
Parallel Programming
Models and Languages

Wennie Tabib and Vittorio Perera

Problem
Writing parallel code is hard for several reasons:

- parallelize computation
- distribute data
- handle failure
- load balancing
- fault tolerance

Solution
Uses a library that handle (and hides) all these details and makes the
programmer life easier

Outline

● MapReduce

● Dryad

● PigLatin

MapReduce
In

pu
t D

at
a

O
ut

pu
t D

at
a

Map()

Map()

Map()
Reduce()

Reduce()

Grep - MapReduce

file1.txt
file2.txt
file3.txt

input

file1.txt

file2.txt

file3.txt

file1.txt, 13
file1.txt, 150

file2.txt, 8

file3.txt, 100

Splitting Mapping

file1.txt, 13
file1.txt, 150

file2.txt, 8

file3.txt, 100

Reducing

file1.txt, 13
file1.txt, 150
file2.txt, 8
file3.txt, 100

Final Result

Benefits for User

- Programmer writes two functions
- map
- reduce

- Doesn’t have to worry about distributed
computing
- faults are handled by the system
- distributing the work

Benefits for System

- Run on commodity hardware
- fault tolerant

- unresponsive worker
- master failure

- backup tasks

Performance - Grep

- Scanned through 1010 100-byte records
- 1764 workers were assigned
- Entire computation took 150 seconds

including 60 sec of startup overhead

Dryad vs. MapReduce

- Generalization of MapReduce workflow.
- Gives programmer fine-grained control over

communication graph
- Steeper learning curve to using API

System Overview

Grep - Dryad

file1.txt
file2.txt
file3.txt

input

file1.txt

file2.txt

file3.txt

file1.txt, 13
file1.txt, 150

file2.txt, 8

file3.txt, 100

Splitting Operation 1

file1.txt, 13
file1.txt, 150
file2.txt, 8
file3.txt, 100

Final Result

Fault Tolerance

- Job manager informed if a vertex execution
fails

- If the process crashes the daemon notifies
the job manager.

- If the daemon fails the job manager will get a
heartbeat timeout.

PigLatin

Tries to improve the flexibility of Map-Reduce
and increase code reusability by using:

● high level declarative querying (similar to
SQL)

● low level procedural programming

Example: SQL

SQL:
SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10^6

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

LOAD:
specifies input
data files, how
to deserialize
and convert
into Pig Latin

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

FILTER:
retains only
part of the
data and
discards the
rest

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

(CO)GROUP:
groups
together
tuples from
more data
sets

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

Example: Pig Latin

Pig Latin:
urls = LOAD ‘urls_log.txt’ USING myLoad()
 AS (urls, pagerank, category)
good_urls = FILTER urls by pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups BY
 COUNT(good_urls)>10^6
output = FOREACH big_group GENERATE category,

 AVG(good_urls.pagerank)

FOREACH:
applies some
processing to
each tuple in
the data set

Commands

Every commands only perform one
transformation on the data.

The programmer can write finer grained
optimizations.

Data Model
- Atom: simple atomic values (i.e., 20, ‘alice’)

- Tuple: a sequence of fields of any data type
- Bag: a collection of tuples with duplicates and not with

the same schema
(i.e., {(‘alice’, ‘lakers’), (‘alice’, (‘iPod’, ‘apple’)), (‘alice’, ‘lakers’)})

- Map: a collection of data items associated with a key
(i.e., [‘fanOf’->{(‘lakers’),(‘iPod’)} ‘age’ -> 20])

Implementation (1)
Implemented using Hadoop, by compiling Pig Latin into
map-reduce jobs.

- The Pig Latin interpreter parses the input files and bags
to verify the command is valid

- A logical plan (~ relational algebra) for every bag
defined

- Execution is carried out only when STORE is invoked

Implementation (2)

- Each COGROUP command is converted into a map-reduce job.
- The map function initially assigns key to tuples based on BY clauses.
- FILTER and FOREACH commands from the LOAD to the first COGROUP are pushed into the map

of C1.
- Subsequent commands (Ci) are pushed in the reduce functions of their corresponding

COGROUP.

Grep - PigLatin
messages = LOAD 'messages'
warns = FILTER messages BY $0 MATCHES '.*WARN+.*'
STORE warns INTO 'warnings'

Load Filter Store

Map Reduce

PigLatin vs MapReduce and Dryad

- No quantitative results
- PigLatin is much more focused on usability

- Allows for User Defined Functions
- It come together with a debugging environment

Questions?

References
Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing
on large clusters." Communications of the ACM 51.1 (2008): 107-113.

Isard, Michael, et al. "Dryad: distributed data-parallel programs from sequential
building blocks." ACM SIGOPS Operating Systems Review. Vol. 41. No. 3.
ACM, 2007.

Olston, Christopher, et al. "Pig latin: a not-so-foreign language for data
processing." Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. ACM, 2008.

Graph

- Dryad library is used to create a graph
vertex.

- New edges are created by applying either
pointwise or complete bipartite composition
operation to two existing graphs.

- Users can also define new composition
operations

- Graphs can also be merged

Job

- vertices are created according to partitioned
input data.

- outputs are concatenated to produce a
single named distributed file.

- Each vertex is placed into a stage to simplify
job management.

Job Execution

- job manager tracks state and history of
vertices

- job is terminated if job manager fails
- job manager performs greedy scheduling

