
Memory Ordering

Joseph Tassarotti

Joseph Tassarotti Memory Ordering



Why is concurrency hard?

Writing concurrent programs is hard, even with sequentially
consistent memory:

1 Hard to reason about – have to think about all possible
thread interleavings

2 Hard to pick the right building blocks – locks? atomic
instructions? semaphores? condition variables?

3 Hard to debug – tricky to reproduce buggy interleavings

It gets worse!

Joseph Tassarotti Memory Ordering



Why is concurrency hard?

Writing concurrent programs is hard, even with sequentially
consistent memory:

1 Hard to reason about – have to think about all possible
thread interleavings

2 Hard to pick the right building blocks – locks? atomic
instructions? semaphores? condition variables?

3 Hard to debug – tricky to reproduce buggy interleavings

It gets worse!

Joseph Tassarotti Memory Ordering



Weak memory

Intuitively, we often think about concurrent programs in terms
of interleavings of threads.

Weak memory models permit executions that do not
correspond to interleavings. For example with release-acquire
semantics:

[x ]rel := 1 [y ]rel := 1
r1 = [x ]acq
r2 = [y ]acq

r3 = [y ]acq
r4 = [x ]acq

After running this, it’s possible for r1 = 1, r2 = 0, r3 = 1,
and r4 = 0!

Joseph Tassarotti Memory Ordering



Why is concurrency harder with weak memory?

Writing concurrent programs is harder with weak memory:

1 Harder to reason about – have to think about all possible
thread interleavings . . . and executions that do not correspond
to interleavings!

2 Harder to pick the right building blocks – locks? atomic
instructions? semaphores? condition variables? . . . now add
different consistency level options to them (e.g. C++11 has 4
different types of memory stores)

3 Harder to debug – tricky to reproduce buggy interleavings
. . . and now there are yet more options, some of which can
only occur on certain hardware!

This is, in fact, worse!

Joseph Tassarotti Memory Ordering



Why is concurrency harder with weak memory?

Writing concurrent programs is harder with weak memory:

1 Harder to reason about – have to think about all possible
thread interleavings . . . and executions that do not correspond
to interleavings!

2 Harder to pick the right building blocks – locks? atomic
instructions? semaphores? condition variables? . . . now add
different consistency level options to them (e.g. C++11 has 4
different types of memory stores)

3 Harder to debug – tricky to reproduce buggy interleavings
. . . and now there are yet more options, some of which can
only occur on certain hardware!

This is, in fact, worse!

Joseph Tassarotti Memory Ordering



How do these papers help?

RCDC: a relaxed consistency deterministic computer by Joseph
Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan
Grossman.

→ Makes execution deterministic so same ordering for every run

Efficient processor support for DRFx, a memory model with
exceptions by Abhayendra Singh, Daniel Marino, Satish
Narayanasamy, Todd Millstein, and Madan Musuvathi.

→ Raise exception if non-sequentially consistent behavior occurs

Joseph Tassarotti Memory Ordering



RCDC - High Level

RCDC: a relaxed consistency deterministic computer by Joseph
Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan
Grossman.

Making execution deterministic makes it easier to reproduce
bugs

Earlier work by authors/others had shown how to determinize
sequentially consist and total store order memory models.

But it’s slow to do so.

Paper shows even weaker “data race free” model can be
determinized more efficiently than total store order.

Joseph Tassarotti Memory Ordering



What’s the Data-Race-Free (DRF) Model?

“Simplified” model for non-expert programmers:

Divide variables into synchronization variables (e.g. status of
a lock) and data variables (everything else).

Use special, expensive, synchronized primitives to manipulate
synchronization variables (e.g. for locking/unlocking)

Compiler promises not to re-order things past these, and emits
fences to prevent hardware from doing so

If no data races on data variables, you get sequentially
consistent behavior. If there are races, it’s either undefined
(C/C++11) or too complicated to understand (Java).

This is weaker than what the hardware is actually giving you,
but it’s simple to understand.

Joseph Tassarotti Memory Ordering



What’s the Total Store Order (TSO) Model?

Abstract model:

Each processor has a FIFO “store buffer”

Periodically, these buffers are flushed to memory

A processor reads from its own store buffer before looking at
memory

Fence instructions force a buffer to flush.

This is what’s found on x86 (more or less).

It gives more guarantees than DRF (no completely undefined
behavior).

Joseph Tassarotti Memory Ordering



DMP-TSO

(Figure 1, Devietti et. al.)

Joseph Tassarotti Memory Ordering



DMP-HB

(Figure 1, Devietti et. al.)

Joseph Tassarotti Memory Ordering



Commit Phase

(Figure 4, Devietti et. al.)

Joseph Tassarotti Memory Ordering



How does synchronization (locking) work?

No round robin sequential synchronization phase, so how to
determinize?

When thread wants to lock:

1 Block until we’re the thread that has executed fewest
instructions !

2 Do a CAS on lock status variable.
3 If we succeed, we now have lock. Check whether the last lock

was (1) done in a different quantum, or (2) held by the same
thread. If so, no need for fence. Otherwise we need a fence, so
end quantum.

Why no need for fence?

If it’s the same thread locking, then no synchronization
necessary.
If it’s in a different quantum, we already synchronized during
commit phase.

Joseph Tassarotti Memory Ordering



Results

(Figure 8, Devietti et. al.)
Joseph Tassarotti Memory Ordering



Questions/Critique

Determinization is sensitive to cache size. Different cache
sizes cause different executions. So what do we do with user
submitted bug reports if they have different hardware?

Strange anomalous behavior due to weak consistency can still
occur – still hard to track down, or even notice in some cases.

What is performance for lock free algorithms? Did not
implement support for, but claim it’s possible.

Lots of other sources of non-determinism in concurrent
programs: user interaction, network traffic, hardware, other
processes on same machine.

Joseph Tassarotti Memory Ordering



Questions/Critique

Other paper (DRFx) addresses this somewhat by triggering
exception and halting execution if data race occurs that
results in non-SC behavior.

But. . . that makes it inappropriate for kernel. Actually, Linux
kernel explicitly makes use of non-SC behavior rather
frequently for performance reasons.

Recall: why did we move to non-SC behavior in the first
place? Performance.

DRFx adds overhead and terminates program if non-SC
behavior happens. Less overhead than SC hardware seems to
require, but still changes cost-benefit ratio – is the extra
complexity worth it?

Joseph Tassarotti Memory Ordering


	Weak Memory

