
Increasing the Effectiveness of Directory Caches by 
Deactivating Coherence for Private Memory Blocks

Blas Cuesta, Alberto Ros, María E. Gómez, 
Antonio Robles, and José Duato

Universitat Politècnica de València

Presented by: Anuj Kalia and Conglong Li
Oct 10, 2014



Directory protocol for cache coherence

C1

C2

C3

C4

A logically distributed directory (D) contains coherence information for cached blocks.

D

D

D

D



The directory could store the state for all blocks in the system.
● But then, the directory needs to be in DRAM.

Solution: Use a “directory cache”.
● Track only cached blocks in the system.
● An eviction from the directory cache leads to eviction from all local caches.

Directory caches can have high miss rates: up to 70%.

Problem: Directories should be Small



Directories in AMD Magny-Cours

C1 C2 C6

L3 cache (6MB) Dir

Memory Controller

C1 C2 C6

L3 cache (6MB) Dir

Memory Controller

DRAM

HT

DRAM

Conditions for a directory partition to track a block:
1. It is the home node for that cache block
2. The block needs to be cached somewhere in the system



Problem
Is it possible to make better use of directory cache capacity?



Observation: Many cache blocks are private



Solution: De-activate coherence for private blocks

Need mechanisms to:
● Deactivate coherence on private blocks
● Detect when private blocks become shared
● Recover coherence on shared blocks 

Exploit existing hardware (TLB) and software (page fault) support.

As a result
● Less tracking (57%) and evictions (70%) in directory cache
● Less misses (35%) in processor caches
● Better performance (15%) and less energy (40%)



+ All memory operations have to go through the TLB.
+ The TLB contains some reserved bits.

If a memory access uses a TLB entry marked “P”, a non-coherent request to 
the memory controller is issued.

De-activating coherence for private pages

Virtual Address V Physical Address P L

V: the TLB entry is valid
P: the page is private
L: the page is locked (discussed later)



Detecting sharing of pages

+ All possible sharers of a page also share a page table entry.
+ Augment the page table entry with additional fields

Virtual Address V Physical Address P C Keeper

V: the page-table entry is valid
P: this page is private
C: this page is cached by a processor
Keeper: a bitmask representing the processor that has this page



Detecting sharing of pages

When a Page Table Entry is created, set P = 1, C = 0.

When it is first accessed from processor #N, set C = 1, Keeper = N.

When it is accessed again from processor #M, compare Keeper to M.
● If Keeper = M, do nothing
● If Keeper != M, trigger a coherence recovery mechanism

Virtual Address V Physical Address P C Keeper



Coherence Recovery Mechanism (Flushing-Based)

● Initiator
● Recovery request

● Keeper
● Locking
● Flushing & writebacks
● Set to shared & unlock

● Updating-Based
● Bit-vector
● Avoid flushing

Initiator

Keeper

MC

recovery requestrecovery done

evictionsoperations done



Evaluation: Methodology

● Simulation
○ Full-system: Virtutech Simics 
○ Processor: GEMS toolset (8 dies x 2 cores)
○ Network: GARNET
○ Energy: McPAT

● Benchmarks
○ Parallel (SPLASH-2, ALPBenchs, PARSEC)
○ Scientific
○ Commercial



Evaluation: Private Blocks

● Actual 75%, detected 57%
● Granularity



Evaluation: Processor Cache Misses

● Cache miss rate reduced by 35%
● Also reduce the network traffic and cache miss latency



Evaluation: Coherence Recovery Mechanism



Evaluation: Execution Time

● Runtime reduced by 15%



Evaluation: Execution Time

● Smaller directory cache can do the job



Conclusion

● Avoid tracking of private blocks
○ OS-based detection

● Result
○ 57% out of 75% private blocks detected
○ 15% performance improvement
○ Similar performance with smaller directory
○ Coherence recovery overhead is small

● Discussion
○ Use software support (partition, etc) to avoid hotspotting



Other sources

A Primer on Memory Consistency and Cache Coherence - by 
David A. Wood


