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Branch Regulation: Low-Overhead
Protection from Code Reuse

e Prevents "Code Reuse Attacks"
e CRAs are a BIG PROBLEM!

 New Architectural Component: Secure Call
Stack

* Good Performance (2% Overhead)
* But First...



A Little History
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A Little History

* Code Injection Memory
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A Little History

* "The Geometry of Innocent Flesh on the Bone"
by Hovav Shacham, 2007

» Return to Libc by Solar Designer, 1997
 Code Reuse Attack, aka ROP
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Return Oriented Programming

« ROP "borrows" code from the exploited
application to create the attacker code
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Return Oriented Programming
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Return Oriented Programming

 Takeaway Point:

Attackers reuse code to circumvent DEP

e Usually with ROP
» Also circumvents code signing



Back to Branch Regulation

* Prevents code reuse attacks

 Hardware performs a check on every indirect
branch

e "ret" instructions
* "Jmp <blah>" instructions
o "call <blah>" instructions



Branch Regulation

e Call and ret are simple cases
e On "call <blah>":

» Verify that <blah> is a valid function entry point
» Record next instr address (we will return there)

e On "ret":

 Verify that we are returning to an address recorded
by a previous valid call



Branch Regulation

* General indirect jump is hard to regulate

 Compilers do weird things...

 Authors chose an OK heuristic

* On "jmp <blah>";

.global f1l
.type 1, @function
<br-annotation>

movwv edax,ecH

Jjmp edx

.global fZ2

.type 2, @function
<br-annotation>

add ecx,04h

(1) JMP inside of the function

V Function Base < Target < Function Bound

(2) JMP to a new function
(Function Bound < Target Address)

VTarget = <br-annotation>

[13; JMP to middle of another function
(Function Bound < Target Address)

x Target Address # <br-annotation>



Putting It Together

 Need Secure Call Stack
* Need Function Boundary Annotations
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How?

» Special Hardware in Pipeline
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Performance

* Performance Overhead: 1-2%
 Cuz it executes in parallel!
 Measured by simulation
* Foundation Bound Stack Size: Only 16 Entries
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Effectiveness

* Constrain RET targets: gadgets can't chain
* 99% reduction in available gadgets

» Effectively stops ROP
e ...Inthe 5 binaries the authors looked at

» Should slow ROP regardless
 ROP programming goes from Hard to Infeasible



Security Analysis

 Paper Makes Assumptions

« All Exploits Use a Syscall
« All Exploits Need a "Dispatcher" Gadget

* Not as good as full Control Flow Integrity (CFl)

 Why not take that extra step?
- Because CFIl requires compiler-level static analysis

* Extra Note:
The "security” of a system is difficult to measure



Other Paper: kBouncer

Uses Last Branch Recording (LBR) Registers
« Existing Hardware

Checks LBR for ROP on Syscalls
Runtime Overhead: ~1%
Limitations:

« User Space Unprotected
e Syscall Boundary Can Be Fooled



Other Paper: CFIMon

Uses Branch Trace Store (BTS)
« Existing Hardware

rains branch data based on normal application
runs

Flags branches taken as "suspicious” when
witnessing abnormal behavior

Runtime Overhead: ~6%

_imitations:

e Some Fale Positives



CFIMon Example

ROP Attack
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e CFIMon catches this attack at the first "ret"
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Done

* Any Questions?
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