
Transactional Memory
Zichao Yang and Qing Zheng

Applying Transactional Memory to
Concurrency Bugs

Haris Volos, Andres Jaan Tack, Michael M.Swift and Shan Lu
ASPLOS 12

A block of code declared to be an atomic region, executed
by a single processor, and isolated from other regions

Atomicity → execute to completion/not at all
Consistency → correctness (programmer’s job)
Isolation → side-effects remain invisible until completion
Durability → not needed

Transaction

Transactional Memory
An underlying memory system capable of execution
transactions

H/W TM → speculative execution (with limitations)
S/W TM → code instrumentation (performance issues)
Hybrid TM → use H/W, fall back to S/W if necessary

Bug-Fix Techniques
Atomic regions → execute atomically with isolation
 (speculative execution, locks)
Explicit rollback → abort a partially executed transaction
 (opportunities for retries, mimic conditional variables)
Preemptive resources → transaction-friendly
 (revertible locks, I/O, system calls)
Atomic/lock serialization → a bridge between atomic region
and traditional locks

Concurrency Bugs
Writing correctly synchronized code can be challenge!

Deadlock (DL) → use locks with a wrong order
Atomicity Violation (AL) → fail to protect critical sections

Resolving Deadlock Bugs
Recipe 1: Replacement of
Deadlock-prone Locks
(1) remove the use of multiple

locks
(2) automatically aborting

conflicting threads
(3) preserves concurrency

Recipe 2: Asymmetric
Deadlock Preemption
(1) retry lock acquisition if

deadlock happens
(2) require preemptive resources

and deadlock detector
(3) use TM only for atomicity, not

isolation

Addressing Atomic Violations
Recipe 1: Wrap All
(1) use TM to achieve isolation

and mutual exclusion
(2) compatible with existing locks
(3) no need to introduce new locks

Recipe 2: Warp Unprotected
(1) reuse existing correct codes

and keeps them unchanged
(2) require atomic/lock

serialization
(3) may lead to performance

issues

Evaluation & Case Study

Effectiveness

● fix 43 out of 60 bugs: DL 12/22 AV31/38
● R1 and R2 can fix 40 out of 43

Case study
● Mozilla-I: Deadlock

● Deadlock
○ two threads access the two locks in different order

● Mozilla-I: Deadlock
○ developer fix (hard)

■ force threads to drop ownership before blocking
■ new conditional variables

○ TM fixes
■ recipe 1: replace lock with atomic sections
■ recipe 3: revocable locks

○ Comparison
■ recipe1 solves fours other bugs (side effect)
■ performance: recipe 1: 79% worse

Case study

● Apache-I: deadlock
Case study

● Deadlock
○ listener first hold timeout then waiting for idle worker thread
○ worker thread first get timeout lock then signal

Case study
● Apache-I: deadlock

○ developer fix (hard)
■ release time out before wait
■ three failed attempts

○ TM fixes
■ recipe 3: abort transaction if wait

○ Comparison
■ simpler to fix
■ 28% worse in performance

Case study
● Apache-II: missing synchronization

● race condition
○ two threads compete over the buffer

● Apache-II: missing synchronization
○ developer fix (medium difficulty)

■ use lock for each log device
○ TM fixes

■ insert single atomic block
■ easy

○ Comparison
■ TM simpler to fix
■ 4% slower

Case study

Case study
● MySQL-I: missing synchronization

● Deadlock
○ delete release lock too early

Case study
● Apache-II: missing synchronization

○ developer fix (hard)
■ extent lock_open to the end
■ performance implications

○ TM fixes
■ insert single atomic block
■ easy

○ Comparison
■ simple, expressive and non-invasive
■ same performance

Conclusion
● Very simple to use TM to fix bugs
● performance remains to be improved
● deal with cases can’t tackle now

