
Dependence Testing
15-745 Optimizing Compilers

Spring 2006

Peter Lee

Loop parallelization

In our previous lecture, we saw how locality
can be improved for simple loops

The transformations were based on
knowledge of the dependences between loop
iterations

Dependence information is also critical for
parallelizing loops

this is a fundamental goal for some
applications and architectures

Parallelization example

for i = 1 to n
 for j = 2 to m
 b[i,j] = ...
 ... = b[i,j-1]

Iterations of the j loop must be executed sequentially.

But iterations of the i loop can be executed in parallel.

Determining this requires dependence information.

Types of dependences

Reviewing from before...

Four types of dependences

flow

anti

output

input

Flow dependence
1: x = 1;
2: y = x + 2;
3: x = z - w;
 ...
4: x = y / z;

Flow (aka true) dependence: Statement i precedes j,
and i computes a value that j uses.

1!t2 and 2!t4

Anti dependence
1: x = 1;
2: y = x + 2;
3: x = z - w;
 ...
4: x = y / z;

Anti dependence: Statement i precedes j, and i uses a
value that j computes.

2!a3

Output dependence
1: x = 1;
2: y = x + 2;
3: x = z - w;
 ...
4: x = y / z;

Output dependence: Statement i precedes j, and i
computes a value that j also computes.

1!o3 and 3!o4

Input dependence
1: x = 1;
2: y = x + 2;
3: x = z - w;
 ...
4: x = y / z;

Input dependence: Statement i precedes j, and i uses a
value that j also uses.

3!i4

Does not imply that i must execute before j

Dependences and renaming
If i!?j, we say the dependence flows from i to j

i is the source, j is the sink

The flow dependence, i!tj, is called the true
dependence, because the other types are
essentially programming style issues; they can
be eliminated by renaming, e.g.:

1: x = 1;
2: y = x + 2;
3: x1 = z - w;
 ...
4: x2 = y / z;

Dependence graph

Data dependences for a procedure are
often represented by a data dependence
graph

nodes are the statements

directed edges (labeled with t, a, o, or i)
represented the dependence relations

Dependence testing

Determining whether two statements are in
a dependence relation is not easy

some readings will explore the issues for
pointer-based structures

But a lot of work has gone into understanding
dependences for statements in loop bodies,
particularly for array-based codes

There is a flow dependence, 1!t2

If we put this in a loop body, the dependence
flows within the same iteration

We say that the dependence is loop-independent

aka: the dependence distance is 0

aka: the dependence direction is =

A first example
1: a[i] = b[i] + c[i];
2: d[i] = a[i];

 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i]; }

Iteration space

The iteration space for this loop: {2, 3, 4}

 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i]; }

i

With dependences for a[] shown:

We write: 1!t
o2 or 1!t

=2

i
t t t

Example 2
 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i-1]; }

There is a flow dependence, 1!t2

The dependence flows between instances of the
statements in different iterations

this is a loop-carried dependence

The dependence distance is 1

The dependence direction is < (aka “positive”)

1!t
12, or 1!t

<2 i
t t

Example 3
 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i+1]; }

There is an anti dependence, 2!a1

This is a loop-carried dependence

The dependence distance is 1

The dependence direction is < (aka “positive”)

2!a
11, or 2!a

<1
i

t t

Example 4
 for i = 2 to 4
 for j = 2 to 4
1: a[i,j] = a[i-1,j+1];

There is a flow
dependence, 1!t1

This is a loop-carried
dependence

What is the dependence
distance/direction?

j

i

Example 4
 for i = 2 to 4
 for j = 2 to 4
1: a[i,j] = a[i-1,j+1];

j

i

The iteration space

j

i

a[1,3]

a[2,2]

a[1,4]

a[2,3]

a[1,5]

a[2,4]

a[2,3]

a[3,2]

a[2,4]

a[3,3]

a[2,5]

a[3,4]

a[3,3]

a[4,2]

a[3,4]

a[4,3]

a[3,5]

a[4,4]

Example 4
 for i = 2 to 4
 for j = 2 to 4
1: a[i,j] = a[i-1,j+1];

The reads and
writes of a[]

j

i

a[1,3]

a[2,2]

a[1,4]

a[2,3]

a[1,5]

a[2,4]

a[2,3]

a[3,2]

a[2,4]

a[3,3]

a[2,5]

a[3,4]

a[3,3]

a[4,2]

a[3,4]

a[4,3]

a[3,5]

a[4,4]

Example 4
 for i = 2 to 4
 for j = 2 to 4
1: a[i,j] = a[i-1,j+1];

Dependence
distance is (1,-1)

1!t
(1,-1)1

1!t
(<,>)1

The problem setup

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

1

For the time being, we restrict our attention
to simple nested loops of the form:

with iteration vectors

and fi, gi linear functions of the form

for i1 = L1 to U1

for i2 = L2 to U2
...
for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

1

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

1

The dependence test

When does a dependence exist?

a dependence exists if:

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

1

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

1

Dependence test example 1

Are there iteration vectors i1 and i2, such
that 2 ! i1 ! i2 ! 4 and i1 = i2-1?

Yes: i1=2, i2=3 and i1=3, i2=4

The distance vector is i2-i1 = 1

The direction vector is sign(1) = <

 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i-1]; }

Dependence test example 2

Are there iteration vectors i1 and i2, such
that 2 ! i1 ! i2 ! 4 and i1 = i2+1?

Yes: i1=3, i2=2 and i1=4, i2=3

The distance vector is i2-i1 = -1

The direction vector is sign(-1) = >

Is this possible?

 for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i+1]; }

Dependence test example 3

Are there iteration vectors i1 and i2, such
that 1 ! i1 ! i2 ! 10 and 2*i1 = 2*i2+1?

No! 2*i1 is even, whereas 2*i2+1 is odd

So, there is no dependence

 for i = 1 to 10 {
1: a[2*i] = b[i] + c[i];
2: d[i] = a[2*i+1]; }

Dependence testing problem

A classic problem in computer science

Equivalent to an integer linear programming
problem with 2n variables and n+d
constraints

An algorithm that finds two iteration vectors
that satisfies these constraints is called a
dependence tester

This is an NP-complete problem, and so in
practice the algorithms must be conservative

Dependence testers

There are many dependence testers

Each conservatively finds dependences

Typically, a tester is designed to work only
on specific kinds of indexing expressions

Major testers include:

Lamport, GCD, Banerjee, I-test, power
test, omega test, delta test, ...

Lamport test

A simple test for index expressions
involving a single index variable, and with
the coefficients of the index variable all
being the same

A[..., b*i+c1, ...] = ...; ... = A[..., b*i+c2, ...]

Are there i1 and i2 such that L!i1!i2!U and
b*i1+c1 = b*i2+c2?

Lamport test, cont’d
Are there i1 and i2 such that L!i1!i2!U and
b*i1+c1 = b*i2+c2?

I.e., i2-i1 = (c1-c2)/b?

Note: integer solution exists only if (c1-c2)/b
is an integer

Dependence distance is d = (c1-c2)/b, if L!|d|!U
d>0 means true dependence
d=0 means loop-independent dependence
d<0 means anti dependence

 for i = 1 to n
 for j = 1 to n
1: a[i,j] = a[i-1,j+1];

i1 = i2-1?

b=1, c1=0, c2=-1

(c1-c2)/b = 1

Dependence? Yes

Distance is 1

j1 = j2-1?

b=1, c1=0, c2=1

(c1-c2)/b = -1

Dependence? Yes

Distance is -1

1!t
(1,-1)1

 for i = 1 to n
 for j = 1 to n
1: a[i,2*j] = a[i-1,2*j+1];

i1 = i2-1?

b=1, c1=0, c2=-1

(c1-c2)/b = 1

Dependence? Yes

Distance is 1

2*j1 = 2*j2-1?

b=2, c1=0, c2=1

(c1-c2)/b = -1/2

Dependence? No

No dependence

GCD test

Consider

for ai and c all integers

An integer solution exists only if and only
if gcd(a1,a2,...,an) divides c

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

n∑

i=1

aixi = c

1

 for i = 1 to n
1: a[2*i] = b[i] + c[i];
2: d[i] = a[2*i-1];

Are there i1 and i2 such that 1!i1!i2!10 and

 2*i1 = 2*i2-1
or, equivalently
 2*i2 - 2*i1 = 1?

There is an integer solution if and only if
gcd(2,-2) divides 1

This is not the case, so no dependence

 for i = 1 to 10
1: a[i] = b[i] + c[i];
2: d[i] = a[i-100];

Are there i1 and i2 such that 1!i1!i2!10 and

 i1 = i2-100
or, equivalently
 i2 - i1 = 100?

There is an integer solution if and only if
gcd(1,-1) divides 100

This is the case, so there is a dependence

But not really. GCD ignores loop bounds...

GCD test limitations

Besides ignoring loop bounds, the GCD test
also does not provide distance or direction
information

GCD is often 1, which ends up being very
conservative

Dependence testing is hard

Dependence testing is hard, both in theory
and in practice

Complications:

unknown loop bounds lead to false
dependences

 for i = 1 to n
1: a[i] = a[i+10];

Complications
Aliasing

generally, must know that there is no
aliasing in order for dependence testing
to be conservative

Triangular loops

generally requires addition of new
constraints

 for i = 1 to n
 for j = 1 to i-1
1: a[i,j] = a[j,i];

Complications, cont’d
Many loops don’t fit the mold exactly, but
can be easily transformed to fit

 for i = 1 to n
1: x = a[i];
2: b[i] = x;

 for i = 1 to n
1: x[i] = a[i];
2: b[i] = x[i];

 j = n-1
 for i = 1 to n
1: a[i] = a[j];
2: j = j-1;

 for i = 1 to n
1: a[i] = a[n-i];

Loop Parallelization

A dependence is carried by a loop if that
loop is the outermost loop whose removal
eliminates the dependence

 for i = 2 to n-1
 for j = 2 to m-1
 a[i,j] = ...;
 ... = a[i,j];

 b[i,j] = ...;
 ... = b[i,j-1];

 c[i,j] = ...;
 ... = c[i-1,j];

(=,=)

(=,<)

(<,=)

The outermost loop with a non-=
direction carries the dependence

The iterations of a loop may be executed in
parallel if no dependences are carried by
the loop

Parallelization

Example 1
 for i = 2 to n-1
 for j = 2 to m-1
 a[i,j] = ...;
 ... = a[i,j-1];

(=,<)

The iterations of the j loop are sequential, but
the i loop iterations are independent and can
be executed in parallel

Example 2
 for i = 2 to n-1
 for j = 2 to m-1
 a[i,j] = ...;
 ... = a[i-1,j];

(<,=)

The iterations of the j loop are parallel, but the
i loop iterations must be executed sequentially

Example 3
 for i = 2 to n-1
 for j = 2 to m-1
 a[i,j] = ...;
 ... = a[i-1,j-1];

(<,<)

The iterations of the j loop are parallel, but the
i loop iterations must be executed sequentially

Loop interchange

We saw earlier how loop interchange can
improve the spatial locality of accesses

 for j = 1 to n
 for i = 1 to n
 ...a[i,j] ...

 for i = 1 to n
 for j = 1 to n
 ...a[i,j] ...

Loop interchange, cont’d

Loop interchange can also increase the
granularity of parallel computations

for i = 1 to n

 for j = 1 to n

 a[i,j] = b[i,j];

 c[i,j] = a[i-1,j];

for j = 1 to n

 for i = 1 to n

 a[i,j] = b[i,j];

 c[i,j] = a[i-1,j];

(<,=) (=,<)

Recall: Interchange is legal when the interchanged
dependences remain lexicographically positive

