opportunity for
finding independent instructions

35

Superblock Scheduling
 Trace: multiple entry, multiple exit block
 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated
 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces
+ Eliminates “difficult” bookkeeping due to side entrances

36Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.

Can You Do This with a Trace?

37

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common
Subexpression Elimination

opC’: mul r3,r2,3

Superblock Scheduling Shortcomings
-- Still profile-dependent

-- No single frequently executed path if there is an unbiased
branch
-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed
-- Due to side exits

38

Hyperblock Scheduling
 Idea: Use predication support to eliminate unbiased branches

and increase the size of superblocks
 Hyperblock: A single-entry, multiple-exit block with internal

control flow eliminated using predication (if-conversion)

 Advantages
+ Reduces the effect of unbiased branches on scheduled block size

 Disadvantages
-- Requires predicated execution support
-- All disadvantages of predicated execution

39

Hyperblock Formation (I)
 Hyperblock formation

1. Block selection
2. Tail duplication
3. If-conversion

 Block selection
 Select subset of BBs for inclusion in HB
 Difficult problem
 Weighted cost/benefit function

 Height overhead
 Resource overhead
 Dependency overhead
 Branch elimination benefit
 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the
Hyperblock,” MICRO 1992.

40

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

Hyperblock Formation (II)

41

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

Hyperblock Formation (III)

42

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1
p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches

Can We Do Better?
 Hyperblock still

 Profile dependent
 Requires fix-up code
 And, requires predication support

 Single-entry, single-exit enlarged blocks
 Block-structured ISA

 Optimizes multiple paths (can use predication to enlarge blocks)
 No need for fix-up code (duplication instead of fixup)

43

Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory
i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a
branch is taken (to execute some compensation code)

44

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code
motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br

Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check
 “speculation” status is propagated with speculated data
 Any instruction that uses a speculative result also becomes speculative

itself (i.e. suppressed exceptions)
 chk.s checks the entire dataflow sequence for exceptions

45

inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code
motion

….

ld.s r1=[a]
inst 1
inst 2
use=r1
….
br

chk.s use…. ld r1=[a]
use=r1

br

Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP
 If aliasing has occurred, ld.c re-loads from memory

46

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]

Aggressive ST-LD Reordering in IA-64

47

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a X
….

st[?]

ld r1=[a]
use=r1

Summary and Questions
 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?
 What are the corresponding benefits and downsides?

 What are the common benefits?
 Enable and enlarge the scope of code optimizations
 Reduce fetch breaks; increase fetch rate

 What are the common downsides?
 Code bloat (code size increase)
 Wasted work if control flow deviates from enlarged block’s path

53

What about loops?
 Unrolling
 Software pipelining

54

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
55 15-745 © Seth Copen Goldstein 2000-5

56

Software Pipelining
 Software pipelining is an instruction scheduling technique

that reorders the instructions in a loop.
 Possibly moving instructions from one iteration to the

previous or the next iteration.
 Very large improvements in running time are possible.

 The first serious approach to software pipelining was
presented by Aiken & Nicolau.
 Aiken’s 1988 Ph.D. thesis.
 Impractical as it ignores resource hazards (focusing only

on data-dependence constraints).
 But sparked a large amount of follow-on research.

15-745 © Seth Copen Goldstein 2000-5
57

Goal of SP

 Increase distance between dependent operations by
moving destination operation to a later iteration

A: a ld [d]
B: b a * a
C: st [d], b
D: d d + 4

Assume all have latency of 2

A B C D

15-745 © Seth Copen Goldstein 2000-5
58

Can we decrease the latency?

 Lets unroll

A: a ld [d]
B: b a * a
C: st [d], b
D: d d + 4
A1: a ld [d]
B1: b a * a
C1: st [d], b
D1: d d + 4

A B C D A1 B1 C1 D1

15-745 © Seth Copen Goldstein 2000-5
59

Rename variables

A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d d1 + 4

A B C D A1 B1 C1 D1

15-745 © Seth Copen Goldstein 2000-5
60

Schedule

A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d d1 + 4

A

B

C

D

A1

B1

C1

D1

A B C D1
D A1 B1 C1

15-745 © Seth Copen Goldstein 2000-5
61

Unroll Some More
A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d2 d1 + 4
A2: a2 ld [d2]
B2: b2 a2 * a2
C2: st [d2], b2
D2: d d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D2

A B C D2
D A1 B1 C1

D1 A2 B2 C2
15-745 © Seth Copen Goldstein 2000-5

62

Unroll Some More
A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d2 d1 + 4
A2: a2 ld [d2]
B2: b2 a2 * a2
C2: st [d2], b2
D2: d d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3
D A1 B1 C1

D1 A2 B2 C2
D2 A3 B3 C3

D2

A3

B3

C3

15-745 © Seth Copen Goldstein 2000-5
63

One More Time
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3A B C D4
D A1 B1 C1

D1 A2 B2 C2
D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4

15-745 © Seth Copen Goldstein 2000-5
64

Can Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3A B C D4
D A1 B1 C1

D1 A2 B2 C2
D2 A3 B3 C3

D3 A4 B4 C4

D2

A3

B3

C3

A4

B4

C4

15-745 © Seth Copen Goldstein 2000-5
65

Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

A B C D3
D A1 B1 C1

D1 A2 B2 C2
D2 A3 B3 C3

D2

A3

B3

C3

A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d2 d1 + 4
A2: a2 ld [d2]
B2: b2 a2 * a2
C2: st [d2], b2
D2: d d2 + 4

15-745 © Seth Copen Goldstein 2000-5
66

Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D

A B C D3
D A1 B1 C1

D1 A2 B2 C2
D2 A3 B3 C3

D2

A3

B3

C3

A: a ld [d]
B: b a * a
C: st [d], b
D: d1 d + 4
A1: a1 ld [d1]
B1: b1 a1 * a1
C1: st [d1], b1
D1: d2 d1 + 4
A2: a2 ld [d2]
B2: b2 a2 * a2
C2: st [d2], b2
D2: d d2 + 4

15-745 © Seth Copen Goldstein 2000-5
67

SP Loop
A: a ld [d]
B: b a * a
D: d1 d + 4
A1: a1 ld [d1]
D1: d2 d1 + 4

C: st [d], b
B1: b1 a1 * a1
A2: a2 ld [d2]
D2: d d2 + 4

B2: b2 a2 * a2
C1: st [d1], b1
D3: d2 d1 + 4
C2: st [d2], b2

A B C C C D3
D A1 B1 B1 B1 C1

D1 A2 A2 A2 B2 C2
D2 D2 D2

Prolog

Body

Epilog

15-745 © Seth Copen Goldstein 2000-5
68

Goal of SP

 Increase distance between dependent operations by
moving destination operation to a later iteration

A

B

C

dependencies
in initial loop

A

B

C

iteration i i+1 i+2

after SP

15-745 © Seth Copen Goldstein 2000-5
69

Goal of SP

 Increase distance between dependent operations by
moving destination operation to a later iteration

 But also, to uncover ILP across iteration boundaries!

15-745 © Seth Copen Goldstein 2000-5
70

Example
Assume operating on a infinite wide machine

A0

A1 B0

A2 B1 C0

A3 B2 C1

B3 C2

C3

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

15-745 © Seth Copen Goldstein 2000-5
71

Example
Assume operating on a infinite wide machine

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

Prolog

epilog

loop body

15-745 © Seth Copen Goldstein 2000-5
72

for (i=0; i<N;
i++)
{

Ai

Bi

Ci

}

Dealing with exit conditions

i=0
if (i >= N) goto done
A0

B0

if (i+1 == N) goto last
i=1
A1

if (i+2 == N) goto epilog
i=2

loop:
Ai

Bi-1

Ci-2

i++
if (i < N) goto loop

epilog:
Bi

Ci-1

last:
ci

done:

15-745 © Seth Copen Goldstein 2000-5
73

Loop Unrolling V. SP

For SuperScalar or VLIW
 Loop Unrolling reduces loop overhead
 Software Pipelining reduces fill/drain
 Best is if you combine them

Software Pipelining

Loop Unrolling

of
overlapped
iterations

Time

VLIW
 Depends on the compiler

 As often is the case: compiler algs developed for VLIW are
relevant to superscalar, e.g., software pipelining.

 Why wouldn’t SS dynamically “software pipeline?”

 As always: Is there enough statically knowable parallelism?

 What about wasted Fus? Code bloat?

 Many DSPs are VLIW. Why?

74

