

Architectural Support
for Security

Tim Loffredo

Branch Regulation: Low-Overhead
Protection from Code Reuse

● Prevents "Code Reuse Attacks"

● CRAs are a BIG PROBLEM!

● New Architectural Component: Secure Call
Stack

● Good Performance (2% Overhead)

● But First...

A Little History

● Code Injection

Attacker's Code

Buffer Overflow

A Little History

● Code Injection

● DEP ~2004

Attacker's Code

Not executable

Not writable

???

A Little History

● "The Geometry of Innocent Flesh on the Bone"
by Hovav Shacham, 2007

● Return to Libc by Solar Designer, 1997

● Code Reuse Attack, aka ROP

Return Oriented Programming

● ROP "borrows" code from the exploited
application to create the attacker code

Attacker's Data

Attacker's Code

Return
Addresses

Return Oriented Programming

&(gadget 3)

&(gadget 1)

a

&(gadget 2)

b

pop eax

ret

pop ebx

ret

add eax, ebx

ret

add a, b

Borrowed Code Resulting
Attacker Code

Attacker Stack
Data

...

...

...

Stack Pointer

Return Oriented Programming

● Takeaway Point:

Attackers reuse code to circumvent DEP

● Usually with ROP

● Also circumvents code signing

Back to Branch Regulation

● Prevents code reuse attacks

● Hardware performs a check on every indirect
branch

● "ret" instructions

● "jmp <blah>" instructions

● "call <blah>" instructions

Branch Regulation

● Call and ret are simple cases

● On "call <blah>":

● Verify that <blah> is a valid function entry point

● Record next instr address (we will return there)

● On "ret":

● Verify that we are returning to an address recorded
by a previous valid call

Branch Regulation

● General indirect jump is hard to regulate

● Compilers do weird things...

● Authors chose an OK heuristic

● On "jmp <blah>":

Putting It Together

● Need Secure Call Stack

● Need Function Boundary Annotations

How?

● Special Hardware in Pipeline

● Function Bounds Stack =

Secure Call Stack + Function Start / End

Performance

● Performance Overhead: 1-2%
● Cuz it executes in parallel!
● Measured by simulation

● Foundation Bound Stack Size: Only 16 Entries

Effectiveness

● Constrain RET targets: gadgets can't chain

● 99% reduction in available gadgets

● Effectively stops ROP

● ... in the 5 binaries the authors looked at

● Should slow ROP regardless

● ROP programming goes from Hard to Infeasible

Security Analysis

● Paper Makes Assumptions

● All Exploits Use a Syscall

● All Exploits Need a "Dispatcher" Gadget

● Not as good as full Control Flow Integrity (CFI)

● Why not take that extra step?

– Because CFI requires compiler-level static analysis

● Extra Note:

The "security" of a system is difficult to measure

Other Paper: kBouncer

● Uses Last Branch Recording (LBR) Registers

● Existing Hardware

● Checks LBR for ROP on Syscalls

● Runtime Overhead: ~1%

● Limitations:

● User Space Unprotected

● Syscall Boundary Can Be Fooled

Other Paper: CFIMon

● Uses Branch Trace Store (BTS)

● Existing Hardware

● Trains branch data based on normal application
runs

● Flags branches taken as "suspicious" when
witnessing abnormal behavior

● Runtime Overhead: ~6%

● Limitations:

● Some Fale Positives

CFIMon Example

● CFIMon catches this attack at the first "ret"

ROP Attack CFIMon Checks

Done

● Any Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

