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Hardware Virtualization

* More Hardware = More Throughput
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* Forward Compatibility
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PipeRench Architecture

* On chip configuration cache

* Fabric divided into stripes

* Each stripe is 1 pipeline stage
« Configure 1 stripe in 1 cycle

- Apparent configuration load
time is zero!
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The PipeRench Fabric

One
stripe

* Word based Processing Element
* Word based interconnect
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A Processing Element
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* b identical 3 input Lookup Tables

* A & B inputs from interconnect
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The interconnect Evaluating the Design Space

o * Methodology: Examine the
T : T hardware-software interaction

» Parameterize the architecture

Barrel Shifters - Stripe is n*b bits-wide 64 <n*b <256
- PE is b-bits wide 2 < b <32
- PE has r registers 2 < r <16

* Parameterize the compiler
- Compile kernels for each design point.

Interconnect composed of n b-bit lines
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Hardware Synthesis Flow The Number of Stripes in 50mm?

Bits Per PE
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Timing # stripes in 50 mm?2
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Carry Chain Speed | Slow | Fast

Configuration Size Big Small

Interconnect
Flexibility More | Less

Ease of Compilation| Easy | Hard
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The Compiler Throughput
Kernel Parameters Architecture parameters Kernel
ﬂl Timing info
P: # of physical stripes V: # of virtual stripes
C: Clock
v
: : Throughput = C|—/—
* # of stripes * Clock rate P-1
PE width tradeoffs How Many Registers?
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Throughput for IDEA

Millions of Inputs/Second

PE Bit-width
2 % 4 = 8 —+16 €32

\‘\1.

64 80 96 112 128 144 160 176 192 208 224 240 256
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Stripe Width in Bits
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Harmomc Mean of Throughput

PE Bit-width
2 4 =« 8 & 16 - 32
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Speedup Over a 300Mhz UltraSparc-Il
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Speedup Using PipeRench
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Sources of Performance

- Exploit multiple levels of parallelism
- MIMD, SIMD
- ILP
- Pipeline
- bit-level
» Custom function units
- Custom sizes
- Specialized functions
* Improved memory performance
* Data dependent hardware generation
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%g}» B PipeRench
A Pipelined Reconfigurable Fabric

* Virtualizes the hardware

- Supports forward compatibility

* Oriented towards datapaths

- Effective configuration time of zero.
- Simple programming model

- Easy compilation target

Conclusions

- PipeRench matches Future Workloads
* Hardware Virtualization
- Forward compatibility
- Good performance
» Pipelined Reconfiguration
- Simple programming model
* Hardware-Software Interaction

- PE bit-width b=8
- Stripe Width n*b =128
- Registers per PE r=28

+ Space is Time
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What Computer Architects Do

* Given Constraints of:
« Technology
» Application

* Use Essential Themes: |
- Exploit locality (AKA caching)
- Prediction / Speculation
- Pipelining
- Parallelism :
- Virtualization / Indirection - <
- Specialization
But, there is progress

[Mudge'14]

What We Need To Do

* Decrease design costs
« Improve design verification

* Manufacturing Cost
- Eliminate mask costs
- Decrease fab plants costs
- Increase yield
- Keep compilation fime constant

* Invent a new technology




Goal

* Programmable Logic Device with
- 2 1010 gate-equivalents/CM?
- <1 Watt/CM?
- < nanocents per gate
- > 10! ops/sec
* Replace ASIC

Less than 100nm?2 for each gate and all its
associated routing
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Electronic Nanotechnology

+ 1-30 nanometer features

« Uses electrons, currents, voltages to
accomplish computing

» Can build the components we need

(diodes, wires, resistors, latches, switches, and maybe transistors)

* Fabrication by directed self-assembly

* Fabrication method implies
- defects
- non-deterministic placement

oooooooo

Wires

+ 2 - 30 nm in diameter

+ < 2000 nm in length

- good conductors

- excellent current densities

- can be built from
- organics (carbon nantubes)
- metals

« Can be both metal or semiconductor

Diodes

« Conducts current in only one direction
* reasonable on/off ratios
* it has only 2 terminals

« Results from contact between 2
different materials

(*




Configurable molecules

* Molecule that can be
- conducting (ON)
- insulating  (OFF)

* Turn on with V44+V Voltage drop

config

* Turn it of f with -V ;g

Synthesis primitives

 Wires can be grown

Underlying Technology

- Lots of wires
* Lots of switches
» All programmable

Scale implies:
‘Defects
‘Randomness

A case for Reconfigurable Devices

Complex fixed chip Regular, tileable structures
+ +

Program Configuration




The NanoFabric

* nanoscale layer on
top of CMOS

* Highly regular

+ ~106 clusters

+ ~108 long lines

Control, configuration decompression, &
defect mapping seed

Boring: Just what we wanft!
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The NanoBlock

Basic unit of logic
Small # of I/0s

Has an orientation
- south-west

—— nanoBlock F———

- north-east
Internally, a matrix of
configurable diodes.

Entire block is on a
lithographic scale
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Computing with a nanoBlock

* The active component is a diode.
* Use diode-resistor logic
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- (;i? (;i? ¥ (;i Requirements for the Matrix
A EERARAN AN * Good diodes
il d A e.g., low voltage drop
- :: - S T - Different resistor values
iz ramrs oo - e.g., R & 10R, where R ~ 10° Ohms
o~ PP A®B=S - low R wires
YT B ? Qg * reasonable current densities
A"B A"B . s i -
} B L 4 " £ * Using Spice (and guesses!):
A B - switching at 100Mhz-1Ghz
Rl_% - nanoWatts
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Control, configuration decompression, &
defect mapping seed

" long-lines

nanoBlock

: Nswifch—block
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Stripped regions

indicate connections

V from the CMOS layer.
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Densities

* Assuming,
- 100nm CMOS process
- 20nm centers for nanowires
- Blocks are 3 input, 8 internal wires
- 20 long-lines per routing channel
- Pretty poor diodes

» Blocks 1.6x108 /Cm?
- Configuration bits 4 5x1010 /Cm?
» Avg Configuration Time 200ms /Cm?
- Power (@10MH2z) 2 Watt /Cm?

11111111

Now what

* Defect discovery
« Compilation

What Is a Defect?

* Defects in Manufacturing
- broken wires
- crossed wires
- stuck-at switches
- etc.
* Defects in Knowledge
- unknown device
- unknown characteristics of device

Think of this as Capability Mapping

Mapping the Device

« Need to discover the characteristics of

the individual components, but

- Can't selectively stimulate or probe the

components

- Download test machines

Thin link




Built-In Self-Test
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Configure testers
vertically

Configure testers
horizontally

Configure the device to test itself!

Mapping the Device

* Download signature generators

- Then, also detectors

* Then, replicators

* Will scale (at worst) linearly

* For proposed device ~1 day to map

Thin link S0

Requirements to support defect
tolerance

* Reconfigurable individual components

* Knowledge of
- defect free architecture
- potential characteristics of components

- Digital detection of Characteristics

* Localization of faults

Architectural Ab;TracTions

'|i Program

SAM

Tiles

NanoBlocks

Device




Split-phase Abstract Machine SAM
. : . : for (x=0; x<100; x++) { d
A collection of simple cooperating fotch ALX] adr S
pr'ocesses. ) - —— data & signal
- All potentially long-latency operations remp Al " Rest of
are split-phase store femp in AIX) ™ gr g data | SAM
signal processes
- procedure calls 3] <« &
- memory operations function & params Memory
Y op functioncall(A); P P
: ) result & signal
emp = <
return femp; P
send back result & signal
SAM Tile Machine
- Allows compilers to avoid global picture. * Map each SAM process to a simple
- Eliminates need for central control. “processor”
- Supports long wires. - simple FSM

- Supports memory hierarchy.
* Can be extended to deal with single-event

PDL 11/00

upsets.
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- customized circuit

- local memory

- static network switch
- packet network router
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NanoBlocks

Device

Architectural Ab;fracfions

I Program

SAM
Tile mix knowledge

Tiles

Compilation

- Separate out info SAM processes
* Localize memory

* Partition

* Map to tiles (local place & route)
* Place and route tiles

* Map tiles to NanoBlocks

It is sufficientl!

* Matrix components:

- Diodes
- different resistors
- different length wires

* Gain provided by latches

+ Connections to CMOS wires
+ <5% defect rate

* Reconfigurable

Conclusions

* Can build regular structures
- Exploits reconfigurability to provide

- Built-in self test
- Custom circuits

- nanoFabric is scalable

- Low power
- MHz
- Tera-components




Chip Layout

Input
Cache Ctrl

Fabric
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PipeRench Tile

WiThou’r M3 or M4




Rest of slides should be ignored
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%i}»m Why Not?

Field Programmable Gate Arrays are not
suited for general-purpose custom hardware.

- Fixed resources

* No forward compatibility
Oriented towards glue-logic

* Long configuration times

* No programming model

Poor Development Environment
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The PipeRench Fabric

ISCA'99 5/1/99 © 1999 Seth Copen Goldstein 73

Why Not? = @”* ==

Environment

FPGAs PipeRench
Orientation Glue-logic Datapaths
Configuration
Time Long (> 100 ms)| Almost zero
Resources Fixed Virtual
Forward
Compatibility NO ves
Programming .
Model None Pipelines
Development Poor Good
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Future Requirements

+ Embedded Computing
- COTS part
- Easy programming model
- Field programmable
- Hardware performance
* General-Purpose Computing
- Increased Performance
- Respect the memory bandwidth gap
* Both
- Variable bit width operations
- Exploit all levels of parallelism
- Use replication

1 Manufacturing Cost
! Design Cost
1 Flexibility
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Finding the Best Instance

* Number of PEs per stripe
+ Bit width of each PE

+ The number of registers per PE  p
* The type of interconnect
* The internals of a PE

ISCA'99 5/1/99
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Space is Time

* Larger configurations
— more virtualization
= lower throughput

* Tradeoff between circuit delay and
circuit size is direct

- E.g., Faster carry chains

— wider additions per clock cycle
— fewer stripes

= better performance

PE width tradeoffs

Narrow Wide

Utilization

Carry Chain Speed

Configuration Size

Interconnect
Flexibility

> » @@

Ease of Compilation
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