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Loop parallelization

In our previous lecture, we saw how locality 
can be improved for simple loops

The transformations were based on 
knowledge of the dependences between loop 
iterations

Dependence information is also critical for 
parallelizing loops

this is a fundamental goal for some 
applications and architectures

Parallelization example

for i = 1 to n
  for j = 2 to m
    b[i,j] = ...
    ... = b[i,j-1]

Iterations of the j loop must be executed sequentially.

But iterations of the i loop can be executed in parallel.

Determining this requires dependence information.

Types of dependences

Reviewing from before...

Four types of dependences

flow

anti

output

input



Flow dependence
1:  x = 1;
2:  y = x + 2;
3:  x = z - w;
 ...
4:  x = y / z;

Flow (aka true) dependence: Statement i precedes j, 
and i computes a value  that j uses.

1!t2 and 2!t4

Anti dependence
1:  x = 1;
2:  y = x + 2;
3:  x = z - w;
 ...
4:  x = y / z;

Anti dependence: Statement i precedes j, and i uses a 
value that j computes.

2!a3

Output dependence
1:  x = 1;
2:  y = x + 2;
3:  x = z - w;
 ...
4:  x = y / z;

Output dependence: Statement i precedes j, and i 
computes a value that j also computes.

1!o3 and 3!o4

Input dependence
1:  x = 1;
2:  y = x + 2;
3:  x = z - w;
 ...
4:  x = y / z;

Input dependence: Statement i precedes j, and i uses a 
value that j also uses.

3!i4

Does not imply that i must execute before j



Dependences and renaming
If i!?j, we say the dependence flows from i to j

i is the source, j is the sink

The flow dependence, i!tj, is called the true 
dependence, because the other types are 
essentially programming style issues; they can 
be eliminated by renaming, e.g.:

1:  x = 1;
2:  y = x + 2;
3:  x1 = z - w;
 ...
4:  x2 = y / z;

Dependence graph

Data dependences for a procedure are 
often represented by a data dependence 
graph

nodes are the statements

directed edges (labeled with t, a, o, or i) 
represented the dependence relations

Dependence testing

Determining whether two statements are in 
a dependence relation is not easy

some readings will explore the issues for 
pointer-based structures

But a lot of work has gone into understanding 
dependences for statements in loop bodies, 
particularly for array-based codes

There is a flow dependence, 1!t2

If we put this in a loop body, the dependence 
flows within the same iteration

We say that the dependence is loop-independent

aka: the dependence distance is 0

aka: the dependence direction is =

A first example
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i];

  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i]; }



Iteration space

The iteration space for this loop: {2, 3, 4}

  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i]; }

i

With dependences for a[] shown:

We write:  1!t
o2  or  1!t

=2

i
t t t

Example 2
  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i-1]; }

There is a flow dependence, 1!t2

The dependence flows between instances of the 
statements in different iterations

this is a loop-carried dependence

The dependence distance is 1

The dependence direction is < (aka “positive”)

1!t
12,  or  1!t

<2 i
t t

Example 3
  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i+1]; }

There is an anti dependence, 2!a1

This is a loop-carried dependence

The dependence distance is 1

The dependence direction is < (aka “positive”)

2!a
11,  or  2!a

<1
i

t t

Example 4
  for i = 2 to 4
    for j = 2 to 4
1:    a[i,j] = a[i-1,j+1];

There is a flow 
dependence, 1!t1

This is a loop-carried 
dependence

What is the dependence 
distance/direction?

j

i



Example 4
  for i = 2 to 4
    for j = 2 to 4
1:    a[i,j] = a[i-1,j+1];

j

i

The iteration space

j

i
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Example 4
  for i = 2 to 4
    for j = 2 to 4
1:    a[i,j] = a[i-1,j+1];

The reads and 
writes of a[]

j

i
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Example 4
  for i = 2 to 4
    for j = 2 to 4
1:    a[i,j] = a[i-1,j+1];

Dependence 
distance is (1,-1)

1!t
(1,-1)1

1!t
(<,>)1

The problem setup

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

1

For the time being, we restrict our attention 
to simple nested loops of the form:

with iteration vectors

and fi, gi linear functions of the form

for i1 = L1 to U1

for i2 = L2 to U2
...
for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

1

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

1



The dependence test

When does a dependence exist?

a dependence exists if:

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

1

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

1

Dependence test example 1

Are there iteration vectors i1 and i2, such 
that 2 ! i1 ! i2 ! 4  and  i1 = i2-1?

Yes: i1=2, i2=3  and  i1=3, i2=4

The distance vector is i2-i1 = 1

The direction vector is sign(1) = <

  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i-1]; }

Dependence test example 2

Are there iteration vectors i1 and i2, such 
that 2 ! i1 ! i2 ! 4  and  i1 = i2+1?

Yes: i1=3, i2=2  and  i1=4, i2=3

The distance vector is i2-i1 = -1

The direction vector is sign(-1) = >

Is this possible?

  for i = 2 to 4 {
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i+1]; }

Dependence test example 3

Are there iteration vectors i1 and i2, such 
that 1 ! i1 ! i2 ! 10  and  2*i1 = 2*i2+1?

No!  2*i1 is even, whereas 2*i2+1 is odd

So, there is no dependence

  for i = 1 to 10 {
1:  a[2*i] = b[i] + c[i];
2:  d[i] = a[2*i+1]; }



Dependence testing problem

A classic problem in computer science

Equivalent to an integer linear programming 
problem with 2n variables and n+d 
constraints

An algorithm that finds two iteration vectors 
that satisfies these constraints is called a 
dependence tester

This is an NP-complete problem, and so in 
practice the algorithms must be conservative

Dependence testers

There are many dependence testers

Each conservatively finds dependences

Typically, a tester is designed to work only 
on specific kinds of indexing expressions

Major testers include:

Lamport, GCD, Banerjee, I-test, power 
test, omega test, delta test, ...

Lamport test

A simple test for index expressions 
involving a single index variable, and with 
the coefficients of the index variable all 
being the same

A[..., b*i+c1, ...] = ...; ... = A[..., b*i+c2, ...]

Are there i1 and i2 such that L!i1!i2!U and 
b*i1+c1 = b*i2+c2?

Lamport test, cont’d
Are there i1 and i2 such that L!i1!i2!U and      
b*i1+c1 = b*i2+c2?

I.e., i2-i1 = (c1-c2)/b?

Note: integer solution exists only if (c1-c2)/b 
is an integer

Dependence distance is d = (c1-c2)/b, if L!|d|!U
d>0 means true dependence
d=0 means loop-independent dependence
d<0 means anti dependence



  for i = 1 to n
    for j = 1 to n
1:    a[i,j] = a[i-1,j+1];

i1 = i2-1?

b=1, c1=0, c2=-1

(c1-c2)/b = 1

Dependence? Yes

Distance is 1

j1 = j2-1?

b=1, c1=0, c2=1

(c1-c2)/b = -1

Dependence? Yes

Distance is -1

1!t
(1,-1)1

  for i = 1 to n
    for j = 1 to n
1:    a[i,2*j] = a[i-1,2*j+1];

i1 = i2-1?

b=1, c1=0, c2=-1

(c1-c2)/b = 1

Dependence? Yes

Distance is 1

2*j1 = 2*j2-1?

b=2, c1=0, c2=1

(c1-c2)/b = -1/2

Dependence? No

No dependence

GCD test

Consider

for ai and c all integers

An integer solution exists only if and only 
if gcd(a1,a2,...,an) divides c

for i1 = L1 to U1

for i2 = L2 to U2
...

for in = Ln to Un

a[f1(!ı), f2(!ı), . . . , fd(!ı)] = a[g1(!ı), g2(!ı), . . . , gd(!ı)];

!ı = (i1, i2, ..., in)

!L = (L1, L2, ..., Ln), !U = (U1, U2, ..., Un), !L ≤ !U

c0 + c1i1 + c2i2 + · · · + cnin

F =

c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
...

...
cd0 cd1 · · · cdn

G =

c′
00 c′

01 · · · c′
0n

c′
10 c′

11 · · · c′
1n

...
...

...
...

c′
d0 c′

d1 · · · c′
dn

there exist iteration vectors !k and !
such that !L ≤ !k ≤ ! ≤ !U and
fi(!k) = gi(!), for 1 ≤ i ≤ d.

Alternatively, fi(!k)− gi(!) = 0.

n∑

i=1

aixi = c

1

  for i = 1 to n
1:  a[2*i] = b[i] + c[i];
2:  d[i] = a[2*i-1];

Are there i1 and i2 such that 1!i1!i2!10 and

        2*i1 = 2*i2-1
or, equivalently
        2*i2 - 2*i1 = 1?

There is an integer solution if and only if      
gcd(2,-2) divides 1

This is not the case, so no dependence



  for i = 1 to 10
1:  a[i] = b[i] + c[i];
2:  d[i] = a[i-100];

Are there i1 and i2 such that 1!i1!i2!10 and

        i1 = i2-100
or, equivalently
        i2 - i1 = 100?

There is an integer solution if and only if      
gcd(1,-1) divides 100

This is the case, so there is a dependence

But not really.  GCD ignores loop bounds...

GCD test limitations

Besides ignoring loop bounds, the GCD test 
also does not provide distance or direction 
information

GCD is often 1, which ends up being very 
conservative

Dependence testing is hard

Dependence testing is hard, both in theory 
and in practice

Complications:

unknown loop bounds lead to false 
dependences

  for i = 1 to n
1:  a[i] = a[i+10];

Complications
Aliasing

generally, must know that there is no 
aliasing in order for dependence testing 
to be conservative

Triangular loops

generally requires addition of new 
constraints

  for i = 1 to n
    for j = 1 to i-1
1:    a[i,j] = a[j,i];



Complications, cont’d
Many loops don’t fit the mold exactly, but 
can be easily transformed to fit

  for i = 1 to n
1:  x = a[i];
2:  b[i] = x;

  for i = 1 to n
1:  x[i] = a[i];
2:  b[i] = x[i];

  j = n-1
  for i = 1 to n
1:  a[i] = a[j];
2:  j = j-1;

  for i = 1 to n
1:  a[i] = a[n-i];

Loop Parallelization

A dependence is carried by a loop if that 
loop is the outermost loop whose removal 
eliminates the dependence

  for i = 2 to n-1
    for j = 2 to m-1
      a[i,j] = ...;
      ... = a[i,j];

      b[i,j] = ...;
      ... = b[i,j-1];

      c[i,j] = ...;
      ... = c[i-1,j];

(=,=)

(=,<)

(<,=)

The outermost loop with a non-= 
direction carries the dependence

The iterations of a loop may be executed in 
parallel if no dependences are carried by 
the loop

Parallelization



Example 1
  for i = 2 to n-1
    for j = 2 to m-1
      a[i,j] = ...;
      ... = a[i,j-1];

(=,<)

The iterations of the j loop are sequential, but 
the i loop iterations are independent and can 
be executed in parallel

Example 2
  for i = 2 to n-1
    for j = 2 to m-1
      a[i,j] = ...;
      ... = a[i-1,j];

(<,=)

The iterations of the j loop are parallel, but the 
i loop iterations must be executed sequentially

Example 3
  for i = 2 to n-1
    for j = 2 to m-1
      a[i,j] = ...;
      ... = a[i-1,j-1];

(<,<)

The iterations of the j loop are parallel, but the 
i loop iterations must be executed sequentially

Loop interchange

We saw earlier how loop interchange can 
improve the spatial locality of accesses

  for j = 1 to n
    for i = 1 to n
      ...a[i,j] ...

  for i = 1 to n
    for j = 1 to n
      ...a[i,j] ...



Loop interchange, cont’d

Loop interchange can also increase the 
granularity of parallel computations

for i = 1 to n

  for j = 1 to n

    a[i,j] = b[i,j];

    c[i,j] = a[i-1,j];

for j = 1 to n

  for i = 1 to n

    a[i,j] = b[i,j];

    c[i,j] = a[i-1,j];

(<,=) (=,<)

Recall: Interchange is legal when the interchanged 
dependences remain lexicographically positive


