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Problem Statement

* Multicore processors were prevalent (2010)
— Even truer today
— Opportunity for thread level parallelism

e Scheduling among multiple cores is hard

— Simply keep cores busy is not good enough

— Apps may compete for shared resource (e.g.
cache)

What is the best scheduling approach
to deal with resource contention?
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Figure 1. The performance degradation relative to running solo for
two different schedules of SPEC CPU2006 applications on an Intel
Xeon X3565 quad-core processor (two cores share an LLC).
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Why Worse Than Solo?

* Thought experiment:

— Two apps: A: low miss rate, B: high miss rate

— Who will suffer more when sharing cache with

another application C?

— Cache attention: C brings its own data to cache

Answer 1:

A, because B already has very
high miss rate anyway.
Assumption is cache attention
is the main cause of
performance degradation.

Answer 2:

B, because the miss penalty is
larger

Assumption is cache attention
is NOT the main cause of
performance degradation.



Outline: Cache-aware Scheduling

 Classification scheme

— Classification scheme is the information you use
to make a decision

— How can we study classification scheme alone?

e Classification scheme + Scheduling policy

— Scheduling policy is how you use the information
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Study Classification Scheme Alone

e Perfect scheduling policy
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Evaluating Classification Scheme

e Optimal Schedule (OS)

— Optimal classification scheme +

Perfect scheduling policy
e Estimated Best Schedule (EBS)

— Classification scheme under evaluation +

Perfect scheduling policy
* Degradation due to classification scheme

Degradation of EBS — Degradation of 0S
Degradation of 0§

Relative Degradation =



Collecting Cache Performance data

e Stack Distance Profile

LRU Stack MRU LRU Misses

Access Counter

1

2
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Classification Schemes - SDC

* Key Ildea

— Model how two application threads compete for
the LRU stack positions



Classification Schemes — Animal Classes

* 4 classes of application threads (classified based on stack
distance profiles)

— Turtle: low use of the shared cache

— Sheep: low miss rate, insensitive to # of cache ways
— : low miss rate, sensitive to # of cache ways
— Devil: high miss rate, tends to thrash the cache

Relative Performance Degradation Table

Turtle Sheep Rabbit Devil
Turtle 0
Sheep
Rabbit

Devil 8




Classification Schemes — Miss Rate

* Simply use “miss rate” as heuristics

— Identify high miss rate application threads and
separate them into different caches

— Why?
* exclusive cache lowers miss rate

» exclusive prefetching HW and lowly-contended front-
side bus reduces miss penalty



Classification Schemes - Pain

e Cache Sensitivity
— How much an application will suffer due to cache contention
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* Cache Intensity
— How aggressively an application thread uses cache
Z = # cache accesses per one million instructions
* Pain of Co-Schedule
Pain(Ag) = S(A) X Z(B)
Pain(A,B) = Pain(Ag) + Pain(B,)



Comparing Classification Schemes
e Workload: 10 benchmarks from SPEC2006 Suite
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Figure 3. Degradation relative to optimal experienced by each
classification scheme on systems with different numbers of cores.
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DRAM Contention
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Cache Contention
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Total Degradation
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Prefeching Contention

Prefeching Contention =
Total Degradation (PF ON)
- Cache Contention (PF OFF)
- FSB Contention (PF OFF)
- DRAM Contention (PF OFF)



Prefetching Contention

Prefetching Contention =
Total Degradation (P
- Cache Contention (P) O
- FSB Contention (PF OFF) [
- DRAM Contention (PF OFF)




Contributions of Degradation Factors
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Figure 4. Percent contribution that each of the factors have on the
total degradation.
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Scheduling Algorithms

* Pick one classification scheme
— Pain is the best (offline), but overhead is big
— Picked miss rate

e Distributed Intensity (Dl)

— Sort based on solo miss rate
— Goal: miss rates are distributed evenly

* Distributed intensity Online (DIO)

— Get miss rate dynamically



Average Performance

* Intel Xeon X5365; Eight workloads
e Compare to DEFAULT (Linux scheduler)
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Not much Better?

 Consider a case where
— Four cores; two shared cache

— Two intensive applications (high miss rate), two
non-intensive applications (low miss rate)

* DI/DIO makes sure the two intensive ones
don’t run together

* But the worst case only happens with 1/3
probability...
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(b) Deviation of the same application in the same workload with DI, DIO and Default (low bars are good) for Intel 8 threads.



Conclusions

Cache contention is NOT the dominant cause
(?)

Evaluated different classification schemes

— Pain is the best; miss rate is the most practical

Miss rate performs well in real scheduling
Contention-aware scheduling is good for

— Improving average performance (not so much)
— QoS & performance isolation



Other papers...

* Fine grained scheduling

— Software scheduling overhead is too high,
hardware?

* Contention for shared resource (critical
section)
— Optimizing for locks

* Scheduling at Clusters

— A node has multiple VMs, a VM has multiple
threads




