15-740
November 7, 2014
Prediction

15-740, Fall 2014

So far

1 cycle per instruction .
IPC<=1 Control hazards

(no pipelining) e Data hazards

p-stage pipelining ‘ bypassing/forwarding
IPC<=p IPC<=p

superscalar IW=w) [000 superscalar IW=w]

IPC <= wp IPC <= wp
(" VLIW f function units

IPC <= fp] [SMT IW=w J

IPC <= wp
fine-grained MT
L IPC <=fp
Next steps require speculation:
Multicore (c cores) prediction

L IPC <= wpc

¢ recovery

15-740, Fall 2014 2

Control Flow Penalty

Next fetch
started

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

Buffer
Buffer
Func
Units
Result
Buffer
executed

~ Loop length x pipeline width + Arch.
buffers State

15-740, Fall 2014

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

Branch

Reducing Control Flow Penalty

= Software solutions
- Eliminate branches - loop unrolling, software pipelining, ...
- Increases the run length
- Reduce resolution time - instruction scheduling

- Compute the branch condition as early as possible (of limited value
because branches often in critical path through code)

= Hardware solutions

- Find something else to do - delay slots
- Replaces pipeline bubbles with useful work (requires software
cooperation) — quickly see diminishing returns
- Speculate - branch prediction
- Speculative execution of instructions beyond the branch
- Many advances in accuracy

15-740, Fall 2014 4

Branch Prediction
Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:
® Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
* Keep result computation separate from commit
e Kill instructions following branch in pipeline
* Restore state to that following branch

15-740, Fall 2014

Importance of Branch Prediction

» Consider 4-way superscalar with 8 pipeline stages
from fetch to dispatch, and 80-entry ROB, and 3
cycles from issue to branch resolution

* On a mispredict, could throw away 8*4+(80-1)=111
instructions

* Improving from 90% to 95% prediction accuracy,

removes 50% of branch mispredicts
- If 1/6 instructions are branches, then move from 60
instructions between mispredicts, to 120 instructions
between mispredicts

15-740, Fall 2014

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

v
backward forward
90% Q 50%

ISA can attach preferred direction semantics to branches, e.g.,

Motorola MC88110
bne0 (preferred taken) beqO (not taken)

ISA can allow arbitrary choice of statically predicted direction,

e.g., HP PA-RISC, Intel IA-64
typically reported as ~80% accurate

15-740, Fall 2014

Dynamic Branch Prediction
learning based on past behavior

= Temporal correlation
- The way a branch resolves may be a good predictor of the
way it will resolve at the next execution

= Spatial correlation
- Several branches may resolve in a highly correlated
manner (a preferred path of execution)

15-740, Fall 2014

One-Bit Branch History Predictor

» For each branch, remember last way branch went
» Has problem with loop-closing backward branches, as
two mispredicts occur on every loop execution
1. firstiteration predicts loop backwards branch not-taken
(loop was exited last time)
2. lastiteration predicts loop backwards branch taken (loop
continued last time)

15-740, Fall 2014

Branch Prediction Bits

e Assume 2 BP bits per instruction
¢ Change the prediction after two consecutive mistakes!

- taken

BP state:
(predict take/-take) x (last prediction right/wrong)

15-740, Fall 2014 10

Branch History Table (BHT)

Fetch PC | | o,
- ~— L
1k L 2k-entry
I-Cache BHT Index L{ BHT,
i | 2 bits/entry
Instruction l
Opcode | |offset |
|
A
+

Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

15-740, Fall 2014

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also
false

History register, H, records the direction of the
last N branches executed by the processor

15-740, Fall 2014 12

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

| Dol
[
Fetch PC L K]] 1]

4

.
]]]]

2-bit global branch history
shift register

Shift in Taken/-Taken D_D L L . .
results of each branch “—y—/

Taken/-Taken?

15-740, Fall 2014

Speculating Both Directions

= An alternative to branch prediction is to execute

both directions of a branch speculatively
- resource requirement is proportional to the number of
concurrent speculative executions
- only half the resources engage in useful work when both
directions of a branch are executed speculatively
- branch prediction takes less resources than speculative
execution of both paths

= With accurate branch prediction, it is more cost
effective to dedicate all resources to the
predicted direction!

15-740, Fall 2014 14

Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

PC Generation/Mux

Correctly predicted
taken branch Instruction Fetch Stage 1
penalty Instruction Fetch Stage 2

Complete Decode
Jump Register

penalty

Steer Instructions to Functional units

Register File Read

Integer Execute

(A |

o

a

B | Branch Address Calc/Begin Decode
|

)]

R |

E]

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

15-740, Fall 2014

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

I-Cache T
PC (can also be associative)

— [| | Entry PC Vatig predicted
N t rgpf C

. k . . .

[) L] L °

() L] L [
e match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

15-740, Fall 2014 16

Combining BTB and BHT

= BTB entries are considerably more expensive than BHT, but can redirect
fetches at earlier stage in pipeline and can accelerate indirect branches
(R)

= BHT can hold many more entries and is more accurate

A | PC Generation/Mux
BTB | [P | Instruction Fetch Stage 1

F | Instruction Fetch Stage 2
BHT in later BHT| [B | Branch Address Calc/Begin Decode
pipeline stage I_ C | Decod
corrects when |~ | ~tomp ete Decode
BTB misses a J | Steer Instructions to Functional units
predicted taken R | Register File Read
branch E_

Integer Execute

/

BTB/BHT only updated after branch resolves in E stage

15-740, Fall 2014 b

Uses of Jump Register (JR)

= Switch statements (jump to address of matching
case)

BTB works well if same case used repeatedly

» Dynamic function call (jump to run-time function
address)
BTB works well if same function usually called, (e.g., in

C++ programming, when objects have same type in virtual
function call)

= Subroutine returns (jump to return address)
BTB works well if usually return to the same place

= Often one function called from many distinct call sites!
How well does BTB work for each of these cases?

15-740, Fall 2014 18

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { T0QO: }
(O { fcO: }
fcO { fdO: }

Pop return address when

Push call address when
function call executed/\ m subroutine return decoded

&fd () k entries
&fcQ) (typically k=8-16)
&fb ()

15-740, Fall 2014 19

Return Stack in Pipeline

» How to use return stack (RS) in deep fetch pipeline?
= Only know if subroutine call/return at decode

A | PC Generation/Mux

P | Instruction Fetch Stage 1

F | Instruction Fetch Stage 2
RS Push/Pop B [Branch Address Calc/Begin Decode
after decode | | Complete Decode
gives large — . . .
bubble in fetch J_ Steer Instructions to Functional units
stream. R | Register File Read

E

Integer Execute

/

Return Stack prediction checked

15-740, Fall 2014 20

Return Stack in Pipeline

= Can remember whether PC is subroutine call/return
using BTB-like structure
» Instead of target-PC, just store push/pop bit

PC Generation/Mux

Instruction Fetch Stage 1
Push/Pop before

instructions decoded! Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode
Steer Instructions to Functional units

Register File Read

== E =]]=]>]

Integer Execute

/

Return Stack prediction checked

15-740, Fall 2014

21

In-Order vs. Out-of-Order Branch Prediction

In-Order Issue Out-of-Order Issue

-
| Fetch | Br. Pred. | | Fetch | Br. Pred. |

In-Order

Resolve Resolve
Decode
| ROB l:] Execute [% Out-of-Order
In-Order
[Lcommit | Commit |

= Speculative fetch but not speculative
execution - branch resolves before
later instructions complete

= Completed values held in bypass
network until commit

In-Order <

= Speculative execution, with branches
resolved after later instructions complete

= Completed values held in rename
registers in ROB or unified physical
register file until commit

¢ Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle

e Common to have 10-30 pipeline stages in either style of design

15-740, Fall 2014 22

InO vs. 000 Mispredict Recovery

* In-order execution?
- Design so no instruction issued after branch can write-back
before branch resolves
- Kill all instructions in pipeline behind mispredicted branch
» Qut-of-order execution?
- Multiple instructions following branch in program order
can complete before branch resolves

- A simple solution would be to handle like precise traps
- Problem?

15-740, Fall 2014

23

Branch Misprediction in Pipeline

nject correct PC

Branch ill Branch

Prediction

Kill Kill .
B# Fetch » Decode Reorder Buffer/

Complete

Commit

A4
A4

A

Execute

= Can have multiple unresolved branches in ROB

= Can resolve branches out-of-order by killing all the instructions in
ROB that follow a mispredicted branch

= MIPS R10K uses four mask bits to tag instructions that are
dependent on up to four speculative branches

= Mask bits cleared as branch resolves, and reused for next branch

15-740, Fall 2014 24

Rename Table Recovery Improving Instruction Fetch
= Have to quickly recover rename table on branch = Performance of speculative out-of-order machines
mispredicts often limited by instruction fetch bandwidth
= MIPS R10K only has four snapshots for each of four - speculative execution can fetch 2-3x more instructions
outstanding speculative branches than are committed ' N _
= Alpha 21264 has 80 snapshots, one per ROB - Vn;ilzz;evt\jlct penalties dominated by time to refill instruction
Instruction - taken branches are particularly troublesome
15-740, Fall 2014 25 15-740, Fall 2014
Increasing Taken Branch Bandwidth Tournament Branch Predictor
(Alpha 21264 I-Cache) (Alpha 21264)
o * Choice predictor learns whether best to use local or global
+~— Branch Prediction branch history in predicting next branch
jon [Instruction Decode = Global history i latively updated but restored on
PC Generation |\ jigity Checks obal history is speculatively updated but restored o
mispredict
_l = Claim 90-100% success on range of applications
Line Wa Cached Tag | Tag
. y' . Way | Way -
Predict Predict | Instructions Global Prediction
PC 0 1 Local Local 4.096x2b
history table || prediction (4,096x2b)
| [4 insts /i/ (1,024x10b) (1,024x3b)
fast fetch path |
i Choice Prediction
= Fold 2-way tags and BTB into predicted next block @ @ \ _/— (4,096x2D)
= Take tag checks, inst. decode, branch predict out of loop .
* Raw RAM speed on critical loop (1 cycle at ~1 GHz) Hit/Miss/Way Prediction —-| Global History (12b)
= 2-bit hysteresis counter per block prevents overtraining
15-740, Fall 2014 15-740, Fall 2014

Taken Branch Limit

* Integer codes have a taken branch every 6-9
instructions
» To avoid fetch bottleneck, must execute multiple
taken branches per cycle when increasing
performance
» This implies:
- predicting multiple branches per cycle
- fetching multiple non-contiguous blocks per cycle

15-740, Fall 2014

Branch Address Cache
(Yeh, Marr, Patt)

Entry PC Valid predicted len predicted
target #1 target #2

LN
o000
LN)
o000
LN)

==

match wvalid target#l len#1 target#2

Extend BTB to return multiple branch predictions per cycle

15-740, Fall 2014

Fetching Multiple Basic Blocks

» Requires either
- multiported cache: expensive
- interleaving: bank conflicts will occur

= Merging multiple blocks to feed to decoders adds

latency increasing mispredict penalty and reducing
branch throughput

15-740, Fall 2014

Trace Cache

» Key Idea: Pack multiple non-contiguous basic blocks
into one contiguous trace cache line

|II<|_JI || Ikl |8U|/| |_er]

LTl [[[Jerl | [] [erl

e Single fetch brings in multiple basic blocks

e Trace cache indexed by start address and next n branch
predictions

e Used in Intel Pentium-4 processor to hold decoded uops

15-740, Fall 2014

So far

1 cycle per instruction
IPC<=1
(no pipelining)

Internal
e Control hazards
e Data hazards

p-stage pipelining bypassing/forwarding
IPC<=p IPC<=p

superscalar IW=w) 000 superscalar IW=w ’
IPC <= wp IPC <= wp

p

VLIW f function units
IPC <= fp SMT IW=w ’
IPC <= wp

fine-grained MT
IPC <= fp

AN

Next steps require speculation
about memory

Multicore (c cores)
IPC <= wpc

A

15-740, Fall 2014 33

Load-Store Queue Design

= After control hazards, data hazards through memory
are probably next most important bottleneck to
superscalar performance

* Modern superscalars use very sophisticated load-
store reordering techniques to reduce effective
memory latency by allowing loads to be speculatively
issued

15-740, Fall 2014 34

Speculative Store Buffer

Store Store = Just like register updates, stores should
Address Data not modify the memory until after the
Speculative instruction is committed. A speculative
Store Buffer l store buffer is a structure introduced to
VIS _Tag Data hold speculative store data.
V|S| Tag Data = During decode, store buffer slot allocated
V|S Tag Data .
V[S| Tag Data in program order
V[S| Tag Data = Stores split into “store address” and
VIS| Tag Data “store data” micro-operations
= “Store address” execution writes tag
Store Commit = “Store data” execution writes data
Path = Store commits when oldest instruction
and both address and data available:
- clear speculative bit and eventually
Tags Data move data to cache
= On store abort:

- clear valid bit
L1 Data Cache

15-740, Fall 2014 35

Load bypass from speculative store

buffer
Speculative | Load Address |
I
Store Buffer L1 Data Cache
V|S Tag Data
V(S Tag Data
V|S Tag Data
VIS Tag Data Tags Data
V(S Tag Data
VIS Tag Data

Load Data

= |f data in both store buffer and cache, which should we use?
Speculative store buffer

= |f same address in store buffer twice, which should we use?
Youngest store older than load

15-740, Fall 2014 36

Memory Dependencies

sd x1, (xX2)
Id x3, (x4)

» When can we execute the load?

15-740, Fall 2014

In-Order Memory Queue

= Execute all loads and stores in program order
» => Load and store cannot leave ROB for execution
until all previous loads and stores have completed

execution

= Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

* Need a structure to handle memory ordering...

15-740, Fall 2014 38

Conservative 0-0-O Load Execution

sd x1, (xX2)
Id x3, (x4)

= Can execute load before store, if addresses known
and x4 = x2
» Each load address compared with addresses of all

previous uncommitted stores
- can use partial conservative check i.e., bottom 12 bits of
address, to save hardware

» Don’t execute load if any previous store address not
known
= (MIPS R10K, 16-entry address queue)

15-740, Fall 2014

Address Speculation

sd x1, (xX2)
Id x3, (x4)

» Guess that X4 1= x2

» Execute load before store address known

* Need to hold all completed but uncommitted
load/store addresses in program order

= |f subsequently find X4==x2, squash load and all
following instructions

= =>large penalty for inaccurate address speculation

15-740, Fall 2014 40

Memory Dependence Prediction
(Alpha 21264)

sd x1, (X2)
Id x3, (x4)

» Guess that X4 1= X2 and execute load before store

= |f later find X4==X2, squash load and all following
instructions, but mark load instruction as store-wait

» Subsequent executions of the same load instruction
will wait for all previous stores to complete

* Periodically clear store-wait bits

15-740, Fall 2014

41

What else slows us down?

» Data Cache Misses
- value prediction
- prefetching
- reconfigurable ISA
- fine-grained multithreading
= Resource Contention
- better scheduling
- fine-grained multithreading
- Reconfigurable ISA
= Fetch Bandwidth/l-cache misses
- Reconfigurable ISA
- fine-grained multithreading
- vector processing (SIMD)

15-740, Fall 2014

42

