
15-745 Advanced Optimizing Compilers: L3 Reference

Spring 2006

January 20, 2006

1 Introduction

This document introduces the language L3. L3 is a simple, C-like language that includes support
for such features as pointers, heap-allocated arrays, functions, and structure types. As such, it is
possible to write interesting (and even useful) test programs in L3.

For this course, we will provide three implementations of a complete working compiler for the
L3 language. Implementations are available in Java, OCaml, and SML/NJ. The compiler takes L3
source programs and translates them into target programs written in Intel x86 assembly language.
When given a program that does not conform to the syntax and static semantics specified in this
document, the compiler will stop and issue a reasonably clear and accurate error message, exiting
with a non-zero exit code. Finally, the target code, when executed, will abort when any action
not defined by the operational semantics is attempted (e.g., when an attempt is made to access an
array out of bounds).

This document is organized as follows. Section 2 covers setup and usage of the compiler/test
infrastructure. In Section 3, we present an overview of the L3 language, and follow it in Section 4
with some suggestions regarding its implementation. Finally, in Section 5, we give a mathematical
specification for L3 to disambiguate the English definition in the previous sections.

2 Compiler Setup

This section describes the steps needed to install, compile, and use the L3 compiler and test suite.
Please note that these instructions were tested on an SCS facilitized Linux machine (gs4xxx series).
Installation requirements for other systems may vary slightly.

2.1 Setup

Begin by unpacking the provided tarball to a convenient directory. For the remainder of this
document, we assume that the files have been unpacked to ~/745/ . If this is not the case, you
will need to adjust the paths in the following examples. To install the gc conservative garbage
collector, download the source tarball from http: //www.hpl.hp.com/personal/Hans Boehm/gc/
and unpack it. In the resulting gc6.5 directory, run ./configure; make to configure and build
the gc libraries. The build process will have created the shared object files in a hidden directory
named .libs (note the leading period). Make a note of the full path to the gc6.5 directory, and
set the GCPATH variable in ~/745/shared/link to that value.

1

2.1.1 Java Setup

Ensure that you are running Sun’s Java implementation. Executing java should return a message
beginning with Usage: java [-options] class [args...]. If you encounter a message that
refers to gij, you are running the GNU Project’s java interpreter, which is incompatible with the
compiler. Install a copy of J2SE from http: //java.sun.com/ and change the first two variables in
~/745/java/Makefile and ~/745/java/reference/Makefile to:

JCC = /usr/java/jdk1.5.0_06/bin/javac
JAVA = /usr/java/jdk1.5.0_06/bin/java

or wherever the java and javac binaries are located.

2.1.2 OCaml Setup

Ensure that the OCaml header files and libraries are installed on your machine. In ~/745/ocaml/code/
Makefile, set the variable LIBPATH to the location of these libraries.

2.1.3 SML/NJ Setup

Ensure that you are running at least SML/NJ v110.54. On a facilitized machine, take the following
steps:

• su

• Edit /usr/local/depot/depot.pref.local and add the following lines to the file:

collection.installmethod copy smlnj
collection.release beta smlnj

• dosupdepot

2.2 Building the Compiler

(in compiler directory): make

2.3 Location of Compiler Binaries

• Java: ~/745/java/compile

• OCaml: ~/745/ocaml/code/compile

• SML/NJ:~/745/sml/compile

2.4 Invoking the Compiler

($COMPILER) code.l3 -o a.s
~/745/shared/link a.s ~/745/shared/runtime/*.c

Replacing COMPILER with the location of the compiler. This will create an executable named
a.out that can be run directly.

2

2.5 Running the Test Suite

cd ~/745/l3_test_suite

Edit the Makefile, changing the following variables:

1. COMPILE to point to your compiler

2. REFCOMPILE to point to the reference implementation of the compiler in a particular
language (in ~/745/reference/java/compile etc)

3. NAME your andrew id

Then, execute make to run all tests.

3 L3 Summary

This section is designed to serve as a informal reference for the new features present in L3. After
reading it, you should have a good idea of what the language is about, but be forewarned that
this is not the complete specification for the language. The formal definitions found in Section 5
supersede the content of this section; however, you will probably find this summary an easier place
to start than the dense mathematics of the formal specification.

We have made our best effort to keep the English and formal specifications in agreement where
they overlap, but should you find any contradictions you should let us know ASAP so we can clarify
intent. (It is normal for the English to be ambiguous in places or missing some information; this is
a “feature” of human languages.)

3.1 Variables

L3 has two base types, int and bool. Structs and arrays are also available, along with pointers.
Integer and pointer values are 4 bytes long.

All variables in an L3 program must be declared before use, using a var declaration that binds
the name of the variable to its type. Each variable can be declared only once in any particular
scope, and names are case-sensitive. (Attempts to redeclare a variable must result in a compile-time
error.) The keywords of the language may not be used as variable names. On the other hand, the
names used for struct types are allowed to be used as variable names and vice versa.

Variables which are not initialized before use may have any arbitrary value at runtime. The
compiler does not produce an error in this situation; however, you may produce a warning if you
desire.

3.2 Structs

The examples given in Figure 1 show some valid and invalid struct declarations and uses. Struct
types are declared using the struct keyword. No two struct types are allowed to have the same
name. The field names, however, only have to be unique within each struct type. Recursive structs
are permitted, but with two restrictions:

1. No forward references are allowed within struct definitions. Hence, a struct can be recursive
only by referring to itself.

3

struct foo {
a : int;
b : foo; // infinite recursion, not allowed

};

struct bar {
a : int;
b : bar*; // cyclic through pointer: ok

};

struct baz {
t1 : foo*;
t2 : bar; // struct fields are ok

};

{
var x, y : bar;
x = y; // compile-time error -- deep copy of structs is not allowed

x.a = y.a; //
x.b = y.b; // the correct way to make a copy of a struct
return 0;

}

Figure 1: struct examples

2. To avoid infinite recursion, only pointers to a type may be used recursively. So, for example,
cyclic struct declarations like struct foo in Figure 1 are not allowed, whereas struct bar
is legal.

A variable of struct type is not an lvalue and may not be used as the target of an assignment
statement. In other words, attempting to copy a struct by assigning it directly to another struct
variable will result in a compile-time error. Instead, each field must be individually assigned as
shown in Figure 1.

When a variable is declared to have struct type, it is implicitly allocated. The compiler will
need to reserve the necessary memory automatically.

3.3 Safe Pointers

3.3.1 Overview

L3 uses a notion of “safe” pointers in order to provide a means for indirect references. Like C,
L3 allows pointer arithmetic. However, every attempt to dereference a pointer is checked (either
statically or dynamically) to ensure that the pointer is still within the bounds of its originally

4

allocated heap memory. Out-of-bounds dereferences cause the program to halt immediately with
a run-time error message and exit with non-zero status.

A variable p can be declared to be a pointer to a value of type <typ> using the declaration

var p : <typ>*;

Note that this notation allows pointers to pointers.
The alloc() expression creates a pointer to new array of elements in the heap. Its arguments

are the number of elements and the element type. All pointers are initialized by default to a special
NULL value. NULL has the type NS (pronounced “nonsense”) which is compatible with any
pointer type.

3.3.2 Representation

L3 safe pointers are represented as three-word structures of of the form 〈base, offset , size〉, where
base is the memory address of the first element, offset is the index into the array of elements, and
size is the total number of elements. The two keywords offset() and size() return the current
offset in the array and the total number of elements of the array, respectively. They operate only
on pointers, and attempting to use them on values of any other type is a compile-time error.

3.3.3 Safety

Safe pointers are thusly named because the compiler inserts checks to insure that pointer derefer-
ences only occur in valid memory. This is the case iff 0 ≤ offset < size. Then, the address may be
calculated using the equation

address = base + offset * eltsize

If a pointer is not valid, dereferencing the pointer will cause a run-time pointer error. The
run-time system provides a function _l3_error() with the following C-prototype:

void _l3_error(const char *srcfile, int line, const char *errmsg);

The first and third argument to this function are allowed to be 0 (C’s NULL). If both are 0, the
program silently aborts with a non-zero error code. Otherwise, an error is printed before aborting
the program. If srcfile is 0, the line argument is ignored.

Safe pointers are only checked for safety during dereferencing. Neither pointer arithmetic nor
offset() or size() require that the pointer be valid.

When created, all pointers will be initialized (by the compiler) to NULL in order to guarantee
the safety of the language. This includes cases such as an array of pointers and pointer fields within
structs.

3.3.4 Operations

Two pointers can be compared for equality using the *== and *!= operators. Two pointers p1 and
p2 are equal iff base(p1) == base(p2) and offset(p1) == offset(p2).

The two operators *+ and *- are used to modify the offset of a pointer. Pointer arithmetic
is performed without any bounds checking—invalid pointers cause no problem unless they are
dereferenced.

5

void main()
{

var p, q : int*;
p = alloc(10, int);
q = &p[4]; // Note that p[x] is equivalent to *(p *+ x).

if(q[-3] == p[1])
return 1;

return 0;
}

Figure 2: q points into the same array as p, the result should be 1

NULL is not influenced by pointer operations—that is, NULL *+ 5 *== NULL for example.
Note that this does not prevent you from having non-identical representations of NULL, so long
as *== understands that they are the same and dereferencing NULL always produces a runtime
error.

3.3.5 Referencing

Taking the address of a variable requires that the variable’s value be stored in memory. Appel’s
analysis of escaping variables gives criteria on whether a variable’s value may be held in a register
or must be stored on the heap.

In the case &*p, where the address of a dereferenced pointer is returned, the result is a safe
pointer pointing to the same array as p did (and not only to the one element to which p points).
See Figure 2.

3.4 Memory allocation

The run-time system provides the function _alloc() with the following C-prototype:

void* _alloc(unsigned int nbytes);

The compiler will emit code that calls this function to allocate any new memory. As the
function returns a raw system pointer, if it was called in response to an alloc() expression, the
compiler will create a safe pointer for that memory to return to the user. There is no corresponding
free()—the standard runtime includes a conservative garbage collector that collects dead memory.1

Additionally, any expression of integer type can be used as a parameter, leading to the problem
that the program might request a negative amount of memory from the operating system. The
compiler will emit guard code to catch this occurrence, terminating with a run-time error.

3.5 Functions

L3 includes functions whose behavior is very similar to C and Java. There are a few important
characteristics worth noting, however:

1See http: //www.hpl.hp.com/personal/Hans Boehm/gc/

6

• Functions returning a result are required to have a return on every code path. We use a
conservative approach and require the compiler to stop with an error message if there exists
any code path that reaches the end of the function without executing a return statement,
regardless of whether it is a possible dynamic execution path.

• For void functions (procedures), a return; statement is implicitly included as the last state-
ment and is therefore optional in the body.

• Every return statement must return a value of the type specified by the function.

• L3 allows the programmer to return a pointer to a local variable from a function. In such
a case, the variable must be stored on the heap in order to guarantee the availability of the
variable after the function returns.

• The entry procedure main is not allowed to have any parameters and its return type must be
void.

• All functions must have distinct names, however, struct-type names, variable names and
function names live in different namespaces. It is legal to declare a struct-type foo, a function
named foo and a variable foo.

• All variable names in a function must be distinct, but as usual, every function has its own
scope and variable names do not interfere across functions.

• Functions are globally visible. A function foo may call a function bar that is declared after
foo in the source program.

• The compiler will emit code that follows the standard C calling convention when calling a
function/procedure. This is critical, because most test programs will call foreign functions
which are written in C. Function declarations with the keyword foreign in place of the body
are prototypes for external functions, and the compiler will use that information to ensure all
calls to that function are correct. Calls to undeclared functions are naturally a compile-time
error.

3.5.1 Register Usage Conventions

Code emitted by the compiler follows standard x86 calling conventions. Specifically, registers %ebp,
%esp, %ebx, %esi, %edi must have their original values prior to executing the retinstruction.
Note that using the enter instruction at the start of the target code will automatically save %ebp
and set the stack pointer %esp to a fresh part of the stack. Then, prior to the ret, the leave
instruction will restore the %ebp, assuming that any elements that were pushed onto the stack
have been removed.

3.6 Loops

In addition to the if-then-else construct, L3 provides for and while loops. They have the same
behavior as in C. continue skips the rest of the statements in the loop body and break jumps to
the first statement after the loop. continue and break are always bound to the innermost loop.

7

3.7 Boolean expressions

Some boolean expressions are “short circuited,” as in C. The evaluation of the second operand for
&& and || must not be performed if the first already determines the result.

There are no comparison operators for bool values. If needed, they can be formed in L3 using
the boolean expressions !(a ^^ b) for (a == b) and (a ^^ b) for (a != b).

3.8 Safe arithmetic

In order to increase the safety of the language, the compiler will emit code that catches fatal run-
time errors resulting from division and modulo by zero. If the program detects an attempt to divide
by zero, _l3_error() will be called and the program will terminate. Note that it is not equivalent
to simply failing with a default floating point exception—the compiler will emit a check for this
before every division and modulo that can possibly fail.

The compiler does not produce a compile-time error even if these error conditions can be
detected statically. A compile-time warning would be helpful to the programmer, but is optional.

In keeping with most other compilers, shifts by negative values or values greater than 31 have
undefined behavior, but will still be accepted by the compiler. Note that the assembler we are
using does not accept immediate shift values larger than 8 bits.

Overflow on integer arithmetic is silently permitted without error.

3.9 Run-time Environment

Your target code will be linked against a run-time library which we provide, using the command
gcc foo.s runtime/*.c. The tests will be run in the standard Linux environment; the produced
assembly code must conform to those standards. The run-time library includes I/O support, 2-D
graphics output, and a variety of utility functions.

The runtime expects a procedure main() that takes no arguments. It is a linker error if main
is not provided. That means that the programmer who uses your compiler should provide a main
procedure in the source file. The return type of main() must be void. The return value in %eax
will be interpreted by the operating system as the exit status of the program. This exit status
should follow standard conventions; namely, zero exit status on successful completion, non-zero
exit status on an error.

The L3 runtime library provides many functions; here are the ones you will likely use the most:

_alloc() Allocates memory and returns a pointer to it
_l3_error() Prints an error and exits the program with a non-zero exit code
print_int() Prints an integer value
print_bool() Prints a boolean value (”true” or ”false”)
print_char() Prints the ASCII character corresponding to the passed number
print_newline() Goes to the next line
print_tab() Prints a tab
print_space() Prints the indicated number of spaces
print_flush() Flushes stdout
read_int() Reads an int from the terminal

The C-style prototypes are:

8

void* _alloc(int i)
void _l3_error(const char *srcfile, int line, const char *errmsg)
void print_int(int i)
void print_bool(int b)
void print_char(int c)
void print_newline()
void print_tab()
void print_space(int n)
void print_flush()
int read_int()

Please refer to the runtime source files for any other functions you may wish to use.

3.9.1 glut

The l3graphics library uses the glut environment. The necessary libraries and files are already
installed on facilitized machines.

4 Implementation

This section covers two important internal compiler APIs: the code generator and the intermediate
representation. The APIs and sample code are taken from the Java implementation, so names and
particulars may vary in the SML/NJ and OCaml implementations.

4.1 Intermediate Representation

The compiler uses a tree-form intermediate representation. The root class for the IR is tree.IRStatement.
As IRStatement implements the Visitable design pattern, it is easy to traverse the representation
of an entire source file.

4.2 Code Generation

Code is generated using and Appel-style generator. A list of fragments is passed to the code
generator, which uses the visitor pattern to traverse the graph structure of the IR and greedily
generate String objects containing the assembly code for the IR.

4.2.1 Important Classes/Interfaces

• edu.cmu.cs.l3.general.Visitor defines visitResponse(), used by the Visitor pattern

• edu.cmu.cs.l3.general.Visitable defines m_className, used by the Visitor pattern

• edu.cmu.cs.l3.translate.Fragment a code fragment that can contain a frame and asm
instructions

• edu.cmu.cs.l3.x86.X86CodeGenerator the main code generation class

9

5 L3 Formalism

This section is designed to serve as the final word on L3. While it is as complete as possible, there
are some aspects of the project not addressed by these specifications–for instance, the interaction
with the runtime system.

We have made our best effort to keep the English and formal specifications in agreement where
they overlap, but should you find any contradictions you should let us know ASAP so we can clarify
intent.

5.1 Syntax

The syntax of L3 is given in Figure 3. Note that ? stands for the Kleene closure while * stands for
the asterisk terminal.

5.1.1 Precedence of operators

The precedence of unary and binary operators is given in Figure 4.

5.1.2 Derived forms

Some of the expression and assignment operators are derived forms. These are defined in following
table. In this table, e1 is semantically equivalent to e2.

e1 e2

x[y] *(x *+ y)
x->y (*x).y

x += y; x = x + y;
x -= y; x = x - y;
x *= y; x = x * y;
x /= y; x = x / y;
x %= y; x = x % y;

5.1.3 Else association

As in most languages, else statements are associated with the most recent if statement.

5.2 Formal Type System

This section formally describes the type system for L3.

5.2.1 Contexts for Type Checking

We will use the following context definitions: Σ contains function declarations, ∆ contains the
user-defined struct types and Γ contains the variables of the current scope. · is the empty context.
We have:

10

〈program〉 ::= [〈struct〉 | 〈function〉]?

〈stuct〉 ::= struct 〈ident〉 { 〈ident〉 : 〈type〉 [; 〈ident〉 : 〈type〉]? [;] } ;

〈function〉 ::= 〈type〉 〈ident〉 (〈paramlist〉) 〈body〉 | void 〈ident〉 (〈paramlist〉) 〈body〉

〈paramlist〉 ::= ε | 〈ident〉 : 〈type〉 [, 〈ident〉 : 〈type〉]?

〈body〉 ::= { 〈decl〉? 〈stmt〉? } | foreign

〈decl〉 ::= var 〈ident〉 [, 〈ident〉]? : 〈type〉 ;

〈type〉 ::= bool | int | 〈ident〉 | 〈type〉*

〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | ;

〈simp〉 ::= 〈lval〉 〈asop〉 〈exp〉 | 〈exp〉 | return 〈exp〉 | return

〈control〉 ::= if (〈exp〉) 〈block〉 [else 〈block〉] |

for ([〈lval〉 〈asop〉 〈exp〉] ; 〈exp〉 ; [〈simp〉]) 〈block〉 |

while (〈exp〉) 〈block〉 | continue | break

〈block〉 ::= 〈stmt〉 | { 〈stmt〉? }

〈exp〉 ::= (〈exp〉) | 〈const〉 | 〈lval〉 | 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉 |

& 〈lval〉 | alloc (〈exp〉 , 〈type〉) | offset (〈exp〉) | size (〈exp〉) |

〈ident〉 ([〈exp〉 [, 〈exp〉]?])

〈lval〉 ::= (〈lval〉) | 〈ident〉 | * 〈exp〉 | 〈exp〉 [〈exp〉] |

〈lval〉 . 〈ident〉 | 〈exp〉 -> 〈ident〉 | (〈lval〉)

〈const〉 ::= 〈intconst〉 | true | false | NULL

〈ident〉 ::= [A-Z a-z][0-9A-Z a-z]?

〈intconst〉 ::= [0-9][0-9]?

〈asop〉 ::= = | += | -= | *= | /= | %=

〈binop〉 ::= + | - | * | / | % | < | <= | == | != | > | >= |

&& | || | ^^ | & | | | ^ | << | >> | *+ | *- | *== | *!=

〈unop〉 ::= ! | ~ | -

Non-terminals are in 〈brackets〉.
Terminals are in bold.

Figure 3: Grammar of L3

11

Operator Associates Class Meaning

() left n/a function call, explicit parentheses

[] -> . left postfix subscripting, indirect selection, direct selection

! ~ - & * right unary logical not, bitwise not, unary minus, reference, dereference

* / % left binary integer times, divide, modulo

+ - left binary integer plus, minus

<< >> left binary (signed) shift left, shift right

& left binary bitwise AND

^ left binary bitwise XOR

| left binary bitwise OR

*+ *- left binary pointer arithmetic (plus, minus)

< <= > >= left binary integer comparison

== != *== *!= left binary comparison (int and pointer)

&& left binary logical and

^^ left binary logical xor

|| left binary logical or

= += -= *= /= %= right binary assignment

Figure 4: Precedence of operators, from highest to lowest

12

Σ ::= · | Σ, (fn; τr; p1: τ1, p2: τ2, ... pn: τn)

∆ ::= · | ∆, (s; f1: τ1, f2: τ2, ... fn: τn)

Γ ::= · | Γ, x: τ

τ ::= int | bool | s | NS | void | τ*

where fn is a metavariable standing for the name of a function, and s for the name of a struct
type.
Functions are defined to have a return type τr and formal parameters p1: τ1, p2: τ2, ... pn: τn. The
special type void is used for procedures which do not return a result. Structs are defined to have
a list of fields in the format field name : type. NS is a special type, used for NULL, which is
compatible with any pointer type.

We write Σ(fn) if a function with name fn is defined in Σ, Σ(fn) = (τr; p1: τ1, p2: τ2, ... pn: τn)
if a function with name fn, return type τr and parameters pi of type τi occurs in Σ, and Σ(fn) if
no function named fn occurs in Σ.

We write ∆(s) if a struct with name s occurs in ∆, ∆(s, f): τ if a struct with name s and a
field with name f of type τ occurs in ∆, and ∆(s) if no struct named s occurs in ∆.

For the variable context, we write Γ(x) if no variable with name x occurs in Γ.

The judgments for contexts are:

` Σ FCon Σ is a valid (function declaration) context
` ∆ SCon ∆ is a valid (struct type) context
` Γ VCon Γ is a valid (variable) context

If any context stands on the left-hand side of a judgment, it is implicitly assumed that it is a valid
context:

Σ ` Σ FCon FCon ∆ ` ∆ SCon SCon Γ ` Γ VCon V Con

5.2.2 Types

We write Tvalid(τ) if τ is a valid type. Tvalid() is defined by the following inference rules. Note
that NS and void are not valid types under this definition.

∆ ` Tvalid(int)
Tint ∆ ` Tvalid(bool)

Tbool

∆ ` Tvalid(τ)
∆ ` Tvalid(τ∗)

Tptr
∆ ` ∆(s)

∆ ` Tvalid(s)
Tstr

Type checking requires comparison of types. We will write TypCMP(τ1, τ2) if the two types τ1

and τ2 are compatible. We don’t only test for type equality, because we have the special expression
NULL of type NS∗, which is compatible with but not equal to any pointer type. This can be seen
as a special case of subtyping.

13

Type compatibility is defined by the following inference rules:

∆ ` Tvalid(τ)
∆ ` TypCMP(τ, τ)

tcmp valid
∆ ` TypCMP(NS, NS)

tcmp NS

∆ ` Tvalid(τ)
∆ ` TypCMP(τ∗, NS∗)

tcmp ptr NS
∆ ` Tvalid(τ)

∆ ` TypCMP(NS∗, τ∗)
tcmp NS ptr

∆ ` TypCMP(τ1, τ2)
∆ ` TypCMP(τ∗1 , τ∗2)

tcmp ptr

We define Ptrs(τ), which is true when τ is the type of pointers to struct type s, or a pointer to
a pointer to s, and so on.

∆ ` TypCMP(τ, s∗)
∆ ` Ptrs(τ)

ptr s
∆ ` TypCMP(τ, τ ′∗) ∆ ` Ptrs(τ ′)

∆ ` Ptrs(τ)
ptr ptr s

5.2.3 Extension of a context

We now define the valid extension of a context, starting with variable contexts:

Γ;∆ ` · VCon
emptyV Con

Γ ` Γ(x) ∆ ` Tvalid(τ)
Γ;∆ ` Γ, x : τ VCon addV Con

For struct contexts:

∆ ` · SCon
emptySCon

∆ ` ∆(s) ∆ ` Tvalid(τ1) · · · ∆ ` Tvalid(τn)
∆ ` ∆, (s; f1: τ1, f2: τ2, ... fn: τn) SCon addSCon

where no two field names f1, . . . , fn are equivalent, and if s is mentioned in any field type τi, then
∆ ` Ptrs(τi)

Finally, for function contexts:

Σ; ∆ ` · FCon
emptyFCon

Σ ` Σ(f) ∆ ` Tvalid(τr) ∆ ` Tvalid(τ1) · · · ∆ ` Tvalid(τn)
Σ; ∆ ` Σ, (f ; τr; p1: τ1, p2: τ2, ... pn: τn) FCon addFCon

where τr is not a struct type, f is not main and no two formal parameter names p1, . . . , pn are
equivalent.

Σ ` Σ(f) ∆ ` Tvalid(τ1) · · · ∆ ` Tvalid(τn)
Σ; ∆ ` Σ, (f ; void; p1: τ1, p2: τ2, ... pn: τn) FCon addFConV oid

where no two formal parameter names p1, . . . , pn are equivalent and f is not main.

14

Σ ` Σ(main)
Σ; ∆ ` Σ, (main; void;) FCon) addFConMain

A context can be assigned a certain content using the := symbol. For example, Γ := Γ, x: τx

adds the variable x of type τx to Γ.

5.2.4 Expressions

In order to type-check an expression e, we must show that all its atomic parts are valid sub-
expressions and that they form a valid expression. We will write Lval(l):τl if l is a valid L-value of
type τl. Similar, we write Exp(e):τe if e is a valid expression of type τe.

Constants

` Exp(true) : bool
exp true

` Exp(false) : bool
exp false

` Exp(〈intconst〉) : int
exp int

` Exp(NULL) : NS∗
exp NS

L-values

Σ;∆; Γ, x: τ ` Lval(x) : τ
lval var

Σ;∆; Γ ` Exp(e) : τ∗

Σ;∆; Γ ` Lval(∗e) : τ
lval deref

Σ;∆; Γ ` Lval(l) : τ ∆ ` ∆(τ, 〈ident〉) : τi

Σ;∆; Γ ` Lval(l.〈ident〉) : τi
lval struct

Binary Operators

Σ;∆; Γ ` Exp(x) : int Σ;∆; Γ ` Exp(y) : int
Σ;∆; Γ ` Exp(x � y) : int

exp int arith

with � ::= + | - | * | / | % | & | | | ^ | << | >>

Σ;∆; Γ ` Exp(x) : int Σ;∆; Γ ` Exp(y) : int
Σ;∆; Γ ` Exp(x � y) : bool

exp int comp

with � ::= < | <= | == | != | >= | >

Σ;∆; Γ ` Exp(x) : bool Σ;∆; Γ ` Exp(y) : bool
Σ;∆; Γ ` Exp(x � y) : bool

exp bool arith

with � ::= && | || | ^^

15

Σ;∆; Γ ` Exp(x) : τ∗ Σ;∆; Γ ` Exp(y) : int
Σ;∆; Γ ` Exp(x � y) : τ∗

exp ptr arith

with � ::= *+ | *-

Σ;∆; Γ ` Exp(x) : τ∗x Σ;∆; Γ ` Exp(y) : τ∗y

Σ;∆; Γ ` Exp(x � y) : bool
exp ptr comp

with � ::= *== | *!=

Unary Operators

Σ;∆; Γ ` Exp(x) : int
Σ;∆; Γ ` Exp(∼x) : int

exp int not
Σ;∆; Γ ` Exp(x) : int

Σ;∆; Γ ` Exp(−x) : int
exp int minus

Σ;∆; Γ ` Exp(x) : bool
Σ;∆; Γ ` Exp(!x) : bool

exp bool not

Miscellaneous Expressions

Γ ` Lval(x) : τ

Γ ` Exp(x) : τ
exp lval

Σ;∆; Γ ` Lval(l) : τ

Σ;∆; Γ ` Exp(&l) : τ∗
exp ref

Σ;∆; Γ ` Exp(e) : int ∆ ` Tvalid(τ)
Σ;∆; Γ ` Exp(alloc(e, τ)) : τ∗

exp alloc

Σ;∆; Γ ` Exp(e) : τ∗

Σ;∆; Γ ` Exp(offset(e)) : int
exp offset

Σ;∆; Γ ` Exp(e) : τ∗

Σ;∆; Γ ` Exp(size(e)) : int
exp size

Σ ` Σ(fn) = (τr; p1: τ1, p2: τ2, ... pn: τn) ∀i.(Σ;∆; Γ ` Exp(ai) : τ ∧ ∆ ` TypCMP(τ, τi))
Σ;∆; Γ ` Exp(〈fn〉(a1, a2, ..., an)) : τr

exp fun

5.2.5 Statements

For type checking statements, we need yet another context, Ξ, for control information. For our
purpose, it contains only the return type of the current function and an entry loop, which is set if
the current statement is in a loop. We write Ξ(rettype):τr if the return type of the current function
is τr and Ξ(rettype):void if the current function does not have a return value. Ξ(loop) is used to
indicate that the current statement is executed within a loop. The judgment for a valid context Ξ is

` Ξ XCon Ξ is a valid context.

The following inference rules define how Ξ may be extended.

Ξ;∆ ` Ξ XCon
XCon Ξ;∆ ` · XCon

emptyXCon

16

Ξ;∆ ` Ξ, loop XCon
loopXCon

∆ ` Tvalid(τ)
Ξ;∆ ` Ξ, (rettype, τ) XCon

rettypeXCon

Ξ;∆ ` Ξ, (rettype, void) XCon
retvoidXCon

The judgment Stmt(s) denotes that s is a valid statement. It is defined by the following inference
rules. We write · for an empty statement, i.e. a statement that reduces to nothing.

Σ;∆; Γ ` Lval(l) : τl Σ;∆; Γ ` Exp(e) : τe ∆ ` TypCMP(τl, τe)
Σ; Ξ;∆; Γ ` Stmt(l = e)

stmt assign

where τl is not a struct type.

Σ; Ξ;∆; Γ ` Stmt(s1) Σ; Ξ;∆; Γ ` Stmt(s2)
Σ; Ξ;∆; Γ ` Stmt(s1; s2)

stmt seq

Σ;∆; Γ ` Exp(e)
Σ; Ξ;∆; Γ ` Stmt(e)

stmt exp
Σ; Ξ;∆; Γ ` Stmt(·)

stmt empty

Σ;∆; Γ ` Exp(e) : τ Ξ ` Ξ(rettype) : τr ∆ ` TypCMP(τr, τ)
Σ; Ξ;∆; Γ ` Stmt(return e) stmt retval

Ξ ` Ξ(rettype) : void
Σ; Ξ;∆; Γ ` Stmt(return)

stmt ret

Ξ ` Ξ(loop)
Σ; Ξ;∆; Γ ` Stmt(continue) stmt continue

Ξ ` Ξ(loop)
Σ; Ξ;∆; Γ ` Stmt(break) stmt continue

Control Statements

Control statements are used to execute several statements under a certain condition.

Σ;∆; Γ ` Exp(e) : bool Σ; Ξ;∆; Γ ` Stmt(s)
Σ; Ξ;∆; Γ ` Stmt(if(e) s)

stmt if

Σ;∆; Γ ` Exp(e) : bool Σ; Ξ;∆; Γ ` Stmt(s1) Σ; Ξ;∆; Γ ` Stmt(s2)
Σ; Ξ;∆; Γ ` Stmt(if(e) s1 else s2)

stmt if else

Σ; Ξ;∆; Γ ` Stmt(s1) Σ;∆; Γ; Ξ, loop ` Stmt(s2)
Σ;∆; Γ ` Exp(e) : bool Σ;∆; Γ; Ξ, loop ` Stmt(s)

Σ; Ξ;∆; Γ ` Stmt(for(s1; e; s2) s)
stmt for

Σ;∆; Γ ` Exp(e) : bool Σ;∆; Γ; Ξ, loop ` Stmt(s)
Σ; Ξ;∆; Γ ` Stmt(while(e) s) stmt while

17

5.2.6 Function Declarations

The body of a function consists of a list of variable declarations and a list of statements, where
both can be empty. We will write 〈decl :: stmts〉 to describe those two lists. A declaration has the
form, var x : τ , and d, decl is the list of declarations consisting of declaration d followed by the list
decl.

To start, we define the validity of function declarations.

Σ, (fn; τr; p1: τ1, p2: τ2, ... pn: τn);
∆; Γ := ·, p1: τ1, p2: τ2, ... pn: τn; Ξ := ·, (rettype, τr) ` 〈decl :: stmts〉

Σ; ∆ ` fn(τr; p1: τ1, p2: τ2, ... pn: τn)〈decl :: stmts〉 fun valid

Now we define the validity of function bodies:

∆; Γ ` Γ, x: τ V Con Σ; ∆; Γ, x: τ ; Ξ ` 〈decl :: stmts〉
Σ; Ξ;∆; Γ ` 〈var x: τ, decl :: stmts〉 fun var decl

Σ; Ξ;∆; Γ ` Stmt(stmts)
Σ; Ξ;∆; Γ ` 〈 · :: stmts〉 fun var stmts

5.2.7 Typechecking a Program

Type checking a program consists of the following steps:

1. ∆ := · and Σ := ·

2. Iterate through the whole program from top to bottom, adding struct definitions to ∆ and
function prototypes to Σ.

• For each struct declaration struct s {f1: τ1; f2: τ2; ...; fn: τn } do
∆ := ∆, (s; f1: τ1; f2: τ2; ...; fn: τn) if
∆ ` ∆, (s; f1: τ1; f2: τ2; ...; fn: τn) SCon (see section 5.2.3)

• For each function declaration τr fn(p1: τ1, p2: τ2, ... pn: τn) do
Σ := Σ, (fn; τr; p1: τ1, p2: τ2, ... pn: τn) if
Σ; ∆ ` Σ, (fn; τr; p1: τ1, p2: τ2, ... pn: τn) FCon

3. Typecheck all functions following the rules described in section 5.2.6.

Note that functions are visible globally, struct declarations are only visible below their decla-
ration for other struct declarations, but are also globally visible for functions. To achieve this, the
program passed to the type checker is expected to have all struct declarations before the function
definitions.

5.3 Formal Operational Semantics

This section describes formally how the compiled code must behave when executed. It might
even give you some hints on how you can optimize your compiler, however, be warned that the

18

following description makes unrealistic memory assumptions and might also not be appropriate in
other places. You should feel free to implement your compiler however you wish as long as it is
behaviorally consistent with these semantics.

The operational semantics is designed to accept type-checked code as defined in Section 5.2, i.e.
the program presented to the dynamic semantics must be valid.

We describe the behavior of the language with a set of transition rules for a finite state machine.
Execution begins at a well defined entry point, and for successful execution, there should always
be exactly one transition that can be taken. For an unambiguous language like L3, there always is
at most one transition that applies, and if no transitions apply, it is a runtime error.

5.3.1 How to Read Dynamic Semantics

We use the following example to explain how this specification should be read. It consists of four
rules that specify the transitions used for the addition of two variables.

S, M, R,B,K ` a + b S, M, R,B,K .�+ b ` a (1)
S, M, R,B,K .�+ b ` va S, M, R,B,K . va +� ` b (2)

S, M, R,B,K . va +� ` vb S, M, R,B,K ` eval((va + vb)) (3)
S : [x → m] ,M : [m → vx] , R, B,K ` x S : [x → m] ,M : [m → vx] , R,B,K ` vx (4)

The most important symbol in the lines above is . It indicates the transition. To the left is
the machine state required to make the transition. To the right is the state that the machine will
be in after the execution. At most one transition will apply, since the language is deterministic.

Next is the variable context S. It is essentially a list of variables that are defined at the point
of execution. An empty context is represented with a single dot: · . In rule 4 above, the context
S is enriched by the definition of x. If this appears on the left of , it is a requirement for the
transition to be applicable. If an enrichment appears on the right of , it means that this is the
new state of the variable context. Note that the variable is not assigned directly the value, but a
memory address m. The memory address is resolved in the memory context M , which contains
the mappings from memory addresses to values. In rule 4 above, this means that variable x must
be vx, and it will continue to be present in the context with the value vx.

K is the current continuation stack. It contains the expressions/statements that have begun
computing, but have not finished. The triangle . separates the top element (on the right of the
triangle) from the rest of the stack - we always only look at the top element. The box �, which must
be present in each entry, shows where the value must be filled in in order for the computation to
continue. Once the computation reaches some kind of a terminal (a value in the case of expressions
or a void [written as “()”] in the case of a statement or declaration), there will exist another rule
that will take the reached terminal and pop the continuation stack. Rule 2 is an example of that.
Note that a non-value may not be plugged into the box.

R is the return context which stores the continuation stack K and the variable scope S of the
caller of a function. The final context is called B and stores tuples (continuation stack, statements).
We use B in loops to specify the behaviour of break and continue.

The only item that is left is the ` sign. It separates the preconditions (the variable context and
memory context) and the current continuation stack from either the piece of code that must be exe-
cuted next or the result of the previous transition. In the case of a result from a previous transition,
there must exist a transition that specifies how the value can be used. In the case of a computation,

19

there must exist a transition that specifies how the expression can be evaluated. In summary, in
all cases there must always exist a transition rule that specifies what to do with the contents to
the right of ` (or if no rule applies, we have a runtime error or have reached the end of the program.)

Let’s go through the example rules and examine how they indicate the expression a + b must be
executed:

1. In Rule 1, the LHS of is S, M, K ` a + b. This means that a + b should be executed in the
context given by S and M .
The RHS of Rule 1 shows the first step of how this computation must be done: a is executed2

first, while the rest of the computation is put on the continuation stack. Remember that the
box � is the place where the result of executing a will be plugged in.

2. Rule 2 describes the transition that can be applied when �+ b is on top of the continuation
stack K and the RHS of ` is a value va. It says that the value va is plugged into the box �
and that b should be executed next.

3. Rule 3 shows the transition that can be applied when the top of the continuation stack is
va +� and the RHS of ` is a value vb. It indicates that the sum of va and vb can be evaluated
and returned. The eval((...)) keyword means that the “real” result of the operation (as
understood in this metalanguage) must be returned.

4. Rule 4 describes the transition used to look up the value associated with a variable. Its
precondition to look up a variable named x is that x is bound in S to a memory address m
and m must be bound in M to a value vx. The postcondition of the transition is that the
variable x is still bound to m in S and m is still bound in M . The rule tells us that we can
return vx as the result of executing the variable x, and is used to enable the LHS of rules 2
and 3 in the evaluation.

5.3.2 Values

A small value is a direct result of some expression. It is a single unit of data that contains an
actual meaning. A small value can be one of the following:

• int

• bool

• memory address

Except for the return statement, all statements return “()” (pronounced “void” or “unit”)
upon successful execution. () is needed in order to step to the next statement. In the case of a
return, the continuation stack K is emptied as there are no more statements to be executed and
the program has successfully terminated.

2For this example, a is a variable, but could be an arbitrary (valid) expression. Execution of a variable means to
return its current value.

20

The following 3 heap values are not the result of any expression. They are the data types that
we use to represent safe pointers, structs, and arrays on the heap. An important note is that any
scalar value may also be considered an array of size 1.

• safe pointer–a triple [memory address, int, int], where the first int is the offset and the second
int the size

• struct–a list of memory locations where the elements reside

• array of values (of a specific size)

5.3.3 Rules

• Body
S, M, R,B,K ` decls; stms S, M, R,B,K .�; stms ` decls

S, M, R,B,K .�; stms ` () S, M, R,B,K ` stms

• Declarations
S, M, R,B,K ` id : τ ; decls S, M, R,B,K .�; decls ` id : τ

S, M, R,B,K ` id : τ S : [id → m] ,M : [m → defaultValue(τ)] , R, B,K ` ()

S, M, R,B,K .�; decls ` () S, M, R,B,K ` decls

• Statements
S, M, R,B,K ` stm; stms S, M, R,B,K .�; stms ` stm

S, M, R,B,K .�; stms ` () S, M, R,B,K ` stms

• Statement

– Assignment
S, M, R,B,K ` l = exp S, M, R,B,K . l = � ` exp

S, M, R,B,K . l = � ` v S, M, R,B,K .� = v ` Lval(l)

S, M : [m → Array(v0, . . . , vo, . . . , vs−1), n → SafePtr(m, o, s)] ,
R, B,K .� = vnew ` n
S, M : [m → Array(v0, . . . , vnew, . . . , vs−1), n → SafePtr(m, o, s)] , R, B,K ` ()
if 0 ≤ o < s

S, M : [m → w] , R, B,K .� = v ` m S, M : [m → v] , R, B,K ` ()
if m does not point to a heap value of type SafePtr(, ,)

– If
S, M, R,B,K ` if(exp){stms} S, M, R,B,K . if(�){stms} ` exp

S, M, R,B,K . if(�){stms} ` true S, M, R,B,K ` stms

S, M, R,B,K . if(�){stms} ` false S, M, R,B,K ` ()

21

– IfElse
S, M, R,B,K ` if(exp){stms1}else{stms2}

S, M, R,B,K . if(�){stms1}else{stms2} ` exp

S, M, R,B,K . if(�){stms1}else{stms2} ` true S, M, R,B,K ` stms1
S, M, R,B,K . if(�){stms1}else{stms2} ` false S, M, R,B,K ` stms2

– Return
S, M, R,B,K ` return exp S, M, R,B,K . return � ` exp

S, M, R . (K ′, S′), B,K . return � ` v S′,M, R,B,K ′ ` v

– Return (void)
S, M, R . (K ′, S′), B, K ` return S′,M, R,B,K ′ ` ()

– While
S, M, R,B,K ` while(exp){stms}

S, M, R,B . (K,while(exp){stms}),K . while(�){stms} ` exp

S, M, R,B,K . while(�){stms} ` false S, M, R,B,K ` ()

S, M, R,B,K . while(�){stms} ` true
S, M, R,B,K . while(true){�} ` stms; continue

– For
S, M, R,B,K ` for(stm1; exp; stm2){stms}

S, M, R,B . (K, stm2; for((); exp; stm2){stms}),K . for(�; exp; stm2){stms} ` stm1

S, M, R,B,K . for(�; exp; stm2){stms} ` ()
S, M, R,B,K . for(();�; stm2){stms} ` exp

S, M, R,B,K . for(();�; stm2){stms} ` false S, M, R,B,K ` ()

S, M, R,B,K . for(();�; stm2){stms} ` true
S, M, R,B,K . for((); true; stm2){�} ` stms; continue

– Continue
S, M, R,B . (K ′, stms),K ` continue S, M, R,B,K ′ ` stms

– Break
S, M, R,B . (K ′, stms),K ` break S, M, R,B,K ′ ` ()

– Exp
Exp(e) indicates that e is a an expression which is executed as a statement.
S, M, R,B,K ` Exp(exp) S, M, R,B,K . Exp(�) ` exp

S, M, R,B,K . Exp(�) ` v S, M, R,B,K ` ()

• Expression

– Constants
Constants are values, and thus no rules are needed.

S, M, R,B,K ` NULL S, M, R,B,K ` null

22

– Binary integer math, integer comparisons
S, M, R,B,K ` exp1 op exp2 S, M, R,B,K .� op exp2 ` exp1

with op = + | - | * | / | % | < | <= | == | != | > | >= | << | >>
S, M, R,B,K .� op exp2 ` v1 S, M, R,B,K . v1 op � ` exp2

with op = + | - | * | / | % | < | <= | == | != | > | >= | << | >>
S, M, R,B,K . v1 op � ` v2 S, M, R,B,K ` eval((v1 op v2))

with op = + | - | * | < | <= | == | != | > | >= | << | >>
S, M, R,B,K . v1 op � ` v2 S, M, R,B,K ` eval((v1 op v2))

with op = / | % and v2 6= 0

– Boolean Operators
S, M, R,B,K ` exp1 op exp2 S, M, R,B,K .� op exp 2 ` exp1

with op = && | || | ^^

∗ Short Circuit And
S, M, R,B,K .� && exp2 ` false S, M, R,B,K ` false
S, M, R,B,K .� && exp2 ` true S, M, R,B,K ` exp2

∗ Short Circuit Or
S, M, R,B,K .� || exp2 ` true S, M, R,B,K ` true
S, M, R,B,K .� || exp2 ` false S, M, R,B,K ` exp2

∗ No Short Circuit Xor
S, M, R,B,K .� ^^ exp2 ` v1 S, M, R,B,K . v1 ^^ � ` exp2
S, M, R,B,K . v1 ^^ � ` v2 S, M, R,B,K ` eval((v1 ^^ v2))

– Unary Operators
S, M, R,B,K ` op exp S, M, R,B,K . op � ` exp

with op = ! | - | ~
S, M, R,B,K . op � ` v S, M, R,B,K ` eval((op v))

with op = ! | - | ~

– Pointer Arithmetic
S, M, R,B,K ` exp1 op exp2 S, M, R,B,K .� op exp2 ` exp1

with op = *+ | *-
S, M : [n → SafePtr(m, o, s)] , R, B,K .� op exp2 ` n

S, M : [n → SafePtr(m, o, s)] , R, B,K . n op � ` exp2
with op = *+ | *-

S, M : [n → SafePtr(m, o, s)] , R, B,K . n *+ � ` v2
S, M : [n → SafePtr(m, o, s), n′ → SafePtr(m, eval((o + v2)), s)] , R,B,K ` n′

if m 6= 0

S, M : [n → SafePtr(0, o, s)] , R, B,K . n *+ � ` v2
S, M : [n → SafePtr(0, o, s)] , R, B,K ` n

S, M : [n → SafePtr(m, o, s)] , R, B,K . n *- � ` v2
S, M : [n → SafePtr(m, o, s), n′ → SafePtr(m, eval((o− v2)), s)] , R, B,K ` n′

if m 6= 0

23

S, M : [n → SafePtr(0, o, s)] , R, B,K . n *- � ` v2
S, M : [n → SafePtr(0, o, s)] , R, B,K ` n

– Pointer Comparison
S, M, R,B,K ` exp1 op exp2 S, M, R,B,K .� op exp2 ` exp1

with op = *== | *!=
S, M, R,B,K .� op exp2 ` p1 S, M, R,B,K . p1 op � ` exp2

with op = *== | *!=
S, M : [p1 → SafePtr(m1, o1, s1), p2 → SafePtr(m2, o2, s2)] , R, B,K . p1 *== � ` p2

S, M : [p1 → SafePtr(m1, o1, s1), p2 → SafePtr(m2, o2, s2)] , R, B,K `
eval((m1 == m2 && o1 == o2))

S, M : [p1 → SafePtr(m1, o1, s1), p2 → SafePtr(m2, o2, s2)] , R, B,K . p1 *!= � ` p2
S, M : [p1 → SafePtr(m1, o1, s1), p2 → SafePtr(m2, o2, s2)] , R, B,K `
eval((m1 != m2 || o1 != o2))

– Alloc
S, M, R,B,K ` Alloc(exp, τ) S, M, R,B,K . Alloc(�, τ) ` exp

S, M, R,B,K . Alloc(�, τ) ` s
S, M, R,B,K . Alloc′(τ,Array(�, d1, . . . , ds−1)) ` defaultValue(τ)

S, M, R,B,K . Alloc′(τ,Array(v0, . . . , vi−1,�, di+1, . . . , ds−1)) ` v
S, M, R,B,K . Alloc′(τ,Array(v0, . . . , vi−1, v,�, . . . , ds−1)) ` defaultValue(τ)

S, M, R,B,K . Alloc′(τ,Array(v0, . . . , vs−2,�)) ` v
S, M : [m → Array(v0, . . . , vs−2,�), n → SafePtr(m, 0, s)] , R, B,K ` n

– Address Of
S, M, R,B,K ` &l S, M, R,B,K. &� ` Lval(l)

S, M : [n → SafePtr(m, o, s)] , R,B,K. &� ` n
S, M : [n → SafePtr(m, o, s)] , R, B,K ` n

S, M : [m → α] , R, B,K. &� ` m S, M : [m → α; n → SafePtr(m, 0, 1)] , R,B,K ` n
if m does not point to a heap value of type SafePtr(, ,)

– Size
S, M, R,B,K ` size(exp) S, M, R,B,K . size(�) ` exp

S, M : [n → SafePtr(m, o, s)] , R, B,K . size(�) ` n
S, M : [n → SafePtr(m, o, s)] , R, B,K ` s

– Offset
S, M, R,B,K ` offset(exp) S, M, R,B,K . offset(�) ` exp

S, M : [n → SafePtr(m, o, s)] , R, B,K . offset(�) ` n
S, M : [n → SafePtr(m, o, s)] , R, B,K ` o

– Function Call
S, M, R,B,K ` funname(n1 = exp1, . . . , nn = expn, (body))

S, M, R,B,K . funname(n1 = �, . . . , nn = expn, (body)) ` exp1

24

S, M, R,B,K . funname(n1 = v1, . . . , ni = �, ni = expi . . . , nn = expn, (body)) ` vi
S, M, R,B,K . funname(n1 = v1, . . . , ni = vi, ni = �, . . . , nn = expn, (body)) ` expi

S, M, R,B,K . funname(n1 = v1, . . . , nn = �, (body)) ` vn
S′ = · : [n1 → m1] : . . . : [nn → mn] ,M : [m1 → v1] : . . . : [mn → vn] ,
R . (K, S), B, K ` (body)

• Lval
The keyword Lval is needed to specify that not the value, but the memory address where the
information is stored must be returned.

– Variable
S : [var → m] ,M : [m → v] , R, B,K ` var S : [var → m] ,M : [m → v] , R, B,K ` v

S : [var → m] ,M,R, B,K ` Lval(var) S : [var → m] ,M,R, B,K ` m

– Deref
S, M, R,B,K ` *exp S, M, R,B,K. *� ` exp
S, M : [n → SafePtr(m, o, s),m → Array(v0, . . . , vo, . . . , vs−1)] , R, B,K. *� ` n

S, M : [n → SafePtr(m, o, s),m → Array(v0, . . . , vo, . . . , vs−1)] , R, B,K ` vo

if 0 ≤ o < s

S, M, R,B,K ` Lval(*exp) S, M, R,B,K . Lval(*�) ` exp
S, M : [n → SafePtr(m, o, s)] , R, B,K . Lval(*�) ` n

S, M : [n → SafePtr(m, o, s)] , R,B,K ` n

– Structure Element
S, M, R,B,K ` s.elem S, M, R,B,K .�.elem ` s
S, M : [n → Struct(. . . , elem → m, . . .),m → v] , R, B,K .�.elem ` n

S, M : [n → Struct(. . . , elem → m, . . .),m → v] , R,B,K ` v

S, M, R,B,K ` Lval(s.elem) S, M, R,B,K . Lval(�.elem) ` s
S, M : [n → Struct(. . . , elem → m, . . .)] , R, B,K . Lval(�.elem) ` n

S, M : [n → Struct(. . . , elem → m, . . .)] , R, B,K ` m

• Default Values
S, M, R,B,K ` defaultValue(int) S, M, R,B,K ` undefint
S, M, R,B,K ` defaultValue(bool) S, M, R,B,K ` undefbool
S, M, R,B,K ` defaultValue(τ*) S, M, R,B,K ` null

null is a memory-address bound in M

S, M, R,B,K ` defaultValue(Struct(n1 : τ1, . . . , nn : τn))
S, M, R,B,K . defaultValue(Struct(n1 → �, . . . , nn : τn)) ` defaultValue(τ1)

S, M, R,B,K . defaultValue(Struct(n1 → v1, . . . , ni → �, ni+1 : τi+1, . . . , nn : τn)) ` v
S, M, R,B,K . defaultValue(Struct(n1 → v1, . . . , ni → v, ni+1 → �, . . . , nn : τn)) `
defaultValue(τi+1)

S, M, R,B,K . defaultValue(Struct(n1 → v1, . . . , nn → �)) ` v
S, M : [n → Struct(n1 → v1, . . . , nn → v)] , R, B,K ` n

25

5.3.4 Execution

To begin executing the program, we set the current state of the machine to be
S = ·,M = · : [null → SafePtr(0, 0, 0)] , R = · : (·, ·), B = ·,K = · ` (main body).

Upon successful completion, the machine will end in the state S = ·,M, R = ·, B, K = · ` () for
arbitrary B and M .

26

