Addressing Shared Resource
Contention in Multicore Processors via

Scheduling
ASPLOS’10 by Sergey Zhuravlev, et al.

Simon Fraser University

Presenter: Huanchen ZHANG, Zhuo CHEN

Problem Statement

* Multicore processors were prevalent (2010)
— Even truer today
— Opportunity for thread level parallelism

e Scheduling among multiple cores is hard

— Simply keep cores busy is not good enough

— Apps may compete for shared resource (e.g.
cache)

What is the best scheduling approach
to deal with resource contention?

70 -

% Slow-Down realtive to solo

50 -

30 -

20 -

10

-10 -

Scheduling Does Matter

@ BEST core core
W WORST
L2 cache
SOPLEX SPHINX GAMESS NAMD AVERAGE
core core
Benchmark

Figure 1. The performance degradation relative to running solo for
two different schedules of SPEC CPU2006 applications on an Intel
Xeon X3565 quad-core processor (two cores share an LLC).

L2 cache

Why Worse Than Solo?

* Thought experiment:

— Two apps: A: low miss rate, B: high miss rate

— Who will suffer more when sharing cache with

another application C?

— Cache attention: C brings its own data to cache

Answer 1:

A, because B already has very
high miss rate anyway.
Assumption is cache attention
is the main cause of
performance degradation.

Answer 2:

B, because the miss penalty is
larger

Assumption is cache attention
is NOT the main cause of
performance degradation.

Outline: Cache-aware Scheduling

 Classification scheme

— Classification scheme is the information you use
to make a decision

— How can we study classification scheme alone?

e Classification scheme + Scheduling policy

— Scheduling policy is how you use the information

Outline: Cache-aware Scheduling

e Classification scheme

— Classification scheme is the information you use
to make a decision

— How can we study classification scheme alone?

e Classification scheme + Scheduling policy

— Scheduling policy is how you use the information

Study Classification Scheme Alone

e Perfect scheduling policy

core core

L2 cache

core core

L2 cache

Study Classification Scheme Alone

e Perfect scheduling policy

Worst Schedule: Best Schedule:
Average Degradation =22% Average Degradation =2.3%

90.4% 4.67%

MILC

GAMESS

-2.4% . 4.56%
GAMESS NAMD MILC NAMD

Evaluating Classification Scheme

e Optimal Schedule (OS)

— Optimal classification scheme +

Perfect scheduling policy
e Estimated Best Schedule (EBS)

— Classification scheme under evaluation +

Perfect scheduling policy
* Degradation due to classification scheme

Degradation of EBS — Degradation of 0S
Degradation of 0§

Relative Degradation =

Collecting Cache Performance data

e Stack Distance Profile

LRU Stack MRU LRU Misses

Access Counter

1

2
of sets 3

associativity

Classification Schemes - SDC

* Key Ildea

— Model how two application threads compete for
the LRU stack positions

Classification Schemes — Animal Classes

* 4 classes of application threads (classified based on stack
distance profiles)

— Turtle: low use of the shared cache

— Sheep: low miss rate, insensitive to # of cache ways
— : low miss rate, sensitive to # of cache ways
— Devil: high miss rate, tends to thrash the cache

Relative Performance Degradation Table

Turtle Sheep Rabbit Devil
Turtle 0
Sheep
Rabbit

Devil 8

Classification Schemes — Miss Rate

* Simply use “miss rate” as heuristics

— Identify high miss rate application threads and
separate them into different caches

— Why?
* exclusive cache lowers miss rate

» exclusive prefetching HW and lowly-contended front-
side bus reduces miss penalty

Classification Schemes - Pain

e Cache Sensitivity
— How much an application will suffer due to cache contention

1 .
S=(m>;whm

* Cache Intensity
— How aggressively an application thread uses cache
Z = # cache accesses per one million instructions
* Pain of Co-Schedule
Pain(Ag) = S(A) X Z(B)
Pain(A,B) = Pain(Ag) + Pain(B,)

Comparing Classification Schemes
e Workload: 10 benchmarks from SPEC2006 Suite

18 -
16 4 O4-Core, 2-LLC

14 - O 6-Core, 3-LLC

12 - W 8-Core, 4-LLC

10 - W 10-Core, 5-LLC B

—aailil

PAIN MISS RATE ANIMAL RANDOM WORST

% Degradation Above Optimal

o N B O

Figure 3. Degradation relative to optimal experienced by each
classification scheme on systems with different numbers of cores.

Performance Degradation Factors

core core core core

L2 cache L2 cache L2 cache L2 cache

Prefeching Prefeching Prefeching Prefeching
HW HW HW HW

Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

DRAM Contention

core core core core

L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

[Dif fSocketPref etchOFF] — SoloPrefetchOFF
SoloPrefetchOFF

DRAM contention =

DRAM Contention

core core core core core core

L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

Dif fSocketPrefetchOFF — [S‘aloPref etchOFF]
SoloPrefetchOFF

DRAM contention =

FSB Contention

Core core
L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

[Di ffCachePrefe tchOFF]— DiffSocketPrefetchOFF
SoloPrefetchOFF

FSEB contention =

FSB Contention

core

core core core

L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

DiffCachePrefetchOFF —[D if fSocketPref etchOFF]
SoloPrefetchOFF

FSEB contention =

FSB Contention

core core

L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

DiffCachePrefetchOFF — Dif fSocketPrefetchOFF
| SoloPrefetchOFF |

FSEB contention =

Cache Contention

core core

core core core core core core
L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

[S ameCachePrefetchOFF J— Dif fCachePrefetchOFF

Cache contention = :
ache contention SoloPrefetchOFF

Cache Contention

core

core core core core core
L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

SameCachePrefetchOFF — [L'! if fCachePrefetchOF F]
SoloPrefetchOFF

Cache contention =

Cache Contention

core core

L2 cache L2 cache L2 cache L2 cache

Prefeching Prefeching Prefeching Prefeching
HW HW HW HW

Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

SameCachePrefetchOFF — Dif fCachePrefetchOFF

Cache contention =
ache contention SoloPrefetchOFF

Total Degradation

CO re CO re core core core core core core
L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching

HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

SameCachePrefetchON |— SoloPrefetchON

Total Degradatio - '
otal Degradation SoloPrefetchON

Total Degradation

core

core core core core core core core

L2 cache L2 cache L2 cache L2 cache
Prefeching Prefeching Prefeching Prefeching
HW HW HW HW
Front-side bus Front-side bus
(FSB) (FSB)

DRAM controller

SameCachePrefetchON —|SoloPrefetchON|

Total Degradation = [sngre fetchON]

Prefeching Contention

Prefeching Contention =
Total Degradation (PF ON)
- Cache Contention (PF OFF)
- FSB Contention (PF OFF)
- DRAM Contention (PF OFF)

Prefetching Contention

Prefetching Contention =
Total Degradation (P
- Cache Contention (P) O
- FSB Contention (PF OFF) [
- DRAM Contention (PF OFF)

Contributions of Degradation Factors

Prefetch aoL2 OFSB B DRAM Ctr.

il e N REE
N B'E R R §

Figure 4. Percent contribution that each of the factors have on the
total degradation.

Outline: Cache-aware Scheduling

 Classification scheme

— Classification scheme is the information you use
to make a decision

— How can we study classification scheme alone?

e Classification scheme + Scheduling policy

— Scheduling policy is how you use the information

Scheduling Algorithms

* Pick one classification scheme
— Pain is the best (offline), but overhead is big
— Picked miss rate

e Distributed Intensity (Dl)

— Sort based on solo miss rate
— Goal: miss rates are distributed evenly

* Distributed intensity Online (DIO)

— Get miss rate dynamically

Average Performance

* Intel Xeon X5365; Eight workloads
e Compare to DEFAULT (Linux scheduler)

% Improvement Over DEFAULT

16
14
12
10

8

h AN ON B O

DI
£ DIO

”[@” v

WL#1 WL#2 WL#3 WL#4 WL#H5 WL#6 WL#7 WL#8

Not much Better?

 Consider a case where
— Four cores; two shared cache

— Two intensive applications (high miss rate), two
non-intensive applications (low miss rate)

* DI/DIO makes sure the two intensive ones
don’t run together

* But the worst case only happens with 1/3
probability...

Worst-case Performance
200
150 H DI
mDIO

[y
o
(=

% Improvement Over
DEFAULT
U
o

0 -

-50
(a) The relative performance improvement of the worst case DI and DIO over the worst case DEFAULT for Intel 8 threads.

Performance deviation

40
B DEFAULT

. 0 DI

'?..

'%20 mDIO

a

S

10
I.ln-.ll..||.|l|_v.|l..l_|'|l.|.|

(b) Deviation of the same application in the same workload with DI, DIO and Default (low bars are good) for Intel 8 threads.

Conclusions

Cache contention is NOT the dominant cause
(?)

Evaluated different classification schemes

— Pain is the best; miss rate is the most practical

Miss rate performs well in real scheduling
Contention-aware scheduling is good for

— Improving average performance (not so much)
— QoS & performance isolation

Other papers...

* Fine grained scheduling

— Software scheduling overhead is too high,
hardware?

* Contention for shared resource (critical
section)
— Optimizing for locks

* Scheduling at Clusters

— A node has multiple VMs, a VM has multiple
threads

