
Cache Coherence
15-740 FALL’19

NATHAN BECKMANN

1

Today: Cache coherence
What is it?

Protocol design

Snoopy cache coherence

Directory cache coherence

2

Cache Coherence
Basic question: If multiple processors cache the same block, how do they ensure they all see a
consistent state?

3

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

4

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

5

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

6

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

7

(Non-)Solutions to Cache Coherence
No hardware-based coherence

◦ Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

− Makes average programmer’s life much harder

− Overhead in ensuring coherence in software
Extra cache-flush instructions must be inserted

DeNovo [Choi, PACT’11] does this via “disciplined parallelism” (restrictive programming model)

Nevertheless, where do you commonly see software coherence in real systems?

All caches are shared between all processors
+ No need for coherence

− Shared cache becomes the bandwidth bottleneck

− Getting low latency + scalable design is very hard

− L1s at minimum should be private; still need coherence

9

Maintaining Coherence
Need to guarantee that all processors see a consistent value (i.e., consistent updates) for the
same memory location

Writes to location A by P0 should be seen by P1 (eventually), and all writes to A should appear in
some order

Coherence needs to provide:
◦ Write propagation: guarantee that updates will propagate

◦ Write serialization: provide a consistent global order seen by all processors

Need a global point of serialization for this store ordering

10

Hardware Cache Coherence
Basic idea:

◦ A processor/cache broadcasts its write/update to a memory address to all other processors

◦ Other caches that have the address either update or invalidate its local copy

11

A Very Simple Coherence Scheme
Caches “snoop” (observe) each other’s write/read operations. If a processor writes to a block,
all others invalidate it from their caches.

A simple protocol:

12

◼ Write-through, no-write-
allocate cache

◼ Events & actions:
PrRd – processor read
PrWr – processor write
BusRd – bus read
BusWr – bus write

PrWr / BusWr

Valid

BusWr / --

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Legend: Event/Action

Coherence: Update vs. Invalidate
How can we safely update replicated data?

◦ Option 1 (Update protocol): push an update to all copies

◦ Option 2 (Invalidate protocol): ensure there is only one copy (local), update it

On a Read:

◦ If local copy isn’t valid, put out request

◦ (If another node has a copy, it returns it, otherwise memory does)

13

Coherence: Update vs. Invalidate (II)
On a Write:

◦ Read block into cache as before

Update Protocol:

◦ Write to block, and simultaneously broadcast written data to sharers

◦ (Other nodes update their caches if data was present)

Invalidate Protocol:

◦ Write to block, and simultaneously broadcast invalidation of address to sharers

◦ (Other nodes clear block from cache)

Which is better?

14

Update vs. Invalidate Tradeoffs
Which do we want?

◦ Write frequency and sharing behavior are critical

Update
+ If sharer set is constant and updates are infrequent, avoids the cost of invalidate-reacquire (broadcast

update pattern)

- If data is rewritten without intervening reads by other cores, updates were useless

- Write-through cache policy ➔ bus becomes bottleneck

Invalidate
+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid mutual invalidation-reacquire)

15

Two Cache Coherence Methods
How do we ensure that the proper caches are updated?

Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
◦ Bus is the single point of serialization for all requests

◦ Processors observe other processors’ actions

◦ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this and invalidates its own copy of A

Directory [Censier and Feautrier, IEEE ToC 1978]
◦ Each block has a unique point of serialization

◦ Processors make explicit requests for blocks

◦ Directory tracks ownership (sharer set) for each block

◦ Directory coordinates invalidation appropriately

◦ E.g.: P1 asks directory for exclusive copy, directory asks P0 to invalidate, waits for ACK, then responds to P1

16

Snoopy Cache
Coherence

17

Snoopy Cache Coherence
Idea:

◦ All caches “snoop” all other caches’ read/write requests and keep the cache block coherent

◦ Each cache block has “coherence metadata” associated with it in the tag store of each cache

Easy to implement if all caches share a common bus
◦ Each cache broadcasts its read/write operations on the bus

◦ Good for small-scale multiprocessors

18

A More Sophisticated Protocol: MSI
Extend single valid bit per block to three states:

◦ M(odified): cache line is only copy and is dirty

◦ S(hared): cache line is one of several copies

◦ I(nvalid): not present

Read miss makes a Read request on bus, transitions to S

Write miss makes a ReadEx request, transitions to M state

When a processor snoops ReadEx from another writer, it must invalidate its own copy (if any)

S→M upgrade can be made without re-reading data from memory (via Invalidations)

21

MSI State Machine

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

22

The Problem with MSI
A block is in no cache to begin with

Problem: On a read, the block immediately goes to “Shared” state although it may be the only
copy to be cached (i.e., no other processor will cache it)

Why is this a problem?
◦ Suppose the cache that read the block wants to write to it at some point

◦ It needs to broadcast “invalidate” even though it has the only cached copy!

◦ If the cache knew it had the only cached copy in the system, it could have written to the block without
notifying any other cache → saves unnecessary broadcasts of invalidations

23

The Solution: MESI
Idea: Add another state indicating that this is the only cached copy and it is clean.

◦ Exclusive (E) state

Block is placed into E state if, during BusRd, no other cache had it

◦ Implementation: Wired-OR “shared” signal on bus can determine this—snooping caches assert the
signal if they also have a copy

Silent transition E→M is possible on write

Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with private cache
memories,” ISCA 1984.

24

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

M

E

S

I

[Culler/Singh96]

Modified:
• 1 owner
• dirty data
• R/W access

Exclusive:
• 1 owner
• clean data
• R/W access

Shared:
• >=1 owner(s)
• clean data
• RO access

Invalid:
• Not present
• No data
• No access

27

Snoopy Invalidation Tradeoffs
Should a downgrade from M go to S or I?
◦ S: if data is likely to be reused (before it is written to by another processor)

◦ I: if data is likely to be not reused (before it is written to by another)

◦ How would you know?

Cache-to-cache transfer
◦ On a BusRd, should data come from another cache or memory?

◦ Another cache:

◦ May be faster, if memory is slow or highly contended

◦ Memory

◦ Simpler, no need to wait to see if cache has data first

◦ Less contention at the other caches

28

The Problem with MESI
Shared state requires the data to be clean

◦ I.e., all caches that have the block have the up-to-date copy and so does the memory

Problem: Need to write the block to memory when BusRd happens when the block is in
Modified state

Why is this a problem?
◦ Memory can be updated unnecessarily → some other processor may want to write to the block again

while it is cached

29

Improving on MESI

Idea 1: Do not transition from M→S on a BusRd. Invalidate the copy and supply the modified
block to the requesting processor directly without updating memory

Idea 2: Transition from M→S, but designate one cache as the owner (O), who will write the
block back when it is evicted

◦ Now “Shared” means “Shared and potentially dirty”

◦ This is a version of the MOESI protocol

30

Tradeoffs in Sophisticated Cache Coherence Protocols
◼The protocol can be optimized with more states and prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

◼However, more states and optimizations
-- Are more difficult to design and verify (lead to more cases to take care of, race conditions)

-- Provide diminishing returns

We haven’t shown all the transient states in these protocols; actual implementations need many states
(~20) and are difficult to verify.
➔ Industry very reluctant to change protocol in any way.

31

Tradeoffs in Coherence Protocols
The protocol can be further optimized with more states & prediction mechanisms

◦ Eliminate more unnecessary invalidates and transfers of blocks

But states are not free
◦ Difficult to design and verify (many cases and possible race conditions)

◦ Provide rapidly diminishing returns

We are showing simple cartoons, but actual implementations need many transient states (>20)
& are extremely hard to verify

➔ Industry is quite reluctant to change a working coherence protocol

32

Directory-Based
Cache Coherence

33

Directory-Based Protocols
Buses are simple but don’t scale

◦ Single, shared communication channel is bottleneck

◦ What does snoopy coherence look like with 100 cores?

Solution: distributed coherence via directories
◦ Coherence still requires single point of serialization (for write serialization)

◦ But, serialization location can be different for every block (striped across nodes)

We can reason about the protocol for a single block: one server (directory node), many clients
(private caches)

34

Distributed Directories (more detail later)
Example: 4-core multicore

35

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Ring

interconnect

Directory Based Coherence
Idea: A logically-central directory keeps track of where the copies of each cache block reside.
Caches consult this directory to ensure coherence.

An example mechanism:
◦ For each cache block in memory, store P+1 bits in directory

◦ One bit for each cache, indicating whether the block is in cache

◦ Exclusive bit: indicates that a cache has the only copy of the block and can update it without notifying others

◦ On a read: set the cache’s bit and arrange the supply of data

◦ On a write: invalidate all caches that have the block and reset their bits

◦ Have an “exclusive bit” associated with each block in each cache

36

Directory: Basic Operations
Follow semantics of snoop-based system, but using explicit request/reply messages

Directory:
◦ Receives Read, ReadEx, Upgrade requests from nodes

◦ Sends Inval/Downgrade messages to sharers if needed

◦ Forwards request to memory if needed

◦ Replies to requestor and updates sharing state

Protocol design is flexible (VI, MSI, MESI, MOESI, etc)

39

MESI Directory Transaction: Read

P0 Home

1. Read

2. Data

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

No other sharers
➔ Grant E (in MESI) or S (in MSI)

40

MESI Directory Transaction: Read

P0 Home

1. Read

3. Data

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

Other sharers in S
➔ Grant S

P1

2. Forward
request

41

MESI Directory Transaction: Read

P0 Home

1. Read

3a. Data

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

Other sharers in E
➔ Grant S and downgrade

Need ACK to update directory
(why?)

P1

2. Downgrade

3b. Ack

42

MESI Directory Transaction: Read

P0 Home

1. Read

3a. Data

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

Other sharers in E
➔ Grant S and downgrade

Need ACK to update directory
(why?)

P1

2a. Downgrade

2b. Writeback

3b. Ack

43

Contention Resolution (for Write)

P0 Home

1a. RdEx

2a. Data (Ex)

P1

1b. RdEx

2b. NACK

☺

3. RdEx4. Invl

5a. Rev

5b. Data (Ex)

☺

45

Issues with Contention Resolution
Need to escape race conditions by:

◦ NACKing requests to busy (pending invalidate) entries

◦ OR, queuing requests and granting in sequence

◦ (Or some combination thereof)

Fairness
◦ Which requestor should be preferred in a conflict?

◦ Interconnect delivery order, and distance, both matter

46

Implementing
directories: Shared vs.
private caches

47

Shared vs private caches
Private caches

+ Data is nearby (low latency, high bw)

− Limited cache capacity

− Need coherence

Shared cache

+ Lots of capacity

− Data is far away (high latency, low bw)

+ Don’t need coherence?

48

Cache

Proc

Cache

Proc

Cache

Proc

Cache

Proc

Network

Proc Proc Proc

Cache

Proc

Network

Private caches – logical view
Private caches keep data local near processor

Directory arbitrates accesses + keeps coherence

49

Cache

Proc

Directory

Cache

Proc

Cache

Proc

Cache

Proc

Network

Private caches – implementation
To increase bandwidth, directory is banked

◦ Increasing # ports is very expensive; better to have many, single-ported structures

◦ Each bank responsible for static region of address space

50

Cache

Proc

Directory

Cache

Proc

Cache

Proc

Cache

Proc

Directory Directory Directory

Network

Private caches – implementation
We can put the directory on each node

51

Cache

Proc

D
ir
e
c
to

ry

Cache

Proc

D
ir
e
c
to

ry

Cache

Proc

D
ir
e
c
to

ry

Cache

Proc

D
ir
e
c
to

ry

Distributed caches today
4-core system

52

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Proc

Cache

Directory

NI

Shared caches – logical view
Shared caches use full cache capacity

Do we still need directory? coherence?

53

L1

Cache

Proc

Directory

L1

Cache

Proc

L1

Cache

Proc

L1

Cache

Proc

Shared Cache

YES!

For L1s

Network

Shared caches – implementation
To increase bandwidth, shared cache is banked

54

Directory

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Shared

L2

Cache

Directory Directory Directory

L1

Cache

Proc

L1

Cache

Proc

L1

Cache

Proc

L1

Cache

Proc

Network

Shared caches – implementation
L2 + directory banks track same addresses

➔ Directory can be implemented in L2 tags

55

D
ir
e
c
to

ry Shared

L2

Cache D
ir
e
c
to

ry Shared

L2

Cache D
ir
e
c
to

ry Shared

L2

Cache D
ir
e
c
to

ry Shared

L2

Cache

L1

Cache

Proc

L1

Cache

Proc

L1

Cache

Proc

L1

Cache

Proc

Network

Shared caches – implementation
We can put the directory & L2 bank on each node

56

L2

Cache

Bank ProcD
ir
e
c
to

ry

L1
L2

Cache

Bank ProcD
ir
e
c
to

ry

L1
L2

Cache

Bank ProcD
ir
e
c
to

ry
L1

L2

Cache

Bank ProcD
ir
e
c
to

ry

L1

Distributed caches today
4-core system

57

Proc

L2 Cache

Directory

NI

L1i L1d

Proc

L2 Cache

Directory

NI

Proc

L2 Cache

Directory

NI

Proc

L2 Cache

Directory

NI

L1i L1d

L1i L1dL1i L1d

Implementing directories
Directories are either

◦ Part of tags (“in-cache directories”)

◦ Separate cache banks that hold metadata, not data

What happens on a directory (not cache) eviction?
◦ Must invalidate all sharers, or lose coherence

◦ ➔ Directories tend to be intentionally overprovisioned

58

V
al

id
?

Address SharersDirectory bank
Proc

Cache

Directory

NI

Directory implementation tradeoffs
With shared caches, directory is keeping coherence for the L1s not the L2

➔Many fewer lines than L2 to track

Tradeoff: do separate directory banks or in-cache directories take more area?

59

D
ir
e
c
to

ry Shared

L2

Cache

Directory

Shared

L2

Cache vs.

Scaling problems with directories

60

V
al

id
?

Address

0x00

0x04

…

Sharers

{P0, P1}

P2 (ex)

…

Idealized model: track all possible sharers for each line

How many bits does it take to implement a full-mapped directory with 𝑃 processors?
◦ Each directory entry needs 𝑃 bits
➔ Each directory bank is ∝ 𝑁 × 𝑃 bits (𝑁 = # lines)

◦ With 𝑃 directory banks, overhead is ∝ 𝑁 × 𝑃2

➔ Oops!

Scalable directory implementions

Key operation is set-inclusion (eg, “is P3 a sharer?”)
◦ False positives are OK for correctness

◦ False positive rate determines performance

Key tradeoff: area/complexity vs runtime
◦ More area/complexity ➔ lower false positives

61

V
al

id
?

Address

0x00

0x04

…

Sharers

{P0, P1}

P2 (ex)

…

Scalable directory implementations
(A) TOLERATING FALSE POSITIVES

Limited directories
◦ Observation: most lines shared by few sharers

◦ Idea: Support ~4 sharers, then broadcast

Bloom filters
◦ Space-efficient approximate tracking of sharers

◦ Problem: How to remove a sharer?

(B) TOLERATING COMPLEXITY

Observation: There can be at most𝑁 × 𝑃
sharers across all lines!

➔ This should scale; 𝑁 × 𝑃2 is overkill

Lists of sharers
◦ Distributed doubly-linked list maintained at each

sharer

More efficient encoding
◦ Vary directory bits per line based on # sharers

◦ [Sanchez+, HPCA’12]

62

Cache Coherence
Summary

63

Revisiting Two Cache Coherence Methods
How do we ensure that the proper caches are updated?

Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
◦ Bus-based, single point of serialization for all requests

◦ Processors observe other processors’ actions

◦ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this and invalidates its own copy of A

Directory [Censier and Feautrier, IEEE ToC 1978]
◦ Single point of serialization per block, distributed among nodes

◦ Processors make explicit requests for blocks

◦ Directory tracks ownership (sharer set) for each block

◦ Directory coordinates invalidation appropriately

◦ E.g.: P1 asks directory for exclusive copy, directory asks P0 to invalidate, waits for ACK, then responds to P1

64

Snoopy Cache vs. Directory Coherence
Snoopy Cache
+ Miss latency (critical path) is short: miss → bus transaction to memory

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

Single point of serialization (bus) → not scalable

Directory
- Adds indirection to miss latency (critical path): request → dir. →mem.

- Requires extra storage space to track sharer sets
Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage
(much more scalable than bus)

65

