Pependence Testing

15-745 Optimizing Compilers
Spring 2006

Peter Lee

Loop parallelization

* |n our previous lecture, we saw how locality
can be improved for simple loops

* The transformations were based on
knowledge of the dependences between loop

iterations

* Pependence information is also critical for
parallelizing loops

* this is a fundamental goal for some
applications and architectures

Parallelization example

for i =1 ton
for =2 tom
bl[i,j] = ...
. = b[i,j-1]

Iterations of the j loop must be executed sequentially.

But iterations of the i loop can be executed in parallel.

Deterwining this requires dependence information.

Types of dependences

* Reviewing from before...
* Four types of dependences
* flow
* anti
* output
* input

Flow dependence

1:
2:
3:

4:

Flow (aka frue) dependence: Statement i precedes j,

x
Y
x

X

1;
x + 2;
zZ - W;

y / z;

and i computes a value that j uses.

1-12and 24

Anti dependence

1:
2:
3:

4:

x
Y
x

X

1;
x + 2;
zZ - W;

y / z;

Anti dependence: Statement i precedes j, and i uses a
value that j computes.

233

Output dependence

1:
2:
3:

4:

x
Y
x

X

1;
x + 2;
zZ - W;

y / z;

Output dependence: Statement i precedes j, and i
computes a value that j also computes.

1-0°3 and 34

Input dependence

1:
2:
3:

4:

x
Y
x

X

1;
x + 2;
zZ - W;

y / z;

Input dependence: Statement i precedes j, and i uses a

value that j also uses.

34

Does not imply that i must execute before j

Pependences and renaming

* |f i—7, we say the dependence flows fromitoj
* [isthe souree, j is the sink

* The flow dependence, i—1, is called the true
dependence, becavse the other types are
essentially programming style issues; they can
be eliminated by renaming, e.g.:

l1: x=1;
2: y=x+ 2;
3: x1 =2z - w;

4: x2 =y / z;

Pependence graph

* Pata dependences for a procedure are
often represented by a data dependence
graph

* hodes are the statements

* directed edges (labeled with 1, a, o, or i)
represented the dependence relations

Pependence testing

* Petermining whether two statements are in
a dependence relation is not easy

* some readings will explore the issues for
pointer-based structures

* Buta lot of work has gone into understanding
dependences for statements in loop bodies,
particularly for array-based codes

A first example
1: a[i] = b[i] + c[i];
2: d[i] = al[i];
* There is a flow dependence, 112
* |f we put this in a loop body, the dependence
flows within the same iteration

for i = 2 to 4 {
1: a[i] = b[i] + c[i];
= a[i]; }
* We say that the dependence is loop-independent
* aka: the dependence distance is 0
* aka: the dependence direction is =

Iteration space

for i = 2 to 4 {
1: ali] b[i] + c[i];
2: d[i] af[i]; }

The iteration space for this loop: {2, 3 4} ©o—°—°
With dependences for all shown: an i)

Wewrite: 11,2 or 1.2

Example 2

for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i-1]; }

* There is a flow dependence, 112

* The dependence flows between instances of the
statements in different iterations

* this is a loop-carried dependence

* The dependence distance is 1
* The dependence direction is < (aka “positive”)

* 142, 0r 1012 R,

Example 3

for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i+1l]; }

* There is an anti dependence, 2—21
* This is a loop-carried dependence

* The dependence distance is 1
* The dependence direction is < (aka “positive”)

* 231 or 221 W

Example 4

for 1i =2 to 4
for j =2 to 4
1: ali,j] = a[i-1,3+1];

* Thereis a flow
dependence, 111

* This is a loop-carried
dependence

* What is the dependence j
distance/direction?

Example 4

for 1i =2 to 4
for j =2 to 4
al[i,j] = a[i-1,j+1];

The iteration space

Example 4

for 1i =2 to 4
for j =2 to 4

1: al[i,j] = a[i-1,3+1];
i
A
n[4,2] al[4,3] al[4,4]
The reads and
writes of all

R[1,3] all,4] a[1,5]

v

Example 4

for 1i =2 to 4
for j =2 to 4
al[i,j] = a[i-1,j+1];

11[4,2] a[4,3] aldzd] Vependehce
9 g :
distance is (1-1)

1 -l

12l

The problewm setup

For the time being, we restrict our attention
to simple nested loops of the form:

for iy = Ly to Uy
for is = Lo to Us

for i, = L, to U,

alfi(®), fa(2), ...

with iteration vectors

-

L= (L17L2,~~-7Ln)7 Gr= (U1,U2, ~~7Un)a

5 fd('f)] = a[gl(f% 92(5)7) gd(fr)];

7= (41,92, .+, in)

=

pl
IN
S

and f, gi linear functions of the form

Co +Cli1 +Cgi2 S 0o +Cnin

The dependence test

* When does a dependence exist?
* a dependence exists if:

there exist iteration vectors k and T
sucllthatLgkzgj’gUand
k=00 forli=ti <t

Alternatively, fi(k) — g;(7) = 0.

Pependence test example 1

for i = 2 to 4 {
1: ali] b[i] + c[i];
2: d[i] a[i-1]; }

* Are there iteration vectors i1 and iz, such
that 2<i1 <i2¢ 4 and i =iz-1?

* Yes: 122,223 and 173 i4
* The distance vector is iz-i1 = 1
* The direction vector is sign(l) = <

Pependence test example 2

for i = 2 to 4 {
1: a[i] = b[i] + c[i];
2: d[i] = a[i+1l]; }

* Are there iteration veetors i1 and iz, such
that 2<i1 <i2¢ 4 and i =iz+1?

* Yes: i12% i222 and i1=4, i2=3

* The distance vector is iz-i1 = -1

* The direction vector is sign(-1) = >
* |s this possible?

Pependence test example 3

for i =1 to 10 {
1: a[2*i] = b[i] + c[i]:
2: d[i] = a[2*i+1]; }

* Are there iteration vectors i1 and iz, such
that 1 <i1 €iz2¢ 10 and 2% = 2%i2+1?

* No! 2% is even, whereas 2*i2*1 is odd
* So, there is no dependence

Pependence testing problem

* A classic problem in computer science

* Equivalent to an integer linear programming
problem with 2n variables and n+d
constraints

* An algorithm that finds two iteration vectors
that satisfies these constraints is called a
dependence tester

* This is an NP-complete problem, and so in
practice the algorithms must be conservative

Pependence testers

* There are many dependence testers
* Each conservatively finds dependences

* Typically, a tester is designed fo work only
on specific kinds of indexing expressions

* Major testers include:

* Lamport, GCU Banerjee, I-test, power
test, omega test, delta test, ...

Lamport test

* A simple test for index expressions
involving a single index variable, and with
the coefficients of the index variable all
being the same

* AL.. b*ivey, ..1=...... = AL..., b*i*ez, ...]

* Are there i1 and iz such that L<ii<izVU and
b*i1*e1 = b*iz*es?

Lamport test, cont’d

* Are there i1 and iz such that L<iiizVU and
b*i1*e1 = b*iz*es?
* l.e., iz-i1 = (e1-¢2)/b?

* Note: integer solution exists only if (¢1-c2)/b
is an integer

* Pependence distance is d = (c1-¢2)/b, if L<ldISU
* d>0 means true dependence

* d=0 means loop-independent dependence
* (<0 means anti dependence

for i =1 ton
for j =1 ton

for i =1 ton
for j =1 ton

1: af[i,j] = a[i-1,3j+1]1;
i1 =iz-1? i1 = j2-17
b=1, ¢1=0, ¢2=-1 b=1, ¢1=0, ¢2=1
(e1-c2)/b = 1 (e1-c2)/b = -1
Pependence? Yes Pependence? Yes
Distance is 1 Distance is -1
1-1tgl /

1: a[i,2*j] = a[i-1,2%j+1];
i1 =iz-1? 2%1 = 2%j2-17
b=1, ¢1=0, ¢2=-1 b=2, ¢1=0, ¢2=1
(e1-c2)/b = 1 (c1-¢2)/b=-1/2
Pependence? Yes Pependence? No
Distance is 1
No dependenée/

GCD test

* Consider > aiwi=c
Tt
* for a and ¢ all infegers

* An integer solution exists only if and only
if ged(ar,az,....an) divides ¢

for i =1 ton
1: a[2*i] = b[i] + c[i];
2: d[i] = a[2*i-1];

Are there i1 and iz such that 1<i1<i2¢10 and
2%y = 2%iz-1

or, equivalently
2%2-2%1 = 17

There is an integer solution if and only if
ged(2-2) divides 1

This is not the case, so no dependence

for i =1 to 10
1: a[i] = b[i] + c[i];
2: d[i] = a[i-100];

Are there i1 and iz such that 1<i1<i2¢10 and
i1 =iz2-100

or, equivalently
iz-i1=1007

There is an integer solution if and only if
ged(1-1) divides 100

This is the case, so there is a dependence

But not really. GCD ignores loop bounds...

GCD test limitations

* Besides ignoring loop bounds, the GCP test
also does not provide distance or direction
information

* GCD is often 1, which ends up being very
conservative

Pependence testing is hard

* Pependence testing is hard, both in theory
and in practice

* Cowmplications:

* ynknown loop bounds lead fo false
dependences

for i =1 ton
1: a[i] = a[i+10];

Complications

* Aliasing

* generally, must know that there is no
aliasing in order for dependence testing
to be conservative

* Triangular loops

* generally requires addition of new
constraints
for i =1 ton
for j =1 to i-1
1: a[irj] = a[j,i];

1:
2:

1:
2:

Cowmplications, cont’d

* Many loops don’t fit the wmold exactly, but
can be easily transformed tfo fit

for i =1 ton for i =1 ton
x = al[i]; 7 1: x[i] = a[i];
b[i] = x; 2: Db[i] = x[1i];

j = n-1

for i =1 ton S for i =1 ton

: al[i]l = a[jl; 1: a[i] = a[n-i];
j =31

Loop Parallelization

* A dependence is carried by a loop if that
loop is the outermost loop whose removal
eliminates the dependence

for i = 2 to n-1
for j = 2 to m-1
(= 2) ali,j]l = ...;

. = al[i,jl;

i bli,3] = ...;
(=) ... =Db[i,j-1];
- cli,j1 = ...;
i .. = eli-1,31;

The outermost loop with a non-=
direction carries the dependence

Parallelization

* The iterations of a loop may be executed in
parallel if no dependences are carried by
the loop

Example 1

for i = 2 to n-1
for j = 2 to m-1
ali,j] = ...;

=) ... = a[i,j-11;

The iterations of the j loop are sequential, but
the i loop iterations are independent and can
be executed in parallel

Example 2

for i = 2 to n-1
for j = 2 to m-1
ali,j] = ...;

(¢?) ... = a[i-1,3]1;

The iterations of the j loop are parallel, but the
i loop iterations must be executed sequentially

Example 3

for i = 2 to n-1
for j = 2 to m-1
afi,j1 = ...
(<<) ... = a[i-1,3-1];

The iterations of the j loop are parallel, but the
i loop iterations must be executed sequentially

Loop interchange

* We saw earlier how loop interchange can
improve the spatial locality of accesses

for j =1 ton
for i =1 ton
...a[i,]]

\\\\\\\ for i =1 ton
for j =1 ton

...ali,]

Loop interchange, cont’d

* Loop inferchange can also increase the
granvlarity of parallel computations

for i =1 ton for j =1 ton
for j =1 ton for i =1 ton
afi,j] = b[i,3]; afi,j] = b[i,]];
cli,jl = a[i-1,3]1; cli,jl = a[i-1,3]1;

(¢,2) (=¢)

Recall: Interchange is legal when the interchanged
dependences remain lexicographically positive

