Architectural Support
for Security

Tim Loffredo

Branch Regulation: Low-Overhead
Protection from Code Reuse

e Prevents "Code Reuse Attacks"
e CRAs are a BIG PROBLEM!

 New Architectural Component: Secure Call
Stack

* Good Performance (2% Overhead)
* But First...

A Little History

* Code Injection MR

Stack
" l
T

Heap

Buffer Overflow

Attacker's Code

BSS (uninitialized)
Data (initialized)
Text (Code)

A Little History

* Code Injection Memory

e DEP ~2004 Not executable SEacle
1
|

Heap

Attacker's Code

BSS (uninitialized)

Data (initialized)
@ > Text (Code)

v Not writable
?7?7?

A Little History

* "The Geometry of Innocent Flesh on the Bone"
by Hovav Shacham, 2007

» Return to Libc by Solar Designer, 1997
 Code Reuse Attack, aka ROP

Hi0EEMmag fn BOR
s (iA@ @oiting € §Bas@m ~OIE@

Return Oriented Programming

« ROP "borrows" code from the exploited
application to create the attacker code

12

Memory 27-1
Stack
Attacker's Data > l 1
Heap Return
Addresses
BSS (unimitialized)
Data (initialized)
Attacker's Code
< 0 Text (Code)

Return Oriented Programming

Attacker Stack Borrowed Code Resulting
Data Attacker Code

—» add eax, ebx

ret

&(gadget 3)

b ~ » adda,b

&(gadget2) ~ » popebx
a ret

&(gadget 1)

———» pop eax

ret

Stack Pointer

Return Oriented Programming

 Takeaway Point:

Attackers reuse code to circumvent DEP

e Usually with ROP
» Also circumvents code signing

Back to Branch Regulation

* Prevents code reuse attacks

 Hardware performs a check on every indirect
branch

e "ret" instructions
* "Jmp <blah>" instructions
o "call <blah>" instructions

Branch Regulation

e Call and ret are simple cases
e On "call <blah>":

» Verify that <blah> is a valid function entry point
» Record next instr address (we will return there)

e On "ret":

 Verify that we are returning to an address recorded
by a previous valid call

Branch Regulation

* General indirect jump is hard to regulate

 Compilers do weird things...

 Authors chose an OK heuristic

* On "jmp <blah>";

.global f1l
.type 1, @function
<br-annotation>

movwv edax,ecH

Jjmp edx

.global fZ2

.type 2, @function
<br-annotation>

add ecx,04h

(1) JMP inside of the function

V Function Base < Target < Function Bound

(2) JMP to a new function
(Function Bound < Target Address)

VTarget = <br-annotation>

[13; JMP to middle of another function
(Function Bound < Target Address)

x Target Address # <br-annotation>

Putting It Together

 Need Secure Call Stack
* Need Function Boundary Annotations

RET Indirect CALL

, JIMP
Restore Check if Target {heck |f Function
Return Address inside Entry

i unction Bounds
I "'r"E'S No
ompare Compute Inside Outside ~+
Target with Restored < Store Return
Address Ch ﬂddrESS
| < eck if Functm

I Entry
quial Nntiqual ‘fes
-~ w
v X K

" - BR Check Passed
¥ - BR Check Failed

How?

» Special Hardware in Pipeline

B

Execute

—H

Fetch —'{ Decode
T 4 B l
Current
Func.Bounds
I-Cache Function

I

Bounds
Stack

BR \
Check :

Exception
Logic

.

e Function Bounds Stack =
Secure Call Stack + Function Start / End

e s -

Commit

I-Cache

Performance

* Performance Overhead: 1-2%
 Cuz it executes in parallel!
 Measured by simulation
* Foundation Bound Stack Size: Only 16 Entries

20%
15%
10%
5%
0%

Slowdown

0 1 2 4 8 16 32 64 128
FBS Size

Effectiveness

* Constrain RET targets: gadgets can't chain
* 99% reduction in available gadgets

» Effectively stops ROP
e ...Inthe 5 binaries the authors looked at

» Should slow ROP regardless
 ROP programming goes from Hard to Infeasible

Security Analysis

 Paper Makes Assumptions

« All Exploits Use a Syscall
« All Exploits Need a "Dispatcher" Gadget

* Not as good as full Control Flow Integrity (CFl)

 Why not take that extra step?
- Because CFIl requires compiler-level static analysis

* Extra Note:
The "security” of a system is difficult to measure

Other Paper: kBouncer

Uses Last Branch Recording (LBR) Registers
« Existing Hardware

Checks LBR for ROP on Syscalls
Runtime Overhead: ~1%
Limitations:

« User Space Unprotected
e Syscall Boundary Can Be Fooled

Other Paper: CFIMon

Uses Branch Trace Store (BTS)
« Existing Hardware

rains branch data based on normal application
runs

Flags branches taken as "suspicious” when
witnessing abnormal behavior

Runtime Overhead: ~6%

_imitations:

e Some Fale Positives

CFIMon Example

ROP Attack

stack

ADDR7

ADDRG6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

old ebp

password

e CFIMon catches this attack at the first "ret"

ADDR4

ADDR1

ADDR2

ADDR3

Inst1->inst2->inst3->inst4-> ...

samples

(ntlm_check_auth)
ret

insn4 <&

ref eeceeead -

insn3

P ADDR5

ret

<source,
target>

CFIMon Checks

<source> is direct call/jump

<source> is
return

<target> in
ret_set ?

<source> is

indirect call .
<target> in

call_set?

<source> is

indirect jump <target> in

L.

train_set ?

<source> is unknown

A\ 4

Legal

Legal

lllegal

Legal

lllegal

Legal

Suspicious

lllegal

Done

* Any Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

