
Register Promotion by Sparse Partial Redundancy Elimination of
Loads and Stores

Raymond Lo Fred Chow Robert Kennedy Shin-Ming Liu

loQsgi.com
Silicon Graphics Computer Systems

2011 N. Shoreline Blvd.
Mountain View, CA 94043

Peng Tul

Abstract

An algorithm for register promotion is presented based on
the observation that the circumstances for promoting a
memory location’s value to register coincide with situations
where the program exhibits partial redundancy between ac-
cesses to the memory location. The recent SSAPRE al-
gorithm for eliminating partial redundancy using a sparse
SSA representation forms the foundation for the present al-
gorithm to eliminate redundancy among memory accesses,
enabling us to achieve both computational and live range op-
timality in our register promotion results. We discuss how to
effect speculative code motion in the SSAPRE framework.
We present two different algorithms for performing specu-
lative code motion: the conservative speculation algorithm
used in the absence of profile data, and the the profile-driven
speculation algorithm used when profile data are available.
We define the static single use (SSU) form and develop the
dual of the SSAPRE algorithm, called SSUPRE, to perform
the partial redundancy elimination of stores. We provide
measurement data on the SPECint95 benchmark suite to
demonstrate the effectiveness of our register promotion ap-
proach in removing loads and stores. We also study the rel-
ative performance of the different speculative code motion
strategies when applied to scalar loads and stores.

1 introduction

Register allocation is among the most important func-
tions performed by an optimizing compiler. Prior to reg-
ister allocation, it is necessary to identify the data items
in the program that are candidates for register alloca-
tion. To represent register allocation candidates, compil-
ers commonly use an unlimited number of pseudo-registers
[CACt81, TWL+Sl]. Pseudo-registers are also called sym-
bolic registers or virtual registers, to distinguish them from
real or physical registers. Pseudo-registers have no alias,
and the process of assigning them to real registers involves
only renaming them. Thus, using pseudo-registers simplifies
the register allocator’s job.

‘Present address: Intel Corporation, 2200 Mission College Blvd.,
Santa Clara, CA 95052.

Permission to make digital or hard oopiaw of all or pan 01 thii work for
psrsonsl or claewoom we is granted without 1~ provided that
copies arm not made or dieributed for profit or commwcial advan-
tage and that copies bear this notice and the iull citotion on the firat page.
To copy otherwise, to republish. to p(wt cm swvem or to
redietributa to lists, rsquira prior spacific permission and/w a fae
SIGPLAN ‘98 Montraal. Canada
0 1668 ACM 0.89791-9874/98/0006...$6.00

Optimization phases generate pseudo-registers to hold
the values of computations that can be reused later,
like common subexpressions and loop-invariant expressions.
Variables declared with the register attribute in the C pro-
gramming language, together with local variables deter-
mined by the compiler to have no alias, can be directly repre-
sented as pseudo-registers. All remaining register allocation
candidates have to be assigned pseudo-registers through the
process of register promotion [CL97]. Register promotion
identifies sections of code in which it is safe to place the
value of a data object in a pseudo-register. Register pro-
motion is regarded as an optimization because instructions
generated to access a data object in register are more effi-
cient than if it is not in a register. If later register allocation
cannot find a real register to map to a pseudo-register, it can
either spill the pseudo-register to memory or re-materialize
it, depending on the nature of the data object.’

This paper addresses the problem of register promotion
within a procedure. We assume that earlier alias analysis
has already identified the points of aliasing in the program,
and that these aliases are accurately characterized in the
static single assignment (SSA) representation of the pro-
gram [CCLs96]. The register promotion phase inserts ef-
ficient code that sets up data objects in pseudo-registers,
and rewrites the program code to operate on them. The
pseudo-registers introduced by register promotion are main-
tained in valid SSA form. Our targets for register promo-
tion include scalar variables, indirectly accessed memory lo-
cations and program constants. Since program constants
can only be referenced but not stored into, they represent
only a subset of the larger problem of register promotion
for memory-resident objects. For convenience, we choose to
exclude them from discussion for the rest of this paper, even
though our solution does apply to them.3

Register promotion is relevant only to objects that need
to be memory-resident in some part of the program. Global
variables are targets for register promotion because they re-
side in memory between procedures. Aliased variables need
to reside in memory at the points of aliasing. Before register
promotion, we can regard the register promotion candidates
as being memory-resident throughout the program. As a re-

‘For a program variable that has an allocated home location,
spilling its pseudo-register to the home location produces more ef-
ficient code than spilling to a new temporary location. Spilling-to-
home and re-materialization can be regarded aa the reverse of register
promotion [Bri92].

‘In applying register promotion to program constants, the process
of materializing a program constant in a register corresponds to the
loading of a variable from memory to a register.

26

2 t (redundant)

x (redundant) Xt Xt

(a) loads of x (b) stores to x
Figure 1: Duality between load and store redundancies

sult, there is a load operation associated with each of their
uses, and there is a store operation associated with each as-
signment to them. Hence register promotion can be modeled
as two separate problems: partial redundancy elimination of
loads, followed by partial redundancy elimination of stores.

Partial redundancy elimination (PRE) is a powerful op-
timization concept first developed by Morel and Renvoise
[MR79]. By performing data flow analysis on a computa-
tion, it determines where in the program to insert the com-
putation. These insertions in turn cause partially redundant
computations to become fully redundant, and therefore safe
to delete. Knoop et al. came up with a different PRE algo-
rithm called lazy code motion that improves on Morel and
Renvoise’s results [KRS92, DS93, KRS94a]. The result of
lazy code motion is optimal: the number of computations
cannot be further reduced by safe code motion, and the life-
times of the pseudo-registers introduced are minimized.

Our team at Silicon Graphics has recently developed a
new algorithm to perform PRE based on SSA form, called
SSAPRE [CCKS97]. SSAPRE achieves the same optimal
result as lazy code motion. Applying SSAPRE to loads thus
has the effects of moving them backwards with respect to
the control flow while inserting them as late as possible.
The development of SSAPRE was motivated by the fact
that traditional data flow analysis based on bit vectors does
not interface well with the SSA form of program represen-
tation. In contrast, the SSAPRE algorithm takes advantage
of the SSA representation and intrinsically produces its op-
timized output in SSA form. It does not use bit vectors and
instead works on one candidate at a time, using the built-
in use-def edges in SSA to propagate data flow informa-
tion. The SSAPRE algorithm exhibits the same attributes
of sparseness inherent in other SSA-based optimization al-
gorithms. The entire program is maintained in valid SSA
form as SSAPRE iterates through the PRE candidates.

For the sake of recognizing redundancy, loads behave like
ordinary expressions because the later occurrences are the
ones to be deleted. For stores, the reverse is true: the earlier
stores are the ones to be deleted, as is evident in the exam-
ples of Figure l(a) and (b). The PRE of stores problem, also
called partial dead store elimination, can thus be treated as
the dual of the PRE of loads problem. Performing PRE of
stores thus has the effects of moving stores forward while
inserting them as early as possible. By combining the ef-
fects of the PRE of loads and stores, our register promotion
approach results in optimal placements of loads and stores
while minimizing the live ranges of the pseudo-registers.

The rest of this paper is organized as follows. Section 2
surveys previous works related to register promotion and
partial dead store elimination. Section 3 gives an overall
perspective of our register promotion approach. Section 4
discusses our algorithm for the PRE of loads. Section 5 dis-
cusses how speculative code motion can be incorporated into
the SSAPRE framework, and presents two different strate-
gies for performing speculation, depending on whether pro-
file data are available. In Section 6, we develop and present

our algorithm for the PRE of stores. In Section 7, we pro-
vide measurement data to demonstrate the effectiveness of
the techniques presented in removing loads and stores, and
to study the relative performance of the different specula-
tive code motion strategies when applied to scalar loads and
stores. We conclude in Section 8.

2 Related Work

Different approaches have been used in the past to perform
register promotion. Chow and Hennessy use data flow anal-
ysis to identify the live ranges where a register allocation
candidate can be safely promoted [CH90]. Because their
global register allocation is performed relatively early, at
the end of global optimization, they do not require a sep-
arate register promotion phase. Instead, their register pro-
motion is integrated into the global register allocator, and
profitable placement of loads and stores is performed only
if a candidate is assigned to a real register. In optimizing
the placement of loads and stores, they use a simplified and
symbolic version of PRE that makes use of the fact that the
blocks that make up each live range must be contiguous.

Cooper and Lu use an approach that is entirely loop-
based [CL97]. By scanning the contents of the blocks com-
prising each loop, they identify candidates that can be safely
promoted to register in the full extent of the loop. The load
to a pseudo-register is generated at the entry to the outer-
most loop where the candidate is promotable. The store,
if needed, is generated at the exit of the same loop. Their
algorithm handles both scalar variables and pointer-based
memory accesses where the base is loop-invariant. Their
approach is all-or-nothing, in the sense that if only one part
of a loop contains an aliased reference, the candidate will
not be promoted for the entire loop. They do not han-
dle straight-line code, relying instead on the PRE phase to
achieve the effects of promotion outside loops, but it is not
clear if their PRE phase can handle stores appropriately.

Dhamdhere was first to recognize that register promo-
tion can be modeled as a problem of code placement for
loads and stores, thereby benefiting from the established
results of PRE [Dha88, DhaSO]. His Load-Store Insertion
Algorithm (LSIA) is an adaptation of Morel and Renvoise’s
PRE algorithm for load and store placement optimization.
LSIA solves for the placements of both loads and stores at
the same time.

The PRE of stores in the context of register promo-
tion can be viewed as another approach to partial dead
store elimination (PDE), for which numerous algorithms
have been described. Chow applied the dual of Morel and
Renvoise’s PRE algorithm to the optimization of store state-
ments [Cho83]. After solution of the data flow equations in
bit vector form, an insertion pass identifies the latest in-
sertion point for each store statement taking into account
any possible modification of the right hand side expres-
sion. The algorithm by Knoop et al. is also PRE-based,
but they separate it into an elimination step and a sink-
ing step, and iterate them exhaustively so as to cover sec-
ond order effects [KRS94b]. Their algorithm is thus more
expensive than straight PRE. To additionally cover faint
code elimination,4 they use slotwise solution of the data
flow equations [DRZ92].

The PRE-based approaches to PDE do not modify the
control flow structure of the program, but this limits the
partial dead stores that can be removed. Non-PRE-based

‘A store is faint if it is dead or becomes dead after some other
dead stores have been deleted.

21

xx-r

(a) original code (b) speculative load/store
inserted

J\

f

x+-r
f0 rtrtl

rtx

t
xtr

(a) original code (b) x promoted to register

Figure 2: Speculative insertion of load and store Figure 3: Load and store inserted on unpromoted path

PDE algorithms can remove additional partial dead stores changed from the base PRE algorithm. Our approach is
by modifying the control flow. In the revival transformation SSA-based and worklist-driven. We cannot benefit from the
[FKCX94], a partially dead statement is detached from its parallelism inherent in bit vector operations, but we make
original place in the program and reattached at a later point up for that by doing data flow analysis on the sparse SSA
at which it is minimally dead. In cases where movement of representation, which takes fewer steps. Handling one can-
a single store is not possible, the transformation will move a didate at a time allows easier, more intuitive and flexible
superstructure that includes other statements and branches. implementation. When there are fewer candidates to work
However, the coverage of the revival transformation is lim- on, our approach will finish earlier, whereas a bit-vector-
ited because it cannot be applied across loop boundaries. based approach always requires some material fixed cost.
The algorithm as presented also does not consider situa- Our approach is thus more cost-effective, because the num-
tions that require multiple reattachment points to remove a
partial dead store.

ber of candidates for register promotion in a procedure often
shows wide variation.

A PDE approach using slicing transformations was re-
cently proposed by Bo&k and Gupta [BG97]. Instead of
moving partially dead statements, they take the approach
of predicating them. The predication embeds the par-
tially dead statement in a control flow structure, determined
through program slicing, such that the statement is executed
only if the result of the statement is eventually used. A sep-
arate branch deletion phase restructures and simplifies the
flow graph. Their algorithm works on one partially dead
statement at a time. Since the size of the code may grow
after the PDE of each statement, complete PDE may take
exponential time, and results in massive code restructuring.
The vastly different code shape can cause additional varia-
tion in program performance.

An advantage of SSAPRE related to the optimization of
loads is that, given our SSA program representation that en-
codes alias information using virtual variables [CCL+96], it
is easy to perform additional context-sensitive alias analyses
during SSAPRE’s Rename step to expose more redundancy
among loads that have potential aliases. In situations where
there is a chain of aliasing stores, our sparse approach can
stop after identifying the ftrst aliasing store. In contrast,
traditional bit-vector-based approaches would have to ana-
lyze the sequence completely in order to initialize the bit
vectors for data flow analyses. Hence, in programs with
many aliased loads and stores, SSAPRE is often faster than
traditional bit-vector-based PRE.

Another PDE algorithm described by Gupta et
al. [GBF97a] uses predication to enable code sinking in re-
moving partial dead stores. The technique uses path pro-
filing information to target only statements in frequently
executed paths. A cost-benefit data flow analysis technique
determines the profitability of sinking, taking into account
the frequencies of each path considered. The same approach
is used in [GBF97b] to speculatively hoist computations in
PRE. Decisions to speculate are made locally at individual
merge or split points based on the affected paths. Acyclic
and cyclic code are treated by different versions of the algo-
rithm.

A further advantage of using the SSAPRE framework
is that, given an existing implementation of SSAPRE for
general expressions, only a small effort is needed to obtain
coverage for the PRE of indirect loads and scalar loads. In
our case, most of the additional implementation effort was
spent in implementing the PRE of stores.

There is one important difference between PRE-based
and non-PRE-based register promotion approaches. PRE
by its nature does not perform speculative code motion, but
in the area of register promotion, it is sometimes beneficial
to insert loads and stores speculatively. In Figure 2(a), it
is highly desirable to promote variable x to register for the
duration of the loop, but the branch in the loop that con-
tains the accesses to x may not be executed, and promoting
x to register, as shown in Figure 2(b), is speculative. In this
respect, non-PRE-based promotion approaches have an ad-
vantage over PRE-based approaches. On the other hand, it
is not always good to insert loads and stores speculatively.
In the slightly different example of Figure 3(a), the call f()
contains aliases to variable 2. Promoting z to register re-
quires storing it before the call and reloading it after the call
(Figure 3(b)). If the path containing the call is executed
more frequently than the path containing the increment to
x, promoting z to register will degrade the performance of
the loop. We have developed new techniques to control spec-
ulation in the SSAPRE framework.

3 Overview of Approach

In our PRE-based approach to register promotion, we
apply the PRE of loads first, followed by the PRE of stores.
This is different from Dhamdhere’s LSIA, which solves for
the placements of both loads and stores at the same time.
Our ordering is based on the fact that the PRE of loads
is not affected by the results of the PRE of stores, but the
PRE of loads creates more opportunities for the PRE of
stores by deleting loads that would otherwise have blocked
the movement of stores. Decoupling the treatments of loads
and stores also allows us to use an algorithm essentially un-

28

*P + *P *P +-

\/ \/
i 1
*p (redundant) *p (partially

redundant)

Figure 4: Redundant loads after stores

To perform the PRE of stores, we develop the dual of the
SSAPRE algorithm called SSUPRE. Because we treat PDE
in the context of register promotion, we do not take into
account the right hand side of the store. We view each store
statement z t (expr) as if it is made up of the sequence:

r t (expr)
Xtl-

PDE is then applied purely to the store x t r. This allows
greater movement of the store, because it is not blocked
by any modification to (expr), while simplifying our algo-
rithm. We also do not need to be concerned with second
order effects, because doing the earlier PRE of loads effec-
tively removes most of the loads that can block the move-
ment of stores. Before we perform register promotion, we
invoke the standard SSA-based dead store elimination al-
gorithm [CFRS91], which deletes all dead or faint stores.
We cannot eliminate stores that become partially dead af-
ter some other partially dead stores have been removed; if
desired, they can still be eliminated by iterating the PRE of
stores phase.

4 Load Placement Optimization

Before register promotion, there is a load associated with
each reference to the variable. Applying PRE to loads re-
moves redundancy among the loads and introduces pseudo-
registers to hold the values of redundant loads to be reused.
The same holds for indirect load operations in the pro-
gram. The SSAPRE algorithm can be applied to both types
of loads without much modification. We now give a brief
overview of the SSAPRE algorithm. The reader is referred
to [CCKt97] for a full discussion of SSAPRE.

SSAPRE performs PRE on one program computation
at a time. For a given program computation, E, SSAPRE
consists of six separate steps. The first two steps, (I) Cp-
Insertion and (2) Rename, construct the SSA form for the
hypothetical temporary h that represents the value of E.
The next two steps, (3) DownSafety and (4) WillBeAvail,
perform sparse computation of global data flow attributes
based on the SSA graph for h. The fifth step, (5) Finalize,
determines points in the program to insert computations of
E, marks computations that need to be saved and compu-
tations that are redundant, and determines the use-def re-
lationship among SSA versions of the real temporary t that
will hold the value of E. The last step, (6) CodeMotion,
transforms the code to form the optimized output.

In our SSA representation [CCL+96], indirect loads are
in the form of expression trees, while direct loads are leaves
in the expression trees. SSAPRE processes the operations
in an expression tree bottom-up. If two occurrences of an
indirect load, *(al + bl) and *(a~ + bs), have partial redun-
dancy between them, the two address expressions (al + b,)
and (~2 + bz) must also have partial redundancy between
them. Because of the bottom-up processing order, by the
time SSAPRE works on the indirect loads, the address ex-
pressions must have been converted to temporaries tl and tz.

l-t2

cx+l c

i

1
rtr+l
xtr

i

1

(a) original code (b) after PRE of loads

Figure 5: Load placement via store-load interaction

Hence, SSAPRE only needs to handle indirect loads whose
bases are (or have been converted to) leaves.

A store of the form z t (expr) can be regarded as being
made up of the sequence:

r t (expr)
xi-r

Because the pseudo-register r contains the current value of
I, any subsequent occurrences of the load x can reuse the
value from r, and thus can be regarded as redundant. The
same observations apply to indirect stores, replacing x by
*p. Figure 4 gives examples of loads made redundant by
stores.

The implication of this store-load interaction is that we
have to take into account the occurrences of the stores when
we perform the PRE of loads. During PRE on the loads
of 2, x t is called a left occurrence. The @-Insertion step
will also insert Cp’s at the iterated dominance frontiers of left
occurrences. In the Rename step, a left occurrence is always
given a new h-version, because a store is a definition. Any
subsequent load renamed to the same h-version is redundant
with respect to the store.

In the CodeMotion step, if a left occurrence is marked
save, the corresponding store statement will be split into
two statements:

h t (exw)
x + (ew-) * x + tl

The placement of the new store x t tl will be optimized by
the PRE of stores performed after the PRE of loads.

The importance of store-load interaction is illustrated by
Figure 5. Ordinarily, we cannot move the load of z out of
the loop because x’s value is changed inside the loop. Recog-
nizing z t as a left occurrence exposes partial redundancy
in the load of x. PRE in turn moves the load of x to the
loop header. The store to x will be moved to the loop exit
when we perform PRE of stores later (see Section 6).

In performing SSAPRE for direct loads, the Q-Insertion
and Rename steps can be streamlined by taking advantage
of the variable being already in SSA form. We can just
map the 4’s and SSA versions of the variable to the a’s and
h-versions of its load operation.

5 Speculative Code Motion

In its basic framework, PRE does not allow the insertion of
any computation at a point in the program where the com-
putation is not down-safe (i.e., anticipated). This is neces-
sary to ensure the safety of the code placement. Specula-
tion corresponds to inserting computations during SSAPRE
at Q’s where the computation is not down-safe. We can

29

function Has-i-@-opnd(X, F)
if (X is I)

return true
if (X not defined by @)

return false
if (X = F)

return false
if (visited(X))

return false
visited(X) t true
for each operand opnd of X do

if (Has-l-Q-opnd(opnd, F))
return true

return false
end Has-l-@-opnd

function Can-speculate(F)
for each 0 X in the loop do

visited(X) t false
for each back-edge operand opnd of F do

if (Has-l-@-opnd(opnd, F))
return false

return true
end Canspeculate

Figure 6: Algorithm for Can-speculate

accomplish this effect by selectively marking non-down-safe
@‘s as downsafe in the DownSafety step of SSAPRE. In
the extreme case, we can mark all a’s as downsafe in the
DownSafety step of SSAPRE. We refer to the resulting code
motion as full speculation.

A necessary condition for speculative code motion in gen-
eral is that the operation moved must not cause any un-
maskable exception. Direct loads can usually be speculated.
However, indirect loads from unknown pointer values need
to be excluded, unless the hardware can tolerate them.

Speculation may or may not be beneficial to program
performance, depending on which execution paths are taken
more frequently. Thus, it is best to base speculation deci-
sions on the profile data of the program being compiled. In
the absence of profile data, there are situations where it is
often desirable to speculatively insert loads and stores, as
we have discussed with resoect to Figure 2. In this section,
we present two different speculative code motion strategies
depending on whether profile data are available.

5.1 Conservative Speculation

The conservative speculation strategy is used when profile
data are not available. Under this situation, we restrict spec-
ulative code motion to moving loop-invariant computations
out of single-entry loops.

We base our analysis on the Cp located at the start of
the loop body. We perform speculative insertion at the loop
header only if no other insertion inside the loop is needed to
make the commutation fullv available at the start of the 100~

body. The algorithm for &is analysis is given by function
Cansoeculate shown in Figure 6. For the @ F. we iden-
tify the @ operands that correspond to the back edges of
the loop, and call function Has-l-@-opnd for each of these
Cp operands. Since I represents potential insertion points,
Has-J--a-opnd returning false will indicate that the com-
putation is available at that back edge without requiring
any insertion other than the one at the operand of F that
corresponds to the loop entry. If the checks succeed, we
mark F as downsafe. Figure 7 shows the results of ap-
plying this algorithm to the program of Figure 2(a). The

@(hs, 1)

x t [hz t]

J
@(hl, hz)
+

exit

\

<

h
+

1
t2 t
X

7
tz

Q(h, t2)

exit

(a) SSA graph for h (b) resulting program

@ for hl marked as down-safe

Figure 7: Speculative load placement example

algorithm marks the @ corresponding to hl in Figure 7(a)
as down-safe. Figure 7(b) shows the program after the load
has been speculatively moved out of the loop. Subsequent
application of speculative code motion in the PRE of stores
will move the store out of the loop to yield the result shown
in Figure 2(b).

5.2 Profile-driven Speculation

Without knowledge of execution frequency, any speculation
can potentially hurt performance. But when execution pro-
file data are provided, it is possible to tailor the use of spec-
ulation to maximize run-time performance for executions of
the program that match the given profile. The optimum
code placement lies somewhere between no speculation and
full speculation. Code placement with no speculation cor-
responds to the results obtained by traditional PRE. Code
placement with full speculation corresponds to the results of
SSAPRE if all @‘s are marked downsafe in the DownSafety
step. The problem of determining an optimum placement
of loads and stores can be expressed as instances of the in-
teger programming problem, but we know of no practical
algorithm for solving it. Instead of aiming for the opti-
mal solution, we settle on a practical, versatile and easy-
to-implement solution that never performs worse than no
speculation, subject to accuracy of the profile data.

In our approach, the granularity for deciding whether to
speculate is each connected component of the SSA graph
formed by SSAPRE. For each connected component, we
either perform full speculation, or do not speculate at all.
Though this limits the possible placements that we can con-
sider, it enables us to avoid the complexity of finding and
evaluating the remaining placement possibilities. When the
connected components are small, we usually get better re-
sults, since we miss fewer placement possibilities. The con-
nected components for expressions are generally quite small.

Our profile-driven speculative code motion algorithm
works by comparing the performance with and without spec-
ulation using the basic block frequency data provided by
the execution profile. The overall technique is an exten-
sion of the SSAPRE algorithm. Pseudo-code is given in
Figure 8. Procedure SSAPRE-with-profile gives the overall
phase structure for profile-driven SSAPRE. We start by per-
forming regular SSAPRE with no speculation. Before the
CodeMotion step, we call function Speculatingo, which de-
termines whether there is any connected component in the

30

procedure Computespeculationsavings
for each connected component C in SSA graph

sauings[C] t 0
for each real occurrence R in SSA graph

if (Reload(R) = false and R is defined by a Cp F)
sauings[Connected-component(F)] += freq(R)

for each @ occurrence F in SSA graph
for each operand opnd of F

if (Insert(opnd) = true) {
if (opnd is defined by a @)

savings[Connected-component(F)] += freq(R)
>
else if (opnd is I)

sauings[Connected-component (F)] -= freq(optad)
end Computespeculationsavings

function Speculating(,)
has-speculation t false
remove Q’s that are not partially available or

partially anticipated
identify connected components in SSA graph
ComputespecuJation*avingsc,)
for each connected component C in SSA graph

if (sauings[C] > 0) {
mark all Q’s in C downsafe
has-speculation t true

1
return has-speculation

end Speculating

procedure SSAPRE-with-profile
@-Insertion Step
Rename Step
DownSafetv Step
WiJJBeAvajJ Step
Finalize Step
if (Speculating()) {

WiJJBeAvaiJ Step
Finalize Steo

1
CodeMotion Step

end SSAPRE-with-profile

Figure 8: Profile-driven SSAPRE Algorithm

computation being processed that warrants full speculation.
If SpecuJating() returns true, it will have marked the rele-
vant @‘s as down-safe. Thus, it is necessary to re-apply the
WiJJBeAvaiJ and Finalize steps, which yield the new code
placement result with speculation. The last step, CodeMo-
tion, works the same way regardless of whether speculation
is performed or not.

Speculating() is responsible for determining if full spec-
ulation should be applied to each connected component in
the SSA graph. First it prunes the SSA graph by remov-
ing @‘s where the computation is not partially available or
not partially anticipated. @‘s where the computation is not
partially available are never best insertion points because
some later insertion points yield the same redundancy and
are better from the point of view of the temporary’s live
range. Insertions made at Cp’s where the computation is not
partially anticipated are always useless because they do not
make possible any deletion. After removing these ip’s and
deleting all references to them, Speculating(,) partitions the
SSA graph into its connected components. Next, procedure
Compute-speculation-savings determines whether specula-
tion can reduce the dynamic counts of the computation
on a per-connected-component basis, using the results of
SSAPRE with no speculation as the baseline.

Given a connected component of an SSA graph where the

computation is partially available throughout, it is straight-
forward to predict the code placement that corresponds to
full speculation. Since we regard alI Q’s in the component as
down-safe, the WiJJBeAvaiJ step will find that can-be-avail
holds for all of them. The purpose of the computation of
Later in the WiUBeAvaiJ step is only for live range opti-
mality, and does not affect computational optimality. If we
ignore the Later property, the Finalize step will decide to
insert at all the I operands of the Cp’s. In addition, the
insertions will render fully redundant any real occurrence
within the connected component whose h-version is defined
by a.

By predicting the code placement for full speculation,
Compute-speculation-savings can compute the benefits of
performing full speculation for individual connected com-
ponents and store them in the array savings, indexed
by the connected components. savings is the sum of
the dynamic counts of the real occurrences deleted and
any non-speculative SSAPRE insertions suppressed due to
full speculation, minus the dynamic counts for the new
insertions made by fulI speculation. Procedure Com-
pute-speculation-savings iterates through all real and Q! oc-
currences in the SSA graph. Whenever the algorithm en-
counters a non-deleted real occurrence that is defined by a
a’, it increases savings for the connected component by the
execution frequency of the real occurrence. Deletions made
by SSAPRE are passed over because those deletions would
have been done with or without the speculation part. Other
real occurrences are not affected by full speculation. For
each @ occurrence, procedure Compute-speculation-savings
iterates through its operands. If the @ operand is marked
insert and is defined by another 9, the algorithm also in-
creases savings for the connected component by the execu-
tion frequency of the Cp operand because full speculation wilI
hoist such insertions to earlier @‘s. If the Cp operand is I,
the algorithm decreases savings for the connected compo-
nent by the execution frequency for the Q, operand because
under full speculation, insertions will be performed at these
Cp operands.

After procedure Compute-speculation-savings returns,
SpecuJating() iterates through the list of connected com-
ponents. If the tallied result in savings is positive for a
connected component, it means speculative insertion is prof-
itable, and SpecuJating() will effect full speculation by mark-
ing all a’s in the connected component as down-safe.

With our profile-driven speculation algorithm, specula-
tion is performed only in those connected components where
it is beneficial. In contrast to the technique by Gupta et
al. [GBF97a], our decisions are made globally based on a
per-connected-component basis in the SSA graph. In the
example of Figure 3, our algorithm will promote x to a reg-
ister if the execution count of the path containing the call is
lower than that of the path containing the store. In the ab-
sence of profile data, our conservative speculation algorithm
of Section 5.1 will not trigger the speculative code motion
in this example because it requires insertion in the body of
the loop.

6 Store Placement Optimization

In this section, we develop our algorithm to perform PRE
of stores (or PDE). We first present the underlying prin-
ciples behind our sparse approach to PRE. We then relate
and contrast the characteristics between loads and stores to
establish the duality between load redundancy and store re-
dundancy. Given this duality, we then describe our SSUPRE

31

(a) before factoring (b) after factoring

+ redundancy edge

- control flow edge

C is either an expression or a load

Figure 9: Factoring of redundancy edges

algorithm that. performs PRE of stores.

6.1 Foundation of Sparse PRE

Suppose we are working on a computation C, which per-
forms an operation to yield a value. Let us focus on the
occurrence Cl with respect to which other occurrences are
redundant, and assume there is no modification of the value
computed by Cl in the program.5 Any occurrence of C in
the region of the control flow graph dominated by CI is fully
redundant with respect to Cl; an occurrence of C outside
this region may be partially redundant with respect to Cl.
The earliest possible strictly partially redundant occurrences
of C with respect to Cl are in the dominance frontier of 9.
Dominance frontiers are also the places where 4 operators
are required in minimal SSA form [CFR+91], intuitively in-
dicating that there are common threads between PRE and
properties of SSA form.

Our sparse approach to PRE, as exemplified by
SSAPRE, relies on a representation that can directly expose
partial redundancy; such a representation can be derived as
follows. Suppose an occurrence C2 is partially redundant
with respect to Cl. We represent this redundancy by a di-
rected edge from Cz to Cl.

In general, if the computation C occurs many times
throughout the program, there will be many such edges.
The relation represented by these edges is many-to-many,
because an occurrence can be redundant with respect to
multiple occurrences. We factor these redundancy edges by
introducing a @ operator at control flow merge points in the
program. The effect of this factoring is to remove the many-
to-many relationships, and convert them to many-to-one so
that each occurrence can only be redundant with respect to
a single occurrence, which may be a @ occurrence. In the
factored form, each edge represents full redundancy because
the head of each edge must dominate the tail of the edge
after the factoring. Strict partial redundancy is exposed
whenever there is a missing incoming edge to a @, i.e., a I
@ operand (Figure 9).

Having ident,ified this sparse graph representation that
can expose partial redundancy, we need a method to build
the representation. Because the representation shares many
of the characteristics of SSA form, the method to build this
sparse graph closely parallels the standard SSA construc-
tion algorithm.6 The Q-Insertion step inserts @‘s at the it-

‘We use subscript here purely to identify individual occurrences;
they are not SSA versions.

‘SSA form is actually a kind of factored use-def representation;
discussion of this can be found in [Wo196].

erated dominance frontiers of each computation to serve as
anchor points for placement analysis. In the Rename step,
we assign SSA versions to occurrences according to the val-
ues they compute. The resulting SSA versions encode the
redundancy edges of the sparse graph as follows: if an oc-
currence has the same SSA version as an earlier occurrence,
it is redundant with respect to that earlier occurrence.

In our sparse approach to PRE, the next two steps,
DownSafety and WtiBeAvail, perform data flow analysis
on the sparse graph. The results enable the next step, Fi-
nalize, to pinpoint the locations in the program to insert the
computation. These insertions make partially redundant OC-

currences become fully redundant, which are marked. At
this point, the form of the optimized output has been deter-
mined. The final step, CodeMotion, transforms the code to
form the optimized program.

6.2 Duality between Loads and Stores

For register promotion, we assign a unique pseudo-register
r for each memory location involved in load and store place-
ment optimization. For indirect loads and stores, we assign
a unique pseudo-register for each lexically identical address
expression. The discussion in this section applies to both
direct and indirect loads and stores, though we use direct
loads and stores as examples in the discussion.

A load of the form r t z is fully (partially) redundant
if the load is fully (partially) available. Thus, given two oc-
currences of the loads, the later occurrence is the redundant
occurrence. On the other hand, a store, of the form z t r,
is fully (partially) redundant if the store is fully (partially)
anticipated. Given two occurrences of the stores, the ear-
lier occurrence is the redundant occurrence (Figure 1). As a
result, redundancy edges for loads point backwards with re-
spect to the control flow, while redundancy edges for stores
point forward. The availability and anticipation of a load
is killed when the memory location is modified. On the
other hand, the availability and anticipation of a store is
killed when the memory location is used; the movement of
an available store is blocked additionally by an aliased store.

A load of z is fully redundant with respect to an ear-
lier load of 2 only if the earlier load occurs at a place that
dominates the current load, because this situation implies
the earlier load must be executed before control flow reaches
the current load. Since redundancy edges are factored across
control flow merge points, the targets of the new edges al-
ways dominate their sources. All the edges now represent
full load redundancies, and partia1 load redundancies are ex-
posed when there are I operands in the factoring operator
a. A store to I is fully redundant with respect to a later
store to x onIy if the later store occurs at a place that post-
dominates the current store, because this implies the later
store must eventually be executed after the current store.
Since redundancy edges are factored across control flow split
points, the targets of the new edges always post-dominates
their sources. All the edges now represent full store redun-
dancies, and partial store redundancies are exposed when
there are I operands in the factoring operator A. In per-
forming PRE, we move loads backward with respect to the
control flow and insert them as late as possible to minimize
r’s lifetime; for stores, however, we move them forward and
insert them as early as possible to minimize r’s lifetime.

We define static single use (SSU) form to be the dual of
SSA form; in SSU form each use of a variable establishes a
new version (we say the load uses the version), and every
store reaches exactly one load. Just as the SSA factoring

32

Table 1: Duality between load and store redundancies

operator Q, is regarded as a definition of the corresponding
variable and always defines a new version, the SSU factoring
operator A is regarded as a use of its variable and always
establishes (uses) a new version. Each use post-dominates
all the stores of its version. Just as SSA form serves as
the framework for the SSAPRE algorithm, SSU form serves
as the framework for our algorithm for eliminating partial
redundancy among stores, which we call SSUPRE. We an-
notate SSU versions using superscripts.

Table 1 summarizes our discussion on the duality be-
tween load and store redundancies.

6.3 SSUPRE Algorithm

Having established the duality between load and store re-
dundancies, we are now ready to give the algorithm for our
sparse approach to the PRE of stores. For a general store
statement, of the form z t (expr), we view it as if it is made
up of the sequence:

r t (expr)
x+-r

PRE is only applied to the store E t r, where z is a direct
or indirect store and r is a pseudo-register. For maximum
effectiveness, the PRE of stores should be performed after
the PRE of loads, because the PRE of loads will convert
many loads into register references so they would not block
the movement of the stores, as shown in Figure 2.

Our SSUPRE algorithm for the PRE of stores is tran-
scribed and dualized from the SSAPRE algorithm, except
that it cannot exploit the SSA representation of the input
in the same way as SSAPRE. As a result, it is less efficient
than SSAPRE on a program represented in SSA form. To
achieve the same efficiency as SSAPRE, it would have been
necessary for the input program to be represented in SSU
form. Such a representation of the input is not practical
because it would benefit only this particular optimization,
so SSUPRE constructs the required parts of SSU form on
demand.

Like SSAPRE, the SSUPRE algorithm is made up of six
steps, and is applicable to both direct and indirect stores.
It works by constructing the graph of factored redundancy
edges of the stores being optimized, called the SSU graph.
The first two steps, A-Insertion and Rename, work on all
stores in the program at the same time while conducting a
pass through the entire program. The remaining steps can
be applied to each store placement optimization candidate
one at a time.

6.3.1 The A-Insertion Step

The purpose of A is to expose the potential insertion points
for the store being optimized. There are two different scenar-
ios for A’s to be placed. First, A’s have to be placed at the

iterated post-dominance frontiers of each store in the pro-
gram. Second, h’s also have to be placed when a killed store
reaches a split point; since stores are killed by loads, this
means A’s have to be placed at the iterated post-dominance
frontiers of each load (including aliased load) of the memory
location. In Figure 10(b), the A at the bottom of the loop
body is inserted due to its being a post-dominance frontier
of x t inside the loop, and the A at the split in the loop
body is inserted due to its being a post-dominance frontier
of the use of x in one branch of the split. A insertion is per-
formed in one pass through the entire program for all stores
that are PRE candidates.

6.3.2 The Rename Step

This step assigns SSU versions to all the stores. Each use is
assigned a new SSU version, which is applied to the stores
that reach it. Each A is assigned a new SSU version because
we regard each A as a use. The result of renaming is such
that any control flow path that includes two different ver-
sions must cross an (aliased) use of the memory location or
a A.

Renaming is performed by conducting a preorder traver-
sal of the post-dominator tree, beginning at the exit points of
the program. We maintain a renaming stack for every store
that we are optimizing. When we come across an aliased
load (use) or A, we generate a new SSU version and push
it onto the stack. When we come to a store, we assign it
the SSU version at the top of its stack and also push it
onto the stack. Entries on the stacks are popped as we
back up the blocks containing the uses that generate them.
The operands of h’s are renamed at the entries of their cor-
responding successor blocks. The operand is assigned the
SSU version at the top of its stack if the top of its stack is
a store or a A; otherwise, it is assigned 1.

To recognize that local variables are dead at exits, we
assume there is a virtual store to each local variable at each
exit of the program unit. Since these virtual stores are first
occurrences in the preorder traversal of the post-dominator
tree, they are assigned unique SSU versions. Any stores
further down in the post-dominator tree that are assigned
the same SSU versions are redundant and will be deleted.

6.3.3 The UpSafety Step

One criterion required for PRE to insert a store is that the
store be up-safe (i.e., available) at the point of insertion.
This step computes up-safety for the A’s by forward propa-
gation along the edges of the SSU graph. A A is up-safe if,
in each backward control flow path leading to the procedure
entry, another store is encountered before reaching the pro-
cedure entry, an aliased load or an aliased store. The propa-
gation algorithm is an exact transposition of the DownSafety
algorithm in SSAPRE.

To perform speculative store placement, we apply the
strategies discussed in Section 5. Figure 11 shows an exam-
ple where a store is speculatively moved out of the loop.

6.3.4 The WillBeAm Step

The WillBeAnt step predicts whether the store will be an-
ticipated at each A following insertions for PRE. The al-
gorithm again is an exact transposition of the WillBeAvail
algorithm in SSAPRE. It consists of two backward propaga-
tion passes performed sequentially. The first pass computes
the can-be-ant predicate for each A. The second pass works
within the region of can-be-ant A’s and compute earlier. A

33

(a) original code

(a) original code

wba = 1

(b) after A insertion (c) after WillBeAnt

*p is an aliased use of x

rtx

Figure 10: Sparse PRE of stores

:,c \
r t (expr)

/

1
X+r

(b) speculative store inserted

Figure 11: Speculative insertion of store

false value of earlier implies that the insertion of store can-
not be hoisted earlier without introducing unnecessary store
redundancy. At the end of the second pass, will-be-ant for
a A is given by:

will-be-ant = can-be-ant A -earlier.

Figure 10(c) shows the values of upsafe (us), can-be-ant
(cba), earlier and will-be-ant (wba) for the example at each
A. The predicate insert indicates whether we wiII perform
insertion at a A operand. insert holds for a A operand if and
only if the following hold:

l The A satisfies will-be-ant; and

. the operand is I or hasreal-def is faise for the operand
and the operand is used by a A that does not satisfy
will-be-ant; i.e., the store is not anticipated at the A
operand.

6.3.5 The Finalize Step

The Finalize step in SSUPRE is simpler than the corre-
sponding step in SSAPRE because placement optimization
of stores does not require the introduction of temporaries.
This step only identifies the stores that will be fully redun-
dant after taking into account the insertions that wiII be
performed. This is done in a preorder traversal of the post-
dominator tree of the program. Renaming stacks are not
required, because SSU versions have already been assigned.
For each store being optimized, we update and use an array
Ant-use (cf. AvaiLdef in SSAPRE) indexed by SSU version
to identify stores that are fully redundant.

Xt

(d) final result

6.3.6 The CodeMotion Step

This last step performs the insertion and deletion of stores to
reflect the results of the store placement optimization. The
stores inserted always use the pseudo-register as their right
hand side, and are of either of the following forms depending
on whether the store is direct or indirect:

Xtr or *ptr

It is necessary to make sure that the value of the pseudo-
register r is current at the inserted store. This implies that
we need to check if the definitions of r track the definitions of
the redundant stores. To do this, we follow the use-def edges
in SSA form to get to ah the definitions of x that reach the
point of store insertion. If the right hand side of a definition
is r, the store is simply deleted.’ If the right hand side is
not r, we change it to r, thereby removing the store, which
must have been marked redundant by the Finalize step:

x t (expr) * r t (expr)

In cases where the inserted store is speculative, it may be
necessary to insert a load on the path where the store is
not available, so that the pseudo-register wiII have the right
value at the inserted store. In the example of Figure 11, the
load r c x is inserted at the head of the loop for this reason.

One of our requirements is that the program be main-
tained in valid SSA form. This implies introducing d’s at
iterated dominance frontiers and assigning the correct SSA
versions for r and x.s The current version for r can easily
be found by following the use-def edges of x. For x, we as-
sign a new SSA version in each store inserted. Uses of x
reached by this inserted store in turn need to be updated to
the new version, and can be conveniently handled if def-use
chains are also maintained. Instead of maintaining def-use
chains, we find it more expedient to perform this task for aII
affected variables by adding a post-pass to SSUPRE. The
post-pass is essentially the renaming step in the SSA con-
struction algorithm, except that rename stacks only need to
be maintained for the affected variables.

‘The right hand side is a pseudo-register if the store was a left oc-
currence that effected redundancy elimination in the load placement
phase.

*In the case of indirect stores, the virtual variables have to be
maintained in correct SSA versions; see [CCL+96].

34

benchmark
PRE of
loads off

PRE of
loads on ratio

132.ijpeg 258354279 227019081 0.879
134.perl 357417768 293678627 0.822
147.vortex 558680056 395136113 0.707
geom. mean 0.744

Table 2: Dynamic counts of all loads executed in SPECint95

7 Measurements

We have implemented the register promotion techniques de-
scribed in this paper in the Silicon Graphics MlPSpro Com-
pilers Release 7.2. In this section, we study the effectiveness
of our techniques by compiling the SPECint95 benchmark
suite and measuring the resulting dynamic load and store
counts when the benchmarks are executed using the train-
ing input data. The benchmarks were compiled at the -02
optimization level with no inlining. Only intra-procedural
alias analysis was applied. The measurement data are gath-
ered by simulating the compiled program after register pro-
motion, but before code generation and register allocation.
In the simulation, each access to a pseudo-register is not
counted as load or store. This is equivalent to assuming that
the underlying machine has an infinite number of registers;
the assumption allows us to measure the effects of register
promotion without confounding effects such as spilling per-
formed by the register allocator.

Our measurement data are organized into two sets. In
the first set, we measure the overall effectiveness of the
SSAPRE and SSUPRE approaches in removing scalar and
indirect loads and stores in the programs. In the second set,
we study the relative performance of the different specula-
tive code motion strategies presented in Section 5.

7.1 Overall Performance

Since our register promotion is made up of the PRE of
loads and the PRE of stores, we present our data for loads
and stores in separate tables. Tables 2 and 3 show the ef-
fects of performing PRE of loads and stores respectively
on the SPECint95 benchmarks, without speculative code
motion. The data shown include both scalar and indirect
loads/stores. Column A in the tables shows the number of
loads/stores executed in the benchmark programs if register
promotion is turned off. Even though register promotion is
disabled, non-aliased local variables and compiler-generated
temporaries are still assigned pseudo-registers by other parts
of the compiler, so the baselines shown in column A repre-
sent quite respectable code quality. Column B shows the
effects on the number of executed loads and stores when the
PRE of loads and the PRE of stores are enabled.

According to Table 2, the PRE of loads reduces the dy-
namic load counts by an average of 25.6%. In contrast, Ta-
ble 3 shows the PRE of stores is able to reduce the dynamic
store counts by only an average of 1.2%. There are a number
of reasons. First, earlier optimization phases have applied
the SSA-based dead store elimination algorithm [CFR+91],
which efficiently removes all faint and dead stores; the only
opportunities left are those exposed by the removal of loads

benchmark
PRE of PRE of

stores off stores on ratio
A B B/A _

099.go 23498625 23210822 0.988
124.m88ksim 9174980 9138470 0.996

,

geom. mean 1 j 0.988 1

Table 3: Dynamic counts of all stores executed in
SPECint95

or those due to strictly partial store redundancy. The side ef-
fect of earlier loop normalization also moves invariant stores
to the end of loops [LLC96]. Second, for aliased variables,
there are usually aliased uses around aliased stores, and
these uses block movement of the stores. Third, apart from
aliased local variables, the other candidates for the PRE
of stores are global variables, and they tend to exhibit few
store redundancies. Our PRE of stores is performed after
the PRE of loads. If the PRE of stores is performed when
the PRE of loads is turned off, the resulting dynamic store
counts are identical to those in column A, indicating that
removing loads is crucial to the removal of stores.

7.2 Speculative Code Motion Strategies

In this section, we study the relative performance of the
different speculative code motion strategies we presented in
Section 5. Although speculative code motion is applicable
to any computation, we concern ourselves only with loads
and stores in this paper. In our target architecture, the
MIPS RlOOOO, indirect loads and indirect stores cannot be
speculated. Thus, we exclude register promotion data for
indirect loads and stores from this section, and present data
only for scalar loads and stores.

Tables 4 and 5 show the effects of different speculative
code motion strategies on the executed scalar load and store
counts respectively in the SPECint95 benchmarks. Our
baseline is column A, which shows the scalar load and store
counts without register promotion. Column B shows the
same data when PRE of loads and stores are applied with-
out speculation. Column C shows the result of applying
the conservative speculative code motion strategy we pre-
sented in Section 5.1. Column D shows the result when we
apply the profile-driven speculative code motion strategy de-
scribed in 5.2 guided by execution profile data. Column E is
provided for comparison purposes only; it shows the results
if we perform full speculation, as defined in Section 5, in the
PRE of loads and stores. Only column D in the tables uses
profile data.

According to the results given by column C, D and E, full
speculation yields the worst performance of the three differ-
ent speculative code motion strategies. This supports our
conviction that it is worth the effort to avoid overdoing spec-
ulation. Full speculation yields improvement over no spec-
ulation only with loads in 126.gcc and stores in 134.perl.
When profile data are unavailable, our conservative specu-
lation strategy yields mixed results compared with no spec-
ulation, as indicated by comparing columns B and C. There
is no effect on a number of the benchmarks. Where there is
a change, the effect is biased towards the negative side. Our

35

Table 4: Dynamic counts of scalar loads executed in SPECint95 due to the three different speculation strategies

geom. mean 11 (0.958 u 1 0.962 1 1 0.952 1 1 0.987

Table 5: Dynamic counts of scalar stores executed in SPECint95 due to the three different speculation strategies

conservative speculative code motion strategy can increase
the executed operation count if some operations inserted in
loop headers would not have been executed in the absence of
speculation. In the case of the SPECint95 benchmark suite,
this situation seems to arise more often than not.

When profile data are available, our profile-driven spec-
ulative code motion strategy consistently yields the best re-
sults. This outcome is indicated in column D, which shows
the best number for each benchmark among all the columns
in Tables 4 and 5. The data show that our profile-driven
speculation strategy is successful in making use of execution
frequency information in avoiding over-speculation by spec-
ulating only in cases where it is certain of improvement.
In programs with complicated control flow like 126.gcc,
our profile-driven speculation yields greater improvements.
Since inlining augments control flow, we can expect even
better results if the benchmarks are compiled with inlining.
Overall, profile-driven speculation contributes to 2% further
reduction in dynamic load counts and 0.5% further reduction
in dynamic store counts. When profile-driven speculation is
applied to other types of operations that can be speculated,
we can expect similar reduction in dynamic counts for those
operations. Given the current trend toward hardware sup-
port for more types of instructions that can be speculated,
we can expect our profile-driven speculation algorithm to
play a greater role in improving program performance for
newer generations of processors.

8 Conclusion

In this paper, we have presented a pragmatic approach to
register promotion by modeling the optimization as two sep-
arate problems: the PRE of loads and the PRE of stores.
Both of these problems can be solved through a sparse ap-
proach to PRE. Since the PRE of loads uses the same algo-

36

rithm as the PRE of expressions, it can be integrated into an
existing implementation of SSAPRE with minimal effort and
little impact on compilation time. The PRE of stores uses a
different algorithm, SSUPRE, which is the dual of SSAPRE,
and is performed after the PRE of loads, taking advantage
of the loads’ having been converted into pseudo-register ref-
erences so that there are fewer barriers to the movement
of stores. SSUPRE is not as efficient as SSAPRE because
the SSA form of its input does not directly facilitate the
construction of SSU form. Since register promotion is rele-
vant only to aliased variables and global variables, the num-
ber of candidates in each program unit is usually not large.
Therefore a sparse, per-variable approach to the problem is
justified. In contrast, a bit-vector-based approach takes ad-
vantage of the parallelism inherent in bit vector operations,
but incurs some larger fixed cost in initializing and operat-
ing on the bit vectors over the entire control flow graph. As
a result, we have seen very little degradation in compilation
time with our sparse approach compared to a bit-vector-
based implementation that precedes this work.

We have presented techniques to effect speculative code
motion in our sparse PRE framework. In particular, the
profile-driven speculation technique enables us to use pro-
file data to control the amount of speculation. These tech-
niques could not be efficiently applied in a bit-vector-based
approach to PRE. Our measurement data on the SPECint95
benchmark suite demonstrate that substantial reduction in
load counts is possible by applying our techniques to aliased
variables, global variables and indirectly accessed memory
locations. There is not a large reduction in store counts
due to earlier optimizations in the compiler. Our study of
the different speculative code motion strategies shows that
the profile-driven speculative code motion algorithm is most
promising in improving program performance over what can
be achieved by partial redundancy elimination.

References

[BG97]

[Bri92]

[CAC+sl]

[CCK+97]

[CCL+961

[CFR+Sl]

[CH90]

[Cho83]

[CL971

[DhaSS]

[DhaSO]

[DRZ92]

R. Bodik and R. Gupta. Partial dead code elimi-
nation using slicing transformations. In Proceed-
ings of the ACM SIGPLAN ‘97 Conference on
Programming Language Design and Implemen-
tation, pages 159-170, June 1997.

P. Briggs. Rematerialization. In Proceedings
of the ACM SIGPLAN ‘92 Conference on Pro-
gramming Language Design and Implementa-
tion, pages 311-321, June 1992.

G. Chaitin, M. Auslander, A. Chandra,
J. Cocke, M. Hopkins, and P. Markstein. Regis-
ter allocation via coloring. Computer Languages,
6:47-57, January 1981.

F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo,
and P. Tu. A new algorithm for partial redun-
dancy elimination based on SSA form. In Pro-
ceedings of the ACM SIGPLAN ‘97 Conference
on Programming Language Design and Imple-
mentation, pages 273-286, June 1997.

F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich.
Effective representation of aliases and indirect
memory operations in SSA form. In Proceedings
of the Sixth International Conference on Com-
piler Construction, pages 253-267, April 1996.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman,
and F. Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence
graph. ACM Trans. on Programming Languages
and Systems, 13(4):451-490, October 1991.

F. Chow and J. Hennessy. The priority-based
coloring approach to register allocation. ACM
Trans. on Programming Languages and Systems,
12(4):501-536, October 1990.

F. Chow. A portable machine-independent
global optimizer - design and measurements.
Technical Report 83-254 (PhD Thesis), Com-
puter Systems Laboratory, Stanford University,
December 1983.

K. Cooper and J. Lu. Register promotion in C
programs. In Proceedings of the A CM SIGPLAN
‘97 Conference on Programming Language De-
sign and Implementation, pages 308-319, June
1997.

D. Dhamdhere. Register assignment using code
placement techniques. Journal of Computer
Languages, 13(2):75-93, 1988.

D. Dhamdhere. A usually linear algorithm for
register assignment using edge placement of load
and store instructions. Journal of Computer
Languages, 15(2):83-94, 1990.

D. Dhamdhere, B. Rosen, and K. Zadeck. How
to analyze large programs efficiently and infor-
matively. In Proceedings of the ACM SIGPLAN
‘92 Conference on Programming Language De-
sign and Implementation, pages 212-223, June
1992.

[DS93]

[FKCX94]

[GBF97a]

[GBF97b]

[KRS92]

[KRS94a]

[KRS94b]

[LLC96]

[MR79]

[TWL+Sl]

[Wo196]

K. Drechsler and M. Stadel. A variation of
knoop, tithing and steffen’s lazy code motion.
SIGPLAN Notices, 28(5):29-38, May 1993.

L. Feigen, D. Klappholz, R. Casazza, and
X. Xue. The revival transformation. In Confer-
ence Record of the Twenty First ACM Sympo-
sium on Principles of Programming Languages,
pages 147-158, January 1994.

R. Gupta, D. Berson, and J. Fang. Path profile
guided partial dead code elimination using pred-
ication. In Proceedings of the Fifth International
Conference on Parallel Architectures and Com-
pilation Techniques, pages 102-113, November
1997.

R. Gupta, D. Berson, and J. Fang. Resource-
sensitive profile-directed data flow analysis for
code optimization. In Proceedings of the 30th
Annual International Symposium on Microarchi-
tecrure, pages 358-368, December 1997.

J. Knoop, 0. Riithing, and B. Steffen. Lazy code
motion. In Proceedings of the ACM SIGPLAN
‘92 Conference on Programming Language De-
sign and Implementation, pages 224-234, June
1992.

J. Knoop, 0. Riithing, and B. Steffen. Opti-
mal code motion: Theory and practice. ACM
Trans. on Programming Languages and Systems,
16(4):1117-1155, October 1994.

J. Knoop, 0. Riithing, and B. Steffen. Par-
tial dead code elimination. In Proceedings of
the ACM SIGPLAN ‘94 Conference on Pro-
gramming Language Design and Zmplementa-
tion, pages 147-158, June 1994.

S. Liu, R. Lo, and F. Chow. Loop induction vari-
able canonicalization in paraIIeIizing compilers.
In Proceedings of the Fourth International Con-
ference on Parallel Architectures and Compila-
tion Techniques, pages 228-237, October 1996.

E. Morel and C. Renvoise. Global optimization
by suppression of partial redundancies. Comm.
ACM, 22(2):96-103, February 1979.

S. Tjiang, M. Wolf, M. Lam, K. Pieper, and
J. Hennessy. Integrating scalar optimization and
parallelization. In Proc. 4th International Work-
shop on Languages and Compilers for Parallel
Computing, pages 137-151, August 1991.

M. Wolfe. High Performance Compilers For
Parallel Computing. Addison Wesley, 1996.

37

