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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright   1997, Texas Instruments Incorporated
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Preface

Read This First

About This Manual

This reference guide describes the CPU architecture, pipeline, instruction set,
and interrupts for the TMS320C62xx digital signal processors (DSPs). Unless
otherwise specified, all references to the ’C6x refer to the TMS320C6x genera-
tion of DSPs and ’C62xx refer to the TMS320C62xx DSPs in the ’C6x genera-
tion.

How to Use This Manual

Use this manual as a reference for the architecture of the TMS320C62xx CPU.
First-time readers should read Chapter 1 for general information about TI
DSPs, the features of the TMS320C62xx, and the applications for which the
TMS320C62xx is best suited.

Read chapters 2, 4, and 5 to grasp the concepts of the architecture.
Chapter 3 contains detailed information about each instruction and is best
used as reference material; however, you may want to read sections 3.1
through 3.8 for general information about the instruction set and to understand
the instruction descriptions, then browse through Chapter 3 to familiarize your-
self with the instructions.

The following table gives chapter references for specific information:

If you are looking for in-
formation about: Turn to these chapters:

Addressing modes Chapter 3, Instruction Set

Conditional operations Chapter 3, Instruction Set

Control registers Chapter 2, CPU Overview

CPU architecture Chapter 2, CPU Overview

CPU data paths Chapter 2, CPU Overview

Delay slots Chapter 3, Instruction Set

Chapter 4, Pipeline Operation



Notational Conventions

iv  

If you are looking for in-
formation about: Turn to these chapters:

General-purpose register files Chapter 2, CPU Overview

Instruction set Chapter 3, Instruction Set

Interrupt control registers Chapter 5, Interrupts

Interrupts Chapter 5, Interrupts

Parallel operations Chapter 3, Instruction Set

Pipeline operation Chapter 4, Pipeline Operation

Pipeline phases Chapter 4, Pipeline Operation

Reset Chapter 5, Interrupts

If you are interested in topics that are not listed here, check Related Documen-
tation From Texas Instruments, page v, for brief descriptions of other
’C62xx-related books that are available.

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special font .
Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� To help you easily recognize instructions and parameters throughout the
book, instructions are in bold face  and parameters are in italics (except
in program listings).

� In instruction syntaxes, portions of a syntax that are in bold  should be en-
tered as shown; portions of a syntax that are in italics describe the type of
information that should be entered. Here is an example of an instruction:

MPY src1,src2,dst

MPY is the instruction mnemonic. When you use MPY, you must supply
two source operands (src1 and src2) and a destination operand (dst) of
appropriate types as defined in Chapter 3, Instruction Set.

Although the instruction mnemonic (MPY in this example) is in capital let-
ters, the ’C6x assembler is not case sensitive — it can assemble mnemon-
ics entered in either upper or lower case.

How to Use This Manual/Notational Conventions
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� Square brackets, [ and ], and parentheses, ( and ), are used to identify op-
tional items. If you use an optional item, you must specify the information
within brackets or parentheses; however, you do not enter the brackets or
parentheses themselves. Here is an example of an instruction that has op-
tional items.

[label] EXTU (.unit) src2, csta, cstb, dst

The EXTU instruction is shown with a label and several parameters. The
[label] and the parameter (.unit) are optional. The parameters src2, csta,
cstb, and dst are not optional.

� Throughout this book MSB means most significant bit and LSB means
least significant bit.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x generation and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C62xx Technical Brief  (literature number SPRU197) gives an
introduction to the ’C62xx digital signal processor, development tools,
and third-party support.

TMS320C62xx Peripherals Reference Guide  (literature number SPRU190)
describes common peripherals available on the TMS320C62xx digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C62xx Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code and includes applica-
tion program examples.

TMS320C6x Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6x C compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for the ’C6x generation of devices. This book also describes the
assembly optimizer, which helps you optimize your assembly code.

Notational Conventions/Related Documentation From Texas Instruments
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TMS320C6x C Source Debugger User’s Guide  (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

TMS320C6201 Digital Signal Processor Data Sheet  (literature number
SPRS051) describes the features of the TMS320C6xx and provides pin-
outs, electrical specifications, and timings for the device.

Trademarks

XDS510, VelociTI, and 320 Hotline On-line are trademarks of Texas Instru-
ments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft Corpora-
tion.

Related Documentation From Texas Instruments/Trademarks
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If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax:  (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax:  (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines: 

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11  or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax:  +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax:  +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax:  +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax:  +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax:  +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026  (in Japan) Fax:  +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax:  +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax:  +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email:  comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.
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Introduction

The TMS320C6x generation of digital signal processors is part of the TMS320
family of digital signal processors (DSPs). The TMS320C62xx devices are
fixed-point  DSPs in the TMS320C6x generation. The TMS320C62xx is the
first DSP to use the VelociTI  architecture, a high-performance, advanced
VLIW (very long instruction word) architecture, making the ’C62xx an excellent
choice for multichannel and multifunction applications.

 The ’C62xx’s VelociTI architecture makes it the first off-the-shelf DSP to use
advanced VLIW to achieve high performance through increased instruction-
level parallelism. A traditional VLIW architecture consists of multiple execution
units running in parallel, performing multiple instructions during a single clock
cycle. Parallelism is the key to extremely high performance, taking these DSPs
well beyond the performance capabilities of traditional superscalar designs.
VelociTI is a highly deterministic architecture, having few restrictions on how
or when instructions are fetched, executed, or stored. It is this architectural
flexibility that is key to the breakthrough efficiency levels of the ’C6x compiler.
VelociTI’s advanced features include:

� Instruction packing: reduced code size
� All instructions can operate conditionally: flexibility of code
� Variable-width instructions: flexibility of data types
� Fully pipelined branches: zero-overhead branching
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1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture de-
signed specifically for real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010—the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. Today, the
TMS320 family consists of many generations: ’C1x, ’C2x, ’C2xx, ’C5x, and
’C54x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs, and ’C8x multipro-
cessor DSPs. Now there is a new generation of DSPs, the TMS320C6x gen-
eration, with performance and features that are reflective of Texas Instruments
commitment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.
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Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D rotation
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement 
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56�600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail
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1.2 Overview of the TMS320C6x Generation of Digital Signal Processors

With a performance of up to 1600 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6x DSPs give system architects unlimit-
ed possibilities to differentiate their products. High performance, ease of use,
and affordable pricing make the TMS320C6x generation the ideal solution for
multichannel, multifunction applications, such as:

� Pooled modems
� Wireless base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems

The TMS320C6x generation is also an ideal solution for exciting new applica-
tions; for example:

� Personalized home security with face and hand/fingerprint recognition
� Advanced cruise control with GPS navigation and accident avoidance
� Remote medical diagnostics

1.3 Features and Options of the TMS320C62xx

At 200 MHz, the ’C62xx devices operate at a 5-ns cycle time, executing up to
eight 32-bit instructions every cycle. The device’s core CPU consists of 32
general-purpose registers of 32-bit word length and eight functional units:

� Two multipliers
� Six ALUs

The ’C62xx has a complete set of optimized development tools, including an
efficient C compiler, an assembly optimizer for simplified assembly-language
programming and scheduling, and a Windows  based debugger interface for
visibility into source code execution characteristics. A hardware emulation
board, compatible with the TI XDS510  emulator interface, is also available.
This tool complies with IEEE Standard 1149.1–1990, IEEE Standard Test Ac-
cess Port and Boundary-Scan Architecture.

Overview of the TMS320C6x Generation of Digital Signal Processors/Features and Options of the TMS320C62xx
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Features of the ’C62xx include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the per-
formance of typical DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption.

� All instructions execute conditionally.

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Code executes as programmed on independent functional units.

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelization

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options add extra precision for vocoders and other com-
putationally intensive applications

� Saturation and normalization provide support for key arithmetic opera-
tions.

� Field manipulation and instruction extract, set, clear, and bit counting sup-
port common operation found in control and data manipulation applica-
tions.

A variety of memory and peripheral options are available for the ’C62xx:

� Large on-chip RAM for fast algorithm execution

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories, for a broad range of external memory
requirements and maximum system performance

� 16-bit host port for host to access ’C62xx memory and peripherals

� Multichannel DMA controller

� Multichannel serial port(s)

� 32-bit timer(s)
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1.4 TMS320C62xx Architecture

Figure 1–1 is the block diagram for the TMS320C62xx DSPs. ’C62xx DSPs
are based on the ’C62xx CPU, shown in the right center of the figure. ’C62xx
devices come with program memory, which, on some devices, can be used as
a program cache. The devices also have varying sizes of data memory. Pe-
ripherals such as a direct memory access (DMA) controller, power-down logic,
and external memory interface (EMIF) usually come with the CPU, while pe-
ripherals such as serial ports and host ports are on only certain devices. Check
the data sheet for your device to determine the specific peripheral configura-
tions you have.

Figure 1–1. TMS320C62xx Block Diagram
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1.4.1 Central Processing Unit (CPU)

The ’C62xx CPU, shaded in Figure 1–1, is common to all the ’C62xx devices.
The CPU contains:

� Program fetch unit
� Instruction dispatch unit
� Instruction decode unit
� Two data paths, each with four functional units
� 32 32-bit registers
� Control registers
� Control logic
� Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can de-
liver up to eight 32-bit instructions to the functional units every CPU clock
cycle. The processing of instructions occurs in each of the two data paths (A
and B), each of which contains four functional units (.L, .S, .M, and .D) and 16
32-bit general-purpose registers. The data paths are described in more detail
in section 2.1. A control register file provides the means to configure and con-
trol various processor operations. To understand how instructions are fetched,
dispatched, decoded, and executed in the data path, see Chapter 4,
TMS320C62xx Pipeline.
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1.4.2 Internal Memory

The ’C62xx has a 32-bit, byte-addressable address space. Internal (on-chip)
memory is organized in separate data and program spaces. When off-chip
memory is used, these spaces are unified on most devices to a single memory
space via the external memory interface (EMIF).

The ’C62xx has two internal ports to access data memory, each with 32 bits
of data and a 32-bit byte address reach. The ’C62xx has a single port to access
program memory, with an instruction-fetch width of 256 bits and a 30-bit word
address, equivalent to a 32-bit byte address.

1.4.3 Peripherals

The following peripheral modules can complement the CPU on the ’C62xx
DSPs. Your particular device has a subset of these peripherals but may not
have all of them.

� Serial ports

� Timers

� External memory interface (EMIF) that supports synchronous and
asynchronous SRAM and synchronous DRAM

� DMA controller

� Host port

� Power-down logic that can halt CPU activity, peripheral activity, and PLL
activity to reduce power consumption
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CPU Data Paths and Control

This chapter provides an overview of the ’C62xx architecture. It focuses on the
CPU, providing information about the data paths and control registers.
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2.1 CPU Data Paths

Figure 2–2 on page 2-4 shows the ’C62xx CPU data paths, which consist of:

� Two general-purpose register files (A and B)
� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
� Two load-from-memory paths (LD1 and LD2)
� Two store-to-memory paths (ST1 and ST2)
� Two register file cross paths (1X and 2X)

2.1.1 General-Purpose Register Files

There are two general-purpose register files (A and B) in the ’C62xx data
paths. Each of these files contains 16 32-bit registers (A0–A15 for file A and
B0–B15 for file B). The general purpose registers can be used for data, data
address pointers, or condition registers.

The general-purpose register file supports 32- and 40-bit data. Thirty-two-bit
data can be contained in any general-purpose register. Forty-bit data is con-
tained across two registers; the 32 LSBs of the data are placed in an even reg-
ister and the remaining 8 MSBs are placed in the 8 LSBs of the next upper reg-
ister (which is always an odd register). There are 16 valid register pairs for
40-bit data as shown in Table 2–1. In assembly language syntax, the register
pairs are denoted by a colon between the register names, and the odd register
is specified first.

Table 2–1. Long (40-Bit) Register Pairs

Register File

A B

A1:A0 B1:B0

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

Figure 2–1 illustrates the register storage scheme for 40-bit data. Operations
requiring a long input ignore the 24 MSBs of the odd register. Operations pro-
ducing a long result zero-fill the 24 MSBs of the odd register. The even register
is encoded in the opcode.
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Figure 2–1. Storage Scheme for 40-Bit Data in a Register Pair
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2.1.2 Functional Units

The eight functional units in the ’C62xx data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2–2.

Table 2–2. Functional Units and Operations Performed 

Functional Unit Operations

.L Unit (.L1,.L2) 32/40-bit arithmetic and compare operations
Leftmost 1 or 0 bit counting for 32 bits
Normalization count for 32 and 40 bits
32-bit logical operations

.S Unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from the control register file  (.S2 only)

.M Unit (.M1, .M2) 16 × 16 bit multiply operations

.D Unit (.D1, .D2) 32-bit add, subtract, linear and circular address calcula-
tion
Loads and stores with a 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
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Figure 2–2. TMS320C62xx CPU Data Paths
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Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) operands. Each functional unit has its own 32-bit write port into a gen-
eral-purpose register file. All units ending in 1 (for example, .L1) write to regis-
ter file A and all units ending in 2 write to register file B. Each functional unit
has two 32-bit read ports for source operands src1 and src2. Four units (.L1,
.L2, .S1, .S2) have an extra 8-bit wide port for 40-bit long writes as well as an
8-bit input for 40-bit long reads. Because each unit has its own 32-bit write port,
all eight units can be used in parallel every cycle.

2.1.3 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1X and 2X cross paths. These cross paths allow functional units from one data
path to access a 32-bit operand from the opposite side’s register file. The 1X
cross path allows data path A’s functional units to read their source from regis-
ter file B and the 2X cross path allows data path B’s functional units to read their
source from register file A.

Six of the functional units have access to the opposite side’s register file via
a cross path. The .M1, .M2, .S1, and .S2 units’ src2 inputs are multiplex-select-
able between the cross path and the same side register file. The .L1 and .L2
units’ src1 and src2 inputs are also multiplex-selectable between the cross
path and the same side register file.

There are only two cross paths in the ’C62xx CPU, 1X and 2X. This limits one
source read from each data path’s opposite register file per cycle, or two cross-
path source reads per cycle.

2.1.4 Memory, Load, and Store Paths

There are two 32-bit paths for loading data from memory to the register file:
one (LD1) for register file A, and one (LD2) for register file B. There are also
two 32-bit paths, ST1 and ST2, for storing register values to memory from each
register file. The store paths are shared with the .L and .S long read paths.

2.1.5 Data Address Paths

Locate the .D1 and .D2 units in Figure 2–2. The data address paths (DA1 and
DA2) coming out of the .D units allow data addresses generated from one reg-
ister file to support loads and stores to memory from the other register file.
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2.2 Control Register File
Locate the control register file in Figure 2–2. One unit (.S2) can read from and
write to the control register file. Table 2–3 lists the control registers contained
in the control register file and describes each. If more information is available
on a control register, the table lists where to look for that information. Each con-
trol register is accessed by the MVC instruction. See the MVC instruction de-
scription in Chapter 3, Instruction Set, for information on how to use this
instruction.

Table 2–3. Control Registers

Register

Abbreviation Name Description Page No.

AMR Addressing mode register Specifies whether to use linear or circular addres-
sing for one of eight registers; also contains sizes
for circular addressing

2-7

CSR Control status register Contains the global interrupt enable bit, cache
control bits, and other miscellaneous control and
status bits

2-9

IFR Interrupt flag register Displays status of interrupts 5-14

ISR Interrupt set register Allows you to set pending interrupts manually 5-14

ICR Interrupt clear register Allows you to clear pending interrupts manually 5-14

IER Interrupt enable register Allows enabling/disabling of individual interrupts 5-13

ISTP Interrupt service table pointer Points to the beginning of the interrupt service
table

5-8

IRP Interrupt return pointer Contains the address to be used to return from a
maskable interrupt

5-16

NRP Nonmaskable interrupt return
pointer

Contains the address to be used to return from a
nonmaskable interrupt

5-16

PCE1 Program counter Contains the address of the fetch packet that con-
tains the execute packet in the E1 pipeline stage
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2.3 Addressing Mode Register (AMR)

Figure 2–3 shows the AMR. Eight registers (A4–A7, B4–B7) can perform cir-
cular addressing. For each of these registers, the AMR specifies the addres-
sing mode. A 2-bit field for each register is used to select the address modifica-
tion mode: linear (the default) or circular mode. With circular addressing, the
field also specifies which BK (block size) field to use for a circular buffer. In
addition, the buffer must be aligned on a byte boundary equal to the block size.
The mode select field encoding is shown in Table 2–4.

Figure 2–3. Addressing Mode Register (AMR) 

31 26 1625 21 20

BK0

R, W, +0

Reserved

R, +0 R, W, +0

BK1

 

15

B7 mode

14

B6 mode B5 mode B4 mode A7 mode A6 mode A5 mode A4 mode

13 12 11 10 9 8 7 6 5 4 3 2 1 0

R, W, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

Table 2–4. Addressing Mode Field Encoding

Mode Description

0 0 Linear modification (default at reset)

0 1 Circular addressing using the BK0 field

1 0 Circular addressing using the BK1 field

1 1 Reserved

The reserved portion of AMR is always 0. The AMR is initialized to zero at re-
set.
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The block size fields, BK0 and BK1, contain 5-bit values used in calculating
block sizes for circular addressing.

Block size (in bytes) = 2(N+1)

where N is the 5-bit value in BK0 or BK1

Table 2–5 shows block size calculations for all 32 possibilities.

Table 2–5. Block Size Calculations

N Block Size N Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296
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2.4 Control Status Register (CSR)

The CSR, shown in Figure 2–4, contains control and status bits. The functions
of the fields in the CSR are shown in Table 2–6. For the EN, PWRD, PCC, and
DCC fields, see your data sheet to see if your device supports the options that
these fields control, and see the TMS320C62xx Peripherals Reference Guide
for more information on these options.

Figure 2–4. Control Status Register (CSR)
31 24

CPU ID
1623

Revision ID

R
15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +x R, W, +0R, C, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

Table 2–6. Control Status Register: Fields, Read/Write Status, and Function
Bit Position Width Field Name Function

31-24 8 CPU ID CPU ID; defines which CPU
23-16 8 Rev ID Revision ID; defines silicon revision of the CPU

15-10 6 PWRD Control power down modes; the values are always read as zero.†

9 1 SAT The saturate bit, set when any unit performs a saturate, can be
cleared only by the MVC instruction and can be set only by a func-
tional unit. The set by a functional unit has priority over a clear (by
the MVC instruction) if they occur on the same cycle. The saturate
bit is set one full cycle (one delay slot) after a saturate occurs.

8 1 EN Endian bit: 1 = little endian, 0 = big endian †

7-5 3 PCC Program cache control mode†

4-2 3 DCC Data cache control mode†

1 1 PGIE Previous GIE (global interrupt enable); saves GIE when an inter-
rupt is taken

0 1 GIE Global interrupt enable; enables (1) or disables (0) all interrupts ex-
cept the reset interrupt and NMI (nonmaskable interrupt)

† See the TMS320C62xx Peripherals Reference Guide for more information.
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Instruction Set

This chapter describes the assembly language instructions and addressing
modes for the ’C62xx digital signal processor. Also described are parallel op-
erations, conditional operations, and resource constraints.
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3.1 Instruction Operation and Execution Notations

Table 3–1 explains the symbols used in this chapter.

Table 3–1. Instruction Operation and Execution Notations

Symbol Meaning

int 32-bit register value

long 40-bit register value

creg 3-bit field specifying a conditional register

cstn n-bit constant field

LSBn n least significant bits

MSBn n most significant bits

→ Assignment

+ Addition

– Subtraction

× Multiplication

+a Perform 2s-complement addition using the addressing mode defined by
the AMR

–a Perform 2s-complement subtraction using the addressing mode de-
fined by the AMR

and Bitwise AND

or Bitwise OR

xor Bitwise exclusive OR

not Bitwise logical complement

by..z Selection of bits y through z of bit string b

<< Shift left

>>s Shift right with sign extension

>>z Shift right with a zero fill

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)
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Table 3–1. Instruction Operation and Execution Notations (Continued)

Symbol Meaning

x exts l,r Extract and sign-extend a field in x, specified by l (shift left value) and
r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift
right value)

+s Perform 2s-complement addition and saturate the result to the result
size if an overflow occurs

–s Perform 2s-complement subtraction and saturate the result to the result
size if an overflow occurs

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

abs(x) Absolute value of x

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

norm(x) Leftmost nonredundant sign bit of x

R Any general-purpose register

cond Check for either creg equal to zero or creg not equal to zero

nop No operation
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3.2 Mapping Between Instructions and Functional Units

Table 3–2 and Table 3–3 define the mapping between instructions and func-
tional units.

Table 3–2. Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD ADD

ADD SMPY ADDK ADDA

AND ADD2 LD mem

CMPEQ AND LD mem (15-bit offset)‡

CMPGT B disp MV

CMPGTU B IRP† NEG

CMPLT B NRP† ST mem

CMPLTU B reg ST mem (15-bit offset)‡

LMBD CLR SUB

MV EXT SUBA

NEG EXTU ZERO

NORM MVC†

NOT MV

OR MVK

SADD MVKH

SAT NEG

SSUB NOT

SUB OR

SUBC SET

XOR SHL

ZERO SHR

SHRU

SSHL

SUB

SUB2

XOR

ZERO

† .S2 only
‡ .D2 only
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Table 3–3. Functional Unit to Instruction Mapping

’C62xx Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit

ABS �

ADD � � �

ADDA �

ADDK �

ADD2 �

AND � �

B �

B IRP �†

B NRP �†

B reg �†

CLR �

CMPEQ �

CMPGT �

CMPGTU �

CMPLT �

CMPLTU �

EXT �

EXTU �

IDLE

LD mem �

LD mem
(15-bit offset)

�‡

LMBD �

MPY �

MVC† �

MV � � �

MVK �

† .S2 only
‡ .D2 only
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Table 3–3. Functional Unit to Instruction Mapping (Continued)

’C62xx Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit

MVKH �

NEG � � �

NOP

NORM �

NOT � �

OR � �

SADD �

SAT �

SET �

SHL �

SHR �

SHRU �

SMPY �

SSHL �

SSUB �

ST mem �

ST mem (15-
bit offset)

�‡

SUB � � �

SUBA �

SUBC �

SUB2 �

SWI

XOR � �

ZERO � � �

† .S2 only
‡ .D2 only
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3.3 TMS320C62xx Opcode Map

The ’C62xx opcode map is shown in Figure 3–1. Refer to Table 3–1 and the
instruction descriptions in this chapter for explanations of the field syntaxes
and values.

Figure 3–1. TMS320C62xx Opcode Map

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

Operations on the .L unit

3 5 5 5 7

src2 src1/cst

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

Operations on the .M unit

3 5 5 5 5

7 6

0 0src1/cst

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .D unit

3 5 5 5 6

7 6

1 0src2 src1/cst

31 29 28 27 23 22

creg z dst/src

4 3 2 1 0

1 1 s p

Load/store with 15-bit offset (on the .D unit)

3 5 15

6

ld/stucst15

78

y

3

Load/store baseR + offsetR/cst on the .D unit
31 29 28 27 23 22 18 17

creg z dst/src

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .S unit

3 5 5 5 6

6

1

11

xsrc1 /cstsrc 2

31 29 28 27 23 22

creg z dst

7 6 4 3 2 1 0

cst 0 0 s p

3 5 16

5

1 0 1

ADDK on the .S unit
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Figure 3–1. TMS320C62xx Opcode Map (Continued)

31 29 28 27 23 22 18 17

creg z dst

13 12 8 7 6 5 4 3 2 1 0

csta cstb op 0 0 1 0 s p

3 5 5 5 5 2

Field operations (immediate forms) on the .S unit

src2

31 29 28 27 23 22

creg z dst

7 6 5 4 3 2 1 0

1 0 1 0 s p

3 5 16

hdst

MVK and MVKH on the .S unit

Bcond disp on the .S unit
31 29 28 27

creg z

7 6 5 4 3 2 1 0

0 1 0 0 s p

3 21

0cst

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2
IDLE

14

0

src 0 00 0 0 p

31

Reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

NOP
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3.4 Delay Slots

The execution of instructions can be defined in terms of delay slots. The num-
bered delay slots is equivalent to the number of extra cycles required before
a result is available for reading after the source operands are read. For a
single-cycle type instruction (such as ADD), source operands read in cycle i
produce a result that can be read in cycle i + 1. For a multiply instruction (MPY),
source operands read in cycle i produce a result that can be read in cycle 
i + 2.  Table 3–4 shows the number of delay slots associated with each type
of instruction.

Table 3–4. Delay Slot Summary

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Delay Slots
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOP (no execution pipeline operation) ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Store
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Single cycle

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Multiply ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Load (LD) (address modification occurs in E1)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Branch (The cycle when the target enters E1)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

5
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3.5 Parallel Operations

Instructions are always fetched eight at a time. This constitutes a fetch packet.
The basic format of a fetch packet is shown in Figure 3–2. The execution
grouping of the fetch packet is specified by the p-bit (bit 0) of each instruction.
Fetch packets are aligned on 256-bit (8-word) boundaries.

Figure 3–2. Basic Format of a Fetch Packet

p p p p p p p p

Instruction
A

000002

Instruction
B

001002

Instruction
C

010002

Instruction
D

011002

Instruction
E

100002

Instruction
F

101002

Instruction
G

110002

Instruction
H

111002

LSBs of
the byte
address

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

The p-bit controls the parallel execution of instructions. The p-bits are scanned
from left to right (lower to higher address). If the p-bit of instruction i is 1, then
instruction i + 1 is to be executed in parallel with (in the the same cycle as)
instruction i. If the p-bit of instruction i is 0, then instruction i + 1 is executed in
the cycle after instruction i. All instructions executing in parallel constitute an
execute packet. An execute packet can contain up to eight instructions. Each
instruction in an execute packet must use a different functional unit.

An execute packet cannot cross an 8-word boundary. Therefore, the last p-bit
in a fetch packet is always set to 0, and each fetch packet starts a new execute
packet. There are three types of p-bit patterns for fetch packets. These three
p-bit patterns result in the following execution sequences for the eight instruc-
tions:

� Fully serial
� Fully parallel
� Partially serial

Example 3–1 through Example 3–3 illustrate the conversion of a p-bit
sequence into a cycle-by-cycle execution stream of instructions.
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Example 3–1. Fully Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

0 0 0 0 0 0 0 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

The eight instructions are executed sequentially.

Example 3–2. Fully Parallel p-Bit Pattern in a Fetch Packet

This p-bit pattern:

1 1 1 1 1 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

All eight instructions are executed in parallel.
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Example 3–3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0

0 0 1 1

31 0 31 0 31 0 31 0

0 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

results in this execution sequence:

Cycle/Execute Packet Instructions

1 A

2 B

3 C D E

4 F G H

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or other
data path resources. This is also true for instructions F, G, and H.

3.5.1 Example Parallel Code

The || characters signify that an instruction is to execute in parallel with the pre-
vious instruction. The code for the fetch packet in Example 3–3 would be rep-
resented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execution packet occurs, all instructions at low-
er addresses are ignored. In Example 3–3, if a branch to the address contain-
ing instruction D occurs, then only D and E execute. Even though instruction
C is in the same execute packet, it is ignored. Instructions A and B are also
ignored because they are in earlier execute packets.
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3.6 Conditional Operations

All instructions can be conditional. The condition is controlled by a 3-bit opcode
field (creg) that specifies the condition register tested, and a 1-bit field (z) that
specifies a test for zero or nonzero. The four MSBs of every opcode are creg
and z. The register is tested at the beginning of the E1 pipeline stage for all
instructions. For more information on the pipeline, see Chapter 4, Pipeline Op-
eration. If z = 1, the test is for equality with zero. If z = 0, the test is for nonzero.
The case of creg = 0 and z = 0 is treated as always true to allow instructions
to be executed unconditionally. The creg field is encoded in the instruction op-
code as shown in Table 3–5.

Table 3–5. Registers That Can Be Tested by Conditional Operations

Conditional
creg z

Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

Reserved 1 1 x x

Note: x can be any value in reserved cases.

Conditional instructions are represented by using square brackets, [ ], sur-
rounding the condition register. The following execute packet contains two
ADD instructions in parallel. The first ADD is conditional on B0 being nonzero.
The second ADD is conditional on B0 being zero. The character ! indicates the
‘not’ of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive. This means that only one will
execute.

If they are scheduled in parallel, mutually exclusive instructions are
constrained as described in section 3.7. If mutually exclusive instructions
share any resources as described in section 3.7, they cannot be scheduled in
parallel (put in the same execute packet), even though only one will execute.
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3.7 Resource Constraints

No two instructions within the same execute packet can use the same re-
sources. Also, no two instructions can write to the same register during the
same cycle. The following sections, 3.7.1 to 3.7.5, describe each of the re-
sources an instruction can use.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same
execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ; \ .S1 is used for
|| SHR .S1 A3, 15, A4 ; / both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ; \ Two different functional
|| SHR .S1 A3, 15, A4 ; / units are used

3.7.2 Constraints on Cross Paths (1X and 2X)

One unit (either a .S, .L, or .M unit) per data path, per execute packet, can read
a source operand from its opposite register file via the cross paths (1X and 2X).
For example, .S1 can read both of an instruction’s operands from the A register
file, or it can read one operand from the B register file using the 1X cross path
and the other from the A register file. This is denoted by an X following the unit
name in the instruction syntax.

Two instructions using the same cross path between register files cannot be
issued in the same execute packet, because there is only one path from A to
B and one path from B to A.

The following execute packet is invalid:

     ADD.L1X  A0,B1,A1 ; \ 1X cross path is used
||   MPY.M1X A4,B4,A5 ; / for both instructions

The following execute packet is valid:

     ADD.L1X  A0,B1,A1 ; \ Instructions use the 1X and
||   MPY.M2X B4,A4,B2 ; / 2X cross paths

The operand will come from a register file opposite of the destination if the x
bit in the instruction field is set (shown in the opcode map located in sec-
tion 3.3).



Resource Constraints

3-15Instruction Set

3.7.3 Constraints on Loads and Stores

Loads and stores can use an address pointer from one register file while load-
ing to or storing from the other register file. Two loads and/or stores using an
address pointer from the same register file cannot be issued in the same
execute packet.

The following execute packet is invalid:

LDW.D1  *A0,A1 ; \ Address registers from the same
|| LDW.D1  *A2,B2 ; / register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from different
|| LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file
cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1  *A4,A5 ; \ Loading to and storing from the
|| STW.D2  A6,*B4 ; / same register file

The following execute packet is valid:

LDW.D1 *A4,B5 ; \ Loading to, and storing from
|| STW.D2  A6,*B4 ; / different register files

3.7.4 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands
and a write register port for long results, only one long result may be issued
per register file in an execute packet. See section 2.1.1, on page 2-2 for the
order for long pairs.

The following execute packet is invalid:

   ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes
|| SHL.S1   A8,A9,A7:A6  ; / on A register file

The following execute packet is valid:

   ADD.L1 A5:A4,A1,A3:A2  ; \ One long write for
|| SHL.S2 B8,B9,B7:B6  ; / each register file

Because the .L and .S units share their long read port with the store port, op-
erations that read a long value cannot be issued on the .L and/or .S units in
the same execute packet as a store.
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The following execute packet is invalid:

   ADD .L1 A5:A4,A1,A3:A2 ; \ Long read operation and a
|| STW .D1 A8,*A9         ; / store

The following execute packet is valid:

   ADD.L1 A4, A1, A3:A2 ; \ No long read with
|| STW.D1 A8,*A9 ; / with the store

3.7.5 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle.
Conditional registers are not included in this count.   

The following code sequence is invalid:

        MPY  .M1 A1,A1,A4 ; five reads of register A1
||      ADD   .L1 A1,A1,A5
||       SUB   .D1 A1,A2,A3

This code sequence is valid:

         MPY  .M1 A1,A1,A4 ; only four reads of A1
|| [A1]  ADD   .L1 A0,A1,A5
||       SUB  .D1 A1,A2,A3

3.7.6 Constraints on Register Writes 

Multiple writes to the same register on the same cycle can occur if instructions
with different latencies writing to the same register are issued on different
cycles. For example, an MPY issued on cycle i followed by an ADD on cycle
i + 1 cannot write to the same register because both instructions write a result
on cycle i + 1. Therefore, the following code sequence is invalid:

   MPY .M1 A0,A1,A2
  ADD .L1 A4,A5,A2
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Figure 3–3 shows different multiple-write conflicts. For example, ADD and
SUB in execute packet L1 write to the same register. This conflict is easily de-
tectable.

MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously;
however, if a branch instruction causes the execute packet after L2 to be
something other than L3, a conflict would not occur. Thus, the potential conflict
in L2 and L3 might not be detected by the assembler. The instructions in L4
do not constitute a write conflict because they are mutually exclusive. In con-
trast, because it is not obvious that the instructions in L5 are mutually exclu-
sive, the assembler cannot determine a conflict. If the pipeline does receive
commands to perform multiple writes to the same register, the result is unde-
fined.

Figure 3–3. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD.L2 B5,B6,B7 ; \ detectable, conflict
|| SUB.S2 B8,B9,B7 ; /

L2: MPY.M2 B0,B1,B2 ; \ not detectable

L3: ADD.L2 B3,B4,B2 ; /

L4:[!B0] ADD.L2 B5,B6,B7 ; \ detectable, no conflict
|| [B0] SUB.S2 B8,B9,B7 ; /

L5:[!B1] ADD.L2 B5,B6,B7 ; \ not detectable
|| [B0] SUB.S2 B8,B9,B7 ; /
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3.8 Addressing Modes

The addressing modes on the ’C62xx are linear, circular using BK0, and circu-
lar using BK1. The mode is specified by the addressing mode register, or AMR
(defined in Chapter 2).

Eight registers can perform circular addressing. A4-A7 are used by the .D1 unit
and B4-B7 are used by the .D2 unit. No other units can perform circular addres-
sing. All registers can perform linear addressing. LD(B)(H)(W) , ST(B)(H)(W),
ADDA(B)(H)(W) , and SUBA(B)(H)(W)  instructions all use the AMR to deter-
mine what type of address calculations are performed for these registers.

3.8.1 Linear Addressing Mode

LD/ST instructions

Linear mode simply shifts the offsetR/cst operand to the left by 2, 1, or 0 for
word, half-word, or byte access, respectively, and then performs an add or a
subtract to baseR (depending on the operation specified).

ADDA/SUBA instructions

Linear mode simply shifts the src1/cst operand to the left by 2, 1, or 0 for word,
halfword, or byte data sizes, respectively, and then performs the add or sub-
tract specified.

3.8.2 Circular Addressing Mode

The BK0 and BK1 fields in the AMR specify block sizes for circular addressing.
See section 2.3 for more information on the AMR.

LD/ST Instructions

After shifting offsetR/cst to the left by 2, 1, or 0 for LDW, LDH, or LDB , respec-
tively, an add or subtract is performed with the carry/borrow inhibited between
bits N and N  + 1. Bits N + 1 to 31 of baseR remain unchanged. All other carries/
borrows propagate as usual. If you specify an offsetR/cst greater than the cir-
cular buffer size, 2(N + 1), the effective offsetR/cst is modulo the circular buffer
size (see Example 3–4). The circular buffer size in the AMR is not scaled; for
example: a block size of 4 is 4 bytes, not 4 × data size (byte, halfword, word).
So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3–4 shows a LDW performed with register A4
in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or
8 words. The value put in the AMR for this example is 0004 0001h.
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Example 3–4. LDW in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 XXXX XXXXh

A1 XXXX XXXXh A1 XXXX XXXXh A1 0000 0100h

mem 104h 1234 5678h mem 104h XXXX XXXXh mem 104h XXXX XXXXh

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h–11Fh; thus, it is wrapped around to
104h.

ADDA/SUBA Instructions

After shifting src1/cst to the left by 2, 1, or 0 for ADDAW, ADDAH , or ADDAB ,
respectively, an add or a subtract is performed with the carry/borrow inhibited
between bits N and N + 1. Bits N + 1 to 31 (inclusive) of src2 remain unchanged.
All other carries/borrows propagate as usual. If you specify src1 greater than
the circular buffer size, 2(N + 1), the effective offsetR/cst is modulo the circular
buffer size (see Example 3–5). The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4 × data size (byte, half-
word, word). So, to perform circular addressing on an array of 8 words, a size
of 32 should be specified, or N = 4. Example 3–5 shows an ADDAH  performed
with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes,
16 halfwords, or 8 words. The value put in the AMR for this example is
0004 0001h.

Example 3–5. ADDAH in Circular Mode

ADDAH .D1 A4,A1,A1

Before ADDAH
1 cycle after 
ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 XXXX XXXXh

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary
100h–11Fh; thus, it is wrapped around to 106h.
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3.8.3 Syntax for Load/Store Address Generation

The ’C62xx CPU has a load/store architecture, which means that the only way
to access data in memory is with a load or store instruction. Table 3–6 shows
the syntax of an indirect address to a memory location.

Table 3–6. Indirect Address Generation for Load/Store

Addressing Type
No Modification of 
Address Register

Preincrement or
Decrement of 

Address Register

Postincrement 
Decrement of Address

Register

Register indirect *R
*++R
*– –R

*R++
*R– –

Register relative
*+R[ucst5]
*–R[ucst5]

*++R[ucst5]
*– –R[ucst5]

*R++[ucst5]
*R– –[ucst5]

Base + index
*+R[offsetR]
*–R[offsetR]

*++R[offsetR]
*– –R[offsetR]

*R++[offsetR]
*R– –[offsetR]
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3.9 Individual Instruction Descriptions

This section gives detailed information on the instruction set for the ’C62xx.
Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Instruction type
� Delay slots
� Examples

An example instruction description is provided before the actual instruction de-
scriptions (starting with the ABS instruction description). The example is pro-
vided to familiarize you with how the instructions are described. It includes and
describes information pulled from the ADD instruction description, giving basic
information about what each description category provides and where to go
for more information.
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Syntax EXAMPLE (.unit) src, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates
which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2,
.D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units
the instruction is mapped to, types of operands, and the opcode.

The opcode map breaks down the various bit fields that make up each instruc-
tion. These fields are illustrated in section 3.3.

There are instructions that can be executed on more than one functional unit.
Table 3–7 shows how this situation is documented for the ADD instruction.
This instruction has three opcode map fields: src1, src2, and dst. In the
seventh row, the operands have the types cst5, long, and long for src1, src2,
and dst, respectively. The ordering of these fields implies cst5 + long � long,
where + represents the operation being performed by the ADD. This operation
can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that src1 (scst5), src2 (slong), and dst (slong) are all
signed values.

In the third row, src1, src2, and dst are int, int, and long, respectively. The u in
front of each operand signifies that all operands are unsigned. Any operand
that begins with x can be read from a register file that is different from the des-
tination register file. The operand comes from the register file opposite the des-
tination if the x bit in the instruction field is set (shown in the opcode map lo-
cated in section 3.3).

EXAMPLE Example Instruction
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Table 3–7. Relationships Between Operands, Operand Size, Signed/Unsigned, Functional
Units, and Opfields for Example Instruction (ADD Instruction)

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000011 ADD

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100011 ADD

src1
src2
dst

uint
xunit
ulong

.L1, .L2 0101011 ADDU

src1
src2
dst

xsint
slong
slong

.L1, .L2 0100001 ADD

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 0101001 ADDU

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000010 ADD

src1
src2
dst

scst5
slong
slong

.L1, .L2 0100000 ADD

src1
src2
dst

sint
xsint
sint

.S1, .S2 000111 ADD

src1
src2
dst

scst5
xsint
sint

.S1, .S2 000110 ADD

src2
src1
dst

sint
sint
sint

.D1, .D2 010000 ADD

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010010 ADD
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Description Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 opcodes
if (cond) src1 + src2 → dst
else nop

Execution for .D1, .D2 opcodes
if (cond) src2 + src1 → dst
else nop

The execution describes the processing that takes place when the instruction
is executed. The symbols are defined in Table 3–1 on page 3-2.

Instruction Type This section gives the type of instruction. See section 4.2.

Delay Slots This section gives the number of delay slots the instruction takes to execute
(see section 3.4).

Example Examples of instruction execution. If applicable, register and memory values
are given before and after instruction execution.
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Syntax ABS  (.unit) src2, dst

.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 0011010

src2
dst

slong
slong

.L1, L2 0111000

Description The absolute value of src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 when src2 is an int is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –231, then –src2 → dst
3) If src2 = –231, then 231–1 → dst

The absolute value of src2 when src2 is a long is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –239, then –src2 → dst
3) If src2 = –239, then 239 – 1 → dst

Instruction Type Single-cycle

Delay Slots 0

Example 1 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh –2147463619 A1 8000 4E3Dh –2147463619

A5 XXXX XXXXh A5 7FFF B1C3h 2147463619

Example 2 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1073086480 A1 3FF6 0010h 1073086480

A5 XXXX XXXXh A5 3FF6 0010h 1073086480
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Syntax ADD  (.unit) src1, src2, dst
or

ADDU (.unit) src1, src2, dst
or

ADD (.unit) src2, src1, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000011

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100011

src1
src2
dst

uint
xunit
ulong

.L1, .L2 0101011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0100001

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 0101001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0100000

src1
src2
dst

sint
xsint
sint

.S1, .S2 000111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 000110

src2
src1
dst

sint
sint
sint

.D1, .D2 010000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010010
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Description for .L1, .L2 and .S1, .S2 opcodes
src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 opcodes
if (cond) src1 + src2 → dst
else nop

Description for .D1, .D2 opcodes
src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 opcodes
if (cond) src2 + src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 ADD .L2 A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

B1 FFFF FF12h –238 B1 FFFF FF12h

B2 XXXX XXXXh B2 0000 316Ch 12652

Example 2 ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah †12890 A1 0000 325Ah

A2 FFFF FF12h †4294967058 A2 FFFF FF12h

A5:A4 XXXX XXXX A5:A4 0000 0001h 0000 316Ch ‡4294979948

Example 3 ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h ‡1099511627538 A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch ‡12652

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer
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Example 4 ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h §–228 A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h §0 A5:A4 0000 0000h 0000 316Ch §12652

§ Signed 40-bit (long) integer

Example 5 ADD .L1 –13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 324Dh 12877

Example 6 ADD .D1 26,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 3274h 12916
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Syntax ADDAB  (.unit) src2, src1, dst
or 

ADDAH  (.unit) src2, src1, dst
or 

ADDAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 byte: 110000
halfword: 110100

word: 111000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 byte: 110010
halfword: 110110

word: 111010

Description src1 is added to src2 using the addressing mode specified for src2. The addi-
tion defaults to linear mode.  However, if src2 is one of A4–A7 or B4–B7, the
mode can be changed to circular mode by writing the appropriate value to the
AMR (see section 2.3). src1 is left shifted by 1 or 2 for halfword and word data
sizes respectively. Byte, halfword, and word mnemonics are ADDAB , ADD-
AH, and ADDAW, respectively. The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 ADDAB .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0
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Example 2 ADDAH .D1 A4,A2,A4

Before instruction 1 cycle after     instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0000 0000h AMR 0000 0000h

BK0 = 2 → size = 8
A4 in linear addressing mode

Example 3 ADDAW .D1 A4,2,A4

Before instruction 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0
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Syntax ADDK  (.unit) cst, dst

.unit = .S1 or .S2

Opcode

165

z dst

6 0

cst 1 0 1 0 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Opcode map field used... For operand type... Unit

cst
dst

scst16
uint

.S1, .S2

Description A 16-bit signed constant is added to the dst register specified. The result is
placed in dst.

Execution if (cond) cst + dst → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A4 0021 740Ah 2192394
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Syntax ADD2  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 000001

Description The upper and lower halves of the src1 operand are added to the upper and
lower halves of the src2 operand. Any carry from the lower half add does not
affect the upper half add.

Execution if (cond) {
((lsb16(src1) + lsb16(src2)) and FFFFh) or

 ((msb16(src1) + msb16(src2)) << 16) → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example ADD2 .S1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A1 0021 37E1h

A2 XXXX XXXXh A2 03BC 1C99h 62659737

B1 039A E4B8h 60482744 B1 039A E4B8h
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Syntax AND  (.unit) src1, src2, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111001

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111010

src1
src2
dst

uint
xuint
uint

.S1, .S2 011111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011110

Description A bitwise AND is performed between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 and src2 → dst
else nop

Delay Slots 0

Example 1 AND .L1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 XXXX XXXXh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 XXXX XXXXh A3 0000 0006h
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Syntax B  (.unit) label

.unit = .S1 or .S2

Opcode

21

z

6 0

cst 1 0 1 0 0 s p

31

creg

29 28 27 7

13 1 1

Opcode map field used... For operand type... Unit

cst scst21 .S1, .S2

Description A 21-bit signed constant specified by cst is shifted left by 2 bits and is added
to the address of the first instruction of the fetch packet that contains the
branch instruction. The result is placed in the program fetch counter (PFC).
The assembler/linker automatically computes the correct value for cst by the
following formula:

cst = (label – PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior
is undefined.

Two conditional branches can be in the same execute packet only if one of
them is B using a register, B IRP, or B NRP. As long as only one branch has
a true condition, code executes in a normal, well-defined way.

Execution if (cond) cst  << 2 + PCE1 → PFC
else nop

Notes:

1) PCE1 (program counter) represents the address of the first instruction
in the fetch packet in the E1 stage of the pipeline. PFC is the program
fetch counter.

2) An execute packet containing a branch and the execute packets in its
delay slots cannot be interrupted. This is true regardless of whether the
branch is taken.

3) See section 3.5.2 on page 3-12 for information on branching into the
middle of an execute packet.

Instruction Type Branch

Delay Slots 5
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Table 3–8 gives the program counter values and actions for the following code
example.

Example

0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .MIX A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M2 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3–8. Program Counter Values for Branch Using a Displacement Example

Cycle Program Counter Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code
executes

Cycle 7 0000 0014h
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Syntax B  (.unit) src2

.unit = .S2

Opcode map field used... For operand type... Unit Opfield

src2 xuint .S2 001101

Description src2 is placed in the PFC.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet only if one of
them is B using a register, B IRP, or B NRP. As long as only one branch has
a true condition, code executes in a normal, well-defined way.

Execution if (cond) src2 → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) An execute packet containing a branch and the execute packets in its
delay slots cannot be interrupted. This is true regardless of whether the
branch is taken.

Instruction Type Branch

Delay Slots 5
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Table 3–9 gives the program counter values and actions for the following code
example. In this example, the B10 register holds the value 0000 0003.

Example                  B10 0000 0003

0000 0000 B .S2 B10
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C MPY .MIX A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M2 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3–9. Program Counter Values for Branch Using a Register Example

Cycle Program Counter Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code
executes

Cycle 7 0000 0014h
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Syntax B  (.unit) IRP

.unit = .S2

Opcode map field used... For operand type... Unit Opfield

src2 xsint .S2 000011

Description IRP is placed in the PFC. This instruction also moves PGIE to GIE. PGIE is
unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet only if one of
them is B using a register, B IRP, or B NRP. As long as only one branch has
a true condition, code executes in a normal, well-defined way.

Execution if (cond) IRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is the program fetch counter.

2) Refer to the chapter on interrupts for more information on IRP, PGIE, and
GIE.

3) An execute packet containing a branch and the execute packets in its
delay slots cannot be interrupted. This is true regardless of whether the
branch is taken.

Instruction Type Branch

Delay Slots 5
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Table 3–10 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at PC = 0000 0100 IRP = 0000 0100→ :

0000 0000 B .S2 IRP
0000 0004 ADD .S1 A0, A2, A1
0000 0008 MPY .M1 A1, A0, A1
0000 000C NOP
0000 0010 SHR .S1 A1, 15, A1
0000 0014 ADD .L1 A1, A2, A1
0000 0018 ADD .L2 B1, B2, B3

Table 3–10. Program Counter Values for B IRP Example

Cycle Program Counter Value Action

Cycle 0 0000 0000 Branch command executes
(target code fetched)

Cycle 1 0000 0004

Cycle 2 0000 0008

Cycle 3 0000 000C

Cycle 4 0000 0010

Cycle 5 0000 0014

Cycle 6 0000 0100 Branch target code executes
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Syntax B  (.unit) NRP

.unit = .S2

Opcode map field used... For operand type... Unit Opfield

src2 xsint .S2 000011

Description NRP is placed in the PFC. This instruction also sets NMIE. PGIE is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet only if one of
them is B using a register, B IRP, or B NRP. As long as only one branch has
a true condition, code executes in a normal, well-defined way.

Execution if (cond) NRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Refer to the chapter on interrupts for more information on NRP and
NMIE.

3) An execute packet containing a branch and the execute packets in its
delay slots cannot be interrupted. This is true regardless of whether the
branch is taken.

Instruction Type Branch

Delay Slots 5
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Table 3–11 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at PC = 0000 0100 NRP = 0000 0100→ :

0000 0000 B .S2 NRP
0000 0004 ADD .S1 A0, A2, A1
0000 0008 MPY .M1 A1, A0, A1
0000 000C NOP
0000 0010 SHR .S1 A1, 15, A1
0000 0014 ADD .L1 A1, A2, A1
0000 0018 ADD .L2 B1, B2, B3

Table 3–11. Program Counter Values for B NRP Example

Cycle Program Counter Value Action

Cycle 0 0000 0000 Branch command executes
(target code fetched)

Cycle 1 0000 0004

Cycle 2 0000 0008

Cycle 3 0000 000C

Cycle 4 0000 0010

Cycle 5 0000 0014

Cycle 6 0000 0100 Branch target code executes
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Syntax CLR  (.unit) src2, csta, cstb, dst
or

CLR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

Constant form:

5

z cstb

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27 7

13

18 1723 22

src2

5

csta

13

5

12 8

5 2 1 1

1 0

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

6 1 1

x

1

11

1 1 1 0 1 1

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2 11

src2
src1
dst

xuint
uint
uint

.S1, .S2 111111
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Description The field in src2, specified by csta and cstb, is cleared to zero. csta and cstb
may be specified as constants or as the ten LSBs of the src1 registers, with
cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the LSB
in the field and cstb signifies the bit location of the MSB in the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be cleared. The LSB location of src2 is 0 and the MSB location of
src2 is 31. In the example below, csta is 15 and cstb is 23.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

0x x x x x x x x x x x x x x x x x x x x x x x0 0 0 0 00 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 clear src19..5, src14..0 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 07A0 000Ah

Example 2 CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 XXXX XXXXh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h
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Syntax CMPEQ  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 1010011

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1010010

src1
src2
dst

xsint
slong
uint

.L1, .L2 1010001

src1
src2
dst

scst5
slong
uint

.L1, .L2 1010000

Description This instruction compares src1 to src2. If src1 equals src2, then 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPEQ .L1 A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 4B8h 1208 A1 0000 4B8h

A2 XXXX XXXXh A2 0000 0000h negative

B1 0000 4B7h 1207 B1 0000 4B7h
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Example 2 CMPEQ .L1 3519,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 XXXX XXXXh A2 0000 0001h affirmative

Example 3 CMPEQ .L1 A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 XXXX XXXXh B1 0000 0001h affirmative

B3:B2 0000 0FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h
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Syntax CMPGT  (.unit) src1, src2, dst
or

CMPGTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type...

Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
uint

.L1, .L2 1000111 CMPGT

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1000110 CMPGT

src1
src2
dst

xsint
slong
uint

.L1, .L2 1000101 CMPGT

src1
src2
dst

scst5
slong
uint

.L1, .L2 1000100 CMPGT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1001111 CMPGTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1001110 CMPGTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1001101 CMPGTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1001100 CMPGTU
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Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is greater than src2, then 1 is written to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPGT .L1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 XXXX XXXXh A2 0000 0000h negative

B1 0000 08BDh 2237 B1 0000 08BDh

Example 2 CMPGT .L1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h –367 A1 FFFF FE91h

A2 XXXX XXXXh A2 0000 0001h affirmative

B1 FFFF FDC4h –572 B1 FFFF FDC4h

Example 3 CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 XXXX XXXXh A2 0000 0000h negative
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Example 4 CMPGT .L1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 XXXX XXXXh A2 0000 0000h negative

B1 0000 00EBh 235 B1 0000 00EBh

Example 5 CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h †296 A1 0000 0128h

A2 FFFF FFDEh †4294967262 A2 FFFF FFDEh

A3 XXXX XXXXh A3 0000 0000h negative

† Unsigned 32-bit integer

Example 6 CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h †5 A1 0000 0005h

A2 XXXX XXXXh A2 0000 0001h affirmative

Example 7 CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah ‡10 A3:A2 0000 0000h 0000 000Ah

A4 XXXX XXXXh A4 0000 0001h affirmative

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer
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Syntax CMPLT  (.unit) src1, src2, dst
or

CMPLTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type...

Unit Opfield Mnemonic

src2
src1
dst

sint
xsint
uint

.L1, .L2 1010111 CMPLT

src2
src1
dst

scst5
xsint
uint

.L1, .L2 1010110 CMPLT

src2
src1
dst

xsint
slong
uint

.L1, .L2 1010101 CMPLT

src2
src1
dst

scst5
slong
uint

.L1, .L2 1010100 CMPLT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1011111 CMPLTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1011110 CMPLTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1011101 CMPLTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1011100 CMPLTU

Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is less than src2, then 1 is written to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 < src2) 1 → dst
else 0 → dst
}

else nop
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Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 XXXX XXXXh A3 0000 0001h affirmative

Example 2 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h –298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 XXXX XXXXh A3 0000 0001h affirmative

Example 3 CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 XXXX XXXXh A2 0000 0000h negative

Example 4 CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah †10394 A1 0000 289Ah

A2 FFFF F35Eh †4294964062 A2 FFFF F35Eh

A3 XXXX XXXXh A3 0000 0001h affirmative

† Unsigned 32-bit integer
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Example 5 CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh †15 A1 0000 000Fh

A2 XXXX XXXXh A2 0000 0001h affirmative

Example 6 CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h †3900000 A1 003B 8260h

A2 XXXX XXXXh A2 0000 0000h negative

A5:A4 0000 0000h 003A 0002h ‡3801090 A5:A4 0000 0000h 003A 0002h

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer
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Syntax EXT  (.unit) src2, csta, cstb, dst
or

EXT (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

Constant form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

csta

13

5

12

1 1

8

cstb

7

5 2

0 1

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 16

x

11

1 0 1 1 1 1

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

sint
ucst5
ucst5
sint

.S1, .S2 01

src2
src1
dst

xsint
uint
sint

.S1, .S2 101111



 Extract and Sign-Extend a Bit Field EXT
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Description The field in src2, specified by csta and cstb, is extracted and sign-extended
to 32 bits. The extract is performed by a shift left followed by a signed shift right.
csta and cstb are the shift left amount and shift right amount respectively. This
can be thought of in terms of the LSB and MSB of the field to be extracted. Then
csta = 31 – MSB of the field and cstb = LSB of the field + csta. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0–4 and csta bits 5–9. In the example below, csta is 8 and
cstb is 15 + 8, or 23.

0

csta cstb – csta

src2

dst

x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

1 1 0 1 0 0 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x x x x x x x01 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 8 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 exts csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 exts src19..5, src14..0 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 FFFF F21Fh
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Example 2 EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 XXXX XXXXh A3 0000 03B6h
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Syntax EXTU  (.unit) src2, csta, cstb, dst
or

EXTU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

Constant width and offset form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 1

cstb

8

5

7

op

2

Register width and offset form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 1

op

6

x

11

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2 00

src2
src1
dst

xuint
uint
uint

.S1, .S2 101011
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Description The field in src2, specified by csta and cstb, is extracted and zero extended
to 32 bits. The extract is performed by a shift left followed by an unsigned shift
right. csta and cstb are the amounts to shift left and shift right respectively. This
can be thought of in terms of the LSB and MSB of the field to be extracted. Then
csta = 31 – MSB of the field and cstb = LSB of the field + csta. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0–4 and csta bits 5–9. In the example below, csta is 8 and
cstb is 15+8, or 23.

0 1 0 1 0 0 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

csta cstb – cst a

x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0src2

dst

x x x x x x x01 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 8 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register width and offset form is used:

if (cond) src2 extu src19..5, src14..0 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 0000 121Fh
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Example 2 EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh
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Syntax IDLE

Opcode

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2

Description This instruction performs a multicycle NOP that terminates only upon servicing
an interrupt.

Instruction Type NOP

Delay Slots 0
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Syntax Register Offset

LDB  (.unit) *+baseR[offsetR], dst
or

LDH (.unit) *+baseR[offsetR], dst
or

LDW (.unit) *+baseR[offsetR], dst
or

LDBU  (.unit) *+baseR[offsetR], dst
or

LDHU  (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDB  (.unit) *+baseR[ucst5], dst
or

LDH (.unit) *+baseR[ucst5], dst
or

LDW (.unit) *+baseR[ucst5], dst
or

LDBU  (.unit) *+baseR[ucst5], dst
or

LDHU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

5

z

6 4 0

dst 0 1 s p

31

creg

29 28 27

13

18 1723 22

baseR

5

offsetR/ucst5

13

5

12

1 14

9

mode

8

r

1

7

y ld/st

3

Description Each of these instructions performs a load from memory to a general-purpose
register (dst). Table 3–12 summarizes the data types supported by loads.
Table 3–13 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is
not given, the assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for LDB(U) , LDH(U), and
LDW, respectively. After scaling, offsetR/ucst5 is added to or subtracted from
baseR. For the preincrement, predecrement, positive offset, and negative off-
set address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the
value of baseR before the addition or subtraction is the address to be accessed
in memory.

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode.  However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.3).
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For LDH(U) and LDB(U)  the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16- and 24-bits, respectively, of dst
values are sign-extended. For LDHU and LDBU  loads, the upper 16- and 24-bits,
respectively, of dst are zero-filled. For LDW, the entire 32 bits fills dst. dst can be
in either register file, regardless of the .D unit or baseR or offsetR used. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Table 3–12. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Table 3–13. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5 offset
is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively. Paren-
theses, ( ), can be used to set a nonscaled, constant offset. For example, LDW
(.unit) *+baseR (12) dst represents an offset of 12 bytes, whereas LDW (.unit)
*+baseR [12] dst represents an offset of 12 words, or 48 bytes.
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Execution if (cond) mem → dst
else nop

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4, TMS320C62xx
Pipeline.

Example 1 LDW .D1 *A10,A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A1 0000 0000h A1 0000 0000h A1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Example 2 LDB .D1 *–A5[4],A7

Before LDB 1 cycle after LDB 5 cycles after LDB

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h EIh mem 200h E1h mem 200h E1h

Example 3 LDH .D1 *++A4[A1],A8

Before LDH 1 cycle after LDH 5 cycles after LDH

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh
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Example 4 LDW .D1 *A4,++[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3

Example 5 LDW .D1 *++A4(4),A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h
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Syntax LDB  (.unit) *+B14/B15[ucst15], dst
or

LDH (.unit) *+B14/B15[ucst15], dst
or

LDW (.unit) *+B14/B15[ucst15], dst

LDBU  (.unit) *+B14/B15[ucst15], dst
or

LDHU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

5

z

6 0

dst ld/st 1 1 s p

31

creg

29 28 27

13

23 22

1 1

ucst15

8 7

y

4

115 3

3

Description Each of these instructions performs a  load from memory to a general-purpose
register (dst). Table 3–14 summarizes the data types supported by loads. The
memory address is formed from a base address register (baseR) B14 (y = 0)
or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction operates only on the .D2 unit.

ucst15 is scaled by a left shift of 0, 1, or 2 for LDB(U) , LDH(U), and LDW, re-
spectively. After scaling, ucst15 is added to or subtracted from baseR. The re-
sult of the calculation is the address sent to memory. The addressing arithme-
tic is always performed in linear mode.

For LDH(U) and LDB(U) , the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16 and 24  bits of dst values are
sign-extended, respectively. For LDHU and LDBU  loads, the upper 16 and 24
bits of dst are zero-filled, respectively. For LDW, the entire 32 bits fills dst. dst
can be in either register file. The s bit determines which file dst will be loaded
into: s = 0 indicates dst is loaded in the A register file, and s = 1 indicates dst
is loaded into the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2, 1, or 0
for word, halfword, and byte loads, respectively. Parentheses, ( ), can be used
to set a nonscaled, constant offset. For example, LDW (.unit) *+B14/B15(60)
dst represents an offset of 60 bytes, whereas LDW (.unit) *+B14/B15[60] dst
represents an offset of 60 words, or 240 bytes.
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Table 3–14. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).

Instruction Type Load

Delay Slots 4

Example LDB .D2 *+B14[36],B1

Before LDB 1 cycle after LDB 5 cycles after LDB

B1 XXXX XXXXh B1 XXXX XXXXh B1 0000 0012h

B14 0000 0100h B14 0000 0100h B14 0000 0100h

mem  124–127h 4E7A FF12h mem  124–127h 4E7A FF12h mem  124–127h 4E7A FF12h

mem  124h 12h mem  124h 12h mem  124h 12h
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Syntax LMBD  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101011

src1
src2
dst

cst5
xuint
uint

.L1, .L2 1101010

Description The LSB of the src1 operand determines whether to search for a leftmost 1 or
0 in src2. The number of bits to the left of the first 1 or 0 when searching for
a 1 or 0, respectively, is placed in dst.

The following diagram illustrates the operation of LMBD  for several cases.

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

x x x x x x x00 0 x x x0 1 x x x x x x x x x xx x xx x xx

When searching for 1 in src2, LMBD  returns 4:

When searching for 0 in src2, LMBD  returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD  returns 0:

Execution if (cond) {
if (src10 == 0) lmb0(src2) → dst
if (src10 == 1) lmb1(src2) → dst
}

else nop

Instruction Type Single-cycle
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Delay Slots 0

Example LMBD A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 XXXX XXXXh A3 0000 0008h
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Syntax MPY(U/US/SU)  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2 11001 MPY

src1
src2
dst

ulsb16
xulsb16
uint

.M1, .M2 11111 MPYU

src1
src2
dst

ulsb16
xslsb16
sint

.M1, .M2 11101 MPYUS

src1
src2
dst

slsb16
xulsb16
sint

.M1, .M2 11011 MPYSU

src1
src2
dst

scst5
xslsb16
sint

.M1, .M2 11000 MPY

src1
src2
dst

scst5
xulsb16
sint

.M1, .M2 11110 MPYSU

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) lsb16(src1) � lsb16(src2) → dst
else nop

Instruction Type Multiply

Delay Slots 1



MPY(U/US/SU) Signed or Unsigned Integer Multiply 16lsb x 16lsb
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Example 1 MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h †291 A1 0000 0123h

A2 01E0 FA81h †–1407 A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF9 C0A3 –409437

Example 2 MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h ‡291 A1 0000 0123h

A2 0F12 FA81h ‡64129 A2 0F12 FA81h

A3 XXXX XXXXh A3 011C C0A3 §18661539

Example 3 MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h ‡65441 A1 1234 FFA1h

A2 1234 FFA1h †–95 A2 1234 FFA1h

A3 XXXX XXXXh A3 FFA1 2341h –6216895

Example 4 MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h †–13 A1 3497 FFF3h

A2 XXXX XXXXh A2 FFFF FF57h –163

Example 5 MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h ‡65523 A1 3497 FFF3h

A2 XXXX XXXXh A2 000C FF57h 851779

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer
§ Unsigned 32-bit integer
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Syntax MPYH(U/US/SU)  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00001 MPYH

src1
src2
dst

umsb16
xumsb16
uint

.M1, .M2 00111 MPYHU

src1
src2
dst

umsb16
xsmsb16
sint

.M1, .M2 00101 MPYHUS

src1
src2
dst

smsb16
xumsb16
sint

.M1, .M2 00011 MPYHSU

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) msb16(src1) � msb16(src2) → dst
else nop

Instruction Type Multiply

Delay Slots 1

Example 1 MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h †35 A1 0023 0000h

A2 FFA7 1234h †–89 A2 FFA7 1234h

A3 XXXX XXXXh A3 FFFF F3D5h –3115

† Signed integer, 16 MSBs
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Example 2 MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h ‡35 A1 0023 0000h

A2 FFA7 1234h ‡65447 A2 FFA7 1234h

A3 XXXX XXXXh A3 0022 F3D5h §2290645

Example 3 MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h †35 A1 0023 0000h

A2 FFA7 FFFFh ‡65447 A2 FFA7 FFFFh

A3 XXXX XXXXh A3 0022 F3D5h 2290645

† Signed integer, 16 MSBs
‡ Unsigned integer, 16 MSBs
§ Unsigned 32-bit integer



 Signed or Unsigned Integer Multiply 16msb x 16lsb MPYHL
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Syntax MPYH(U/S)L(U/S)  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01001 MPYHL

src1
src2
dst

umsb16
xulsb16
uint

.M1, .M2 01111 MPYHLU

src1
src2
dst

umsb16
xslsb16
sint

.M1, .M2 01101 MPYHULS

src1
src2
dst

smsb16
xulsb16
sint

.M1, .M2 01011 MPYHSLU

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) msb16(src1) � lsb16(src2) → dst
else nop

Instruction Type Multiply

Delay Slots 1

Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh †138 A1 008A 003Eh

A2 21FF 00A7h ‡167 A2 21FF 00A7h

A3 XXXX XXXXh A3 0000 5A06h 23046

† Signed integer, 16 MSBs
‡ Signed integer, 16 LSBs
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Syntax MPYL(U/S)H(U/S)  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2 10001 MPYLH

src1
src2
dst

ulsb16
xumsb16
uint

.M1, .M2 10111 MPYLHU

src1
src2
dst

ulsb16
xsmsb16
sint

.M1, .M2 10101 MPYLUHS

src1
src2
dst

slsb16
xumsb16
sint

.M1, .M2 10011 MPYLSHU

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) lsb16(src1) � msb16(src2) → dst
else nop

Instruction Type Multiply

Delay Slots 1

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh ‡14 A1 0900 000Eh

A2 0029 00A7h †41 A2 0029 00A7h

A3 XXXX XXXXh A3 0000 023Eh 574

† Signed integer, 16 MSBs
‡ Signed integer, 16 LSBs



 Move From Register to Register (Pseudo-Op) MV
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Syntax MV (.unit) src, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Description This is a pseudo operation that moves a value from one register to another.
The assembler uses the operation ADD (.unit) 0, src, dst to perform this task.

Execution if (cond) 0 + src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



MVC Move Between the Control File and the Register File
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Syntax MVC  (.unit) src2, dst

.unit = .S2

Operands when moving from the control file to the register file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

uint
uint

.S2 001111

Description The src2 register is moved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Operands when moving from the register file to the control file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.S2 001110

Description The src2 register is moved from the register file to the control register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–15.



 Move Between the Control File and the Register File MVC
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Table 3–15. Register Addresses for Accessing the Control Registers

Register
Abbreviation Name

Register
Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

IFR Interrupt flag register 00010 R

ISR Interrupt set register 00010 W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

ISTP Interrupt service table pointer 00101 R, W

IRP Interrupt return pointer 00110 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

Note: R = Readable by the MVC instruction
W = Writeable by the MVC instruction

Execution if (cond) src → dst
else nop

Note:

The MVC instruction executes only on the B side (.S2).

Instruction Type Single-cycle

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR until
two cycles after the write to the ISR or ICR.

Delay Slots 0



MVC Move Between the Control File and the Register File
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Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

Note:

The six MSBs of the AMR register are reserved and therefore are not written
to.



 Move a 16-Bit Signed Constant Into a Register MVK
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Syntax MVK  (.unit) cst, dst

.unit = .S1 or .S2

Opcode

165

z dst

6 0

cst 0 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Opcode map field used... For operand type... Unit

cst
dst

scst16
sint

.S1, .S2

Description The 16-bit constant is sign extended and placed in dst.

Execution if (cond) scst16 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Note:

To load 32-bit constants, such as 0x12345678, use the following pair of
instructions:

MVK 0x5678
MVKH 0x1234

You could also use:

MVK 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVK label
MVKH label

Example 1 MVK .S1 293,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 0000 0125h 293



MVK Move a 16-bit Signed Constant Into a Register
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Example 2 MVK .S2 125h,B1

Before instruction 1 cycle after instruction

B1 XXXX XXXXh B1 0000 0125h 293

Example 3 MVK .S1 0FF12h,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 FFFF FF12h –238



 Move 16-Bit Constant Into the Upper Bits of a Register MVK(H)(LH)
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Syntax MVKH  (.unit) cst, dst
or

MVKLH  (.unit) cst, dst

.unit = .S1 or .S2

Opcode

165

z dst

6 0

cst 1 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Opcode map field used... For operand type... Unit

cst
dst

uscst16
sint

.S1, .S2

Description The 16-bit constant cst is loaded into the upper 16 bits of dst. The 16 LSBs of
dst are unchanged. The assembler encodes the 16 MSBs of a 32-bit constant
into the cst field of the opcode for the MVKH instruction. The assembler en-
codes the 16 LSBs of a constant into the cst field of the opcode for the MVKLH
instruction.

Execution MVKLH if (cond)((cst15..0) << 16) or (dst15..0) → dst
else nop

MVKH if (cond)((cst31..16) << 16) or (dst15..0) → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



MVK(H)(LH) Move 16-Bit Constant Into the Upper Bits of a Register
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Note:

To load 32-bit constants, such as 0x12345678, use the following pair of
instructions:

MVK 0x5678
MVKH 0x1234

You could also use:

MVK 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVK label
MVKH label

Example 1 MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2 MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah



 Negate (Pseudo-Op) NEG
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Syntax NEG  (.unit) src, dst

.unit = .L1, .L2, .S1, .S2

Description This is a pseudo operation used to negate src and place in dst. The assembler
uses the operation SUB 0, src, dst to perform this task.

Execution if (cond) 0 –s src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



NOP No Operation
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Syntax NOP  [count]

Opcode

14

0

src 0 00 0 0 p

31

reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

Opcode map field used... For operand type... Unit

src ucst4 none

Description src is encoded as count–1. For src + 1 cycles, no operation is performed. The
maximum value for count is 9. NOP with no operand is treated like NOP 1 with
src encoded as 0000.

A multicycle NOP will not finish if a branch is completed first. For example, if
a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle
n + 3, the branch is complete on cycle n + 6 and the NOP is executed only from
cycle n + 3 to cycle n + 5. A single-cycle NOP in parallel with other instructions
does not affect operation.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0

Example 1 NOP

MVK .S1 125h,A1

Before NOP

1 cycle after NOP
(No operation
executes)

1 cycle after
      MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h



 No Operation NOP
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Example 2 MVK .S1 1,A1

MVKLH .S1 0,A1

NOP 5

ADD .L1 A1,A2,A1

Before NOP 5

1 cycle after ADD
instruction (6 cycles
after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h



NORM Normalize
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Syntax NORM (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
uint

.L1, .L2 1100011

src2
dst

slong
uint

.L1, .L2 1100000

Description The number of bits of the first nonredundant sign bit from the MSB of the src2
operand is placed in dst. Several examples are shown in the following dia-
gram.

1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

In this case, NORM returns 3:

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this case, NORM returns 0:

In this case, NORM returns 31:

x0 0 0 0 1 x x x x x x x x x x x x x x x x x xx x x x xx x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src2

src2

src2

src2

Execution if (cond) norm(src) → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



 Normalize NORM
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Example 1 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 XXXX XXXXh A2 0000 0005h 5

Example 2 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 XXXX XXXXh A2 0000 0013h 19



NOT Bitwise NOT (Pseudo-Op)
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Syntax NOT  (.unit) src, dst

(.unit) = .L1, .L2, .S1, or .S2

Description This is a pseudo operation used to bitwise NOT the src operand and place the
result in dst. The assembler uses the operation XOR (.unit)  –1, src, dst  to per-
form this task.

Execution if (cond)   –1 xor src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



 Bitwise OR OR
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Syntax OR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111110

src1
src2
dst

uint
xuint
uint

.S1, .S2 011011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011010

Description A bitwise OR is performed between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 or src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 OR .L1 A1,B1,A2

Before instruction 1 cycle after instruction

A1 08A3 A49Fh A1 08A3 A49Fh

A2 XXXX XXXXh A2 08FF B7DFh

B1 00FF 375Ah B1 00FF 375Ah

Example 2 OR .L2 –12,B1,B2

Before instruction 1 cycle after instruction

B1 0000 3A41h B1 0000 3A41h

B2 XXXX XXXXh B2 FFFF FFF5h



SADD Integer Addition With Saturation to Result Size
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Syntax SADD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0010011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0110001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0010010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0110000

Description src1 is added to src2 and saturated if an overflow occurs according to the fol-
lowing rules:

1) If the dst is an int and src1 + src2 > 231 – 1, then the result is 231 – 1.
2) If the dst is an int and src1 + src2 < –231, then the result is –231.
3) If the dst is a long and src1 + src2 > 239 – 1, then the result is 239 – 1.
4) If the dst is a long and src1 + src2 < –239, then the result is –239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status
register (CSR) is set one cycle after dst is written.

Execution if (cond) src1 +s src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



 Integer Addition With Saturation to Result Size SADD
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Example 1 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 012A 3FA2h 19546018 A2 012A 3FA2h A2 012A 3FA2h

A3 XXXX XXXXh A3 5B58 9145h 1532531013 A3 5B58 9145h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 4367 71F2h 1130852850 A1 4367 71F2h A1 4367 71F2h

A2 5A2E 51A3h 1512984995 A2 5A2E 51A3h A2 5A2E 51A3h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647 A3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 3 SADD .L1 B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h †1922644401 A5:A4 0000 0000h 7C83 39B1h

A7:A6 XXXX XXXXh XXXX XXXXh A7:A6 0000 0000h 83C3 7953h †2210625875

B2 112A 3FA2h 287981474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h CSR

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 83C3 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

† Signed long integer (40-bit)



SAT Saturate a 40-Bit Value to 32 Bits
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Syntax SAT (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

slong
sint

.L1, .L2 1000000

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater
than what can be represented in 32-bits, src2 is saturated. The result is placed
in dst. If a saturate occurs, the SAT bit in the control status register (CSR) is
set one cycle after dst is written.

Execution if (cond) {
if (src2 > (231 – 1) )

(231 – 1) → dst
else if (src2 < –231)

–231 → dst
else src231..0 → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SAT .L1 A1:A0,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 XXXX XXXXh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated



 Saturate a 40-Bit Value to 32 Bits SAT
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Example 3 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 XXXX XXXXh B5 A190 7321h B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated



SET Set a Bit Field
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Syntax SET  (.unit) src2, csta, cstb, dst
or

SET (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

Constant form:

55

z dst cstb

6 5 0

src2 op 0 0 1 0 s p

31

creg

29 28 27 23 22 7

13

18 13

1 1

17

5

csta

12 8

5 2

Register form:

55

z dst op

6 5 0

src2 1 0 0 0 s p

31

creg

29 28 27 23 22

13

18 13

1 1

17

5

src1

12

6

x

11

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2 10

src2
src1
dst

xuint
uint
uint

.S1, .S2 111011



 Set a Bit Field SET
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Description The field in src2, specified by csta and cstb, is set to all 1s. The csta and cstb
operands may be specified as constants or in the ten LSBs of the src1 register,
with cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the
LSB of the field and cstb signifies the bit location of the MSB of the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be set to all 1s. The LSB location of src2 is 0 and the MSB location
of src2 is 31. In the example below, csta is 15 and cstb is 23.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

x x x x x x x x x x x x x x x x x x x x x x x1 11 1 1 11 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

Execution If the constant form is used:

if (cond) src2 set csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 set src19..5,  src14..0 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 XXXX XXXXh A1 4B3F FF9Eh

Example 2 SET .S1 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 C197h B1 0000 C197h

B2 XXXX XXXXh B2 9EFF FA31h
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Syntax SHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110011

src2
src1
dst

slong
uint
slong

.S1, .S2 110001

src2
src1
dst

xsint
uint
slong

.S1, .S2 010011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110010

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110000

src2
src1
dst

xsint
ucst5
slong

.S1, .S2 010010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0–40. When an immediate is used, valid shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs are used
by the shifter so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 << src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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Example 1 SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 XXXX XXXXh A1 9E3D 31C0h

Example 2 SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 XXXX XXXXh B2 2EA3 4A00h

Example 3 SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0094h 0000 0000h
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Syntax SHR  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110111

src2
src1
dst

slong
uint
slong

.S1, .S2 110101

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110110

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110100

Description The src2 operand is shifted to the right by the src1 operand. The sign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0–40. When an immediate is used, valid shift
amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs are used
by the shifter so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>s src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 FFF1 2363h
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Example 2 SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 XXXX XXXXh B2 0000 0524h

Example 3 SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0000h 0000 090Ah
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Syntax SHRU  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xuint
uint
uint

.S1, .S2 100111

src2
src1
dst

ulong
uint
ulong

.S1, .S2 100101

src2
src1
dst

xuint
ucst5
uint

.S1, .S2 100110

src2
src1
dst

ulong
ucst5
ulong

.S1, .S2 100100

Description The src2 operand is shifted to the right by the src1 operand. The zero-ex-
tended result is placed in dst. When a register is used, the six LSBs specify the
shift amount and valid values are 0–40. When an immediate is used, valid shift
amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs are used
by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>z src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 00F1 2363h
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Syntax SMPY(L)(H)  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb15
sint

.M1, .M2 11010 SMPY

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01010 SMPYHL

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2 10010 SMPYLH

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00010 SMPYH

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 0x8000 0000, then the result
is saturated to 0x7FFF FFFF. If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.

Execution if (cond) {
if (((src1 � src2) << 1) � != 0x8000 0000 )

((src1 � src2) << 1) → dst
else

0x7FFF FFFF → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 1

Example 1 SMPY .M1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0123h ‡291 A1 0000 0123h

A2 01E0 FA81h ‡–1407 A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF3 8146h –818874

CSR 0001 0100h CSR 0001 0100h Not saturated

‡ Signed 16 LSBs
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Example 2 SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h †138 A1 008A 0000h

A2 0000 00A7h ‡167 A2 0000 00A7h

A3 XXXX XXXXh A3 0000 B40Ch 46092

CSR 0001 0100h CSR 0001 0100h Not saturated

Example 3 SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h ‡–32768 A1 0000 8000h

A2 8000 0000h †–32768 A2 8000 0000h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647

CSR 0001 0100h CSR 0001 0300h Saturated

† Signed integer, 16 MSBs
‡ Signed integer, 16 LSBs
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Syntax SSHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 100011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 100010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the five least significant bits specify the shift
amount and valid values are 0 through 31. The result of the shift is saturated
to 32 bits. If a saturate occurs, the SAT bit in the CSR is set one cycle after dst
is written.

Execution if (cond) {

if ( bit(31) through bit(31–src1) of src2 are all 1s or all 0s)
dst = src2 << src1;

else if (src2 > 0) 
saturate dst to 0x7FFFFFFF;

else if (src2 < 0) 
          saturate dst to 0x80000000;

}
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 XXXX XXXXh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated
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Example 2 SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated
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Syntax SSUB  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0001111

src1
src2
dst

xsint
sint
sint

.L1, .L2 0011111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0001110

src1
src2
dst

scst5
slong
slong

.L1, .L2 0101100

Description src2 is subtracted from src1 and is saturated to the result size according to the
following rules:

1) If the result is an int and src1 – src2 > 231 – 1, then the result is 231 – 1.
2) If the result is an int and src1 – src2 < –231, then the result is –231.
3) If the result is a long and src1 – src2 > 239 – 1, then the result is 239 – 1.
4) If the result is a long and src1 – src2 < –239, then the result is –239.

The result is placed in dst.  If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.

Execution if (cond) src1 –s src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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Example 1 SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction 2 cycles after instruction

B1 5A2E 51A3h 1512984995 B1 5A2E 51A3h B1 5A2E 51A3h

B2 802A 3FA2h –2144714846 B2 802A 3FA2h B2 802A 3FA2h

B3 XXXX XXXXh B3 7FFF FFFFh 2147483647 B3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SSUB .L2 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4367 71F2h 1130852850 A0 4367 71F2h A0 4367 71F2h

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 XXXX XXXXh A2 E939 204Fh –382132145 A2 E939 204Fh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated
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Syntax Register Offset

STB (.unit) src,*+baseR[offsetR], 
or

STH (.unit) src, *+baseR[offsetR],
or

STW (.unit) src, *+baseR[offsetR],

Unsigned Constant Offset

STBU (.unit) src, *+baseR[ucst5], 
or

STHU (.unit) src, *+baseR[ucst5], 
or

STW (.unit) src, *+baseR[ucst5], 

.unit = .D1 or .D2

Opcode

55

z src mode

6 0

baseR ld/st 0 1 s p

31

creg

29 28 27 23 22 7

13

18 13

1 1

17

5

offsetR/ucst5

12 9

4 3

8

r y

4

1 1

3

Description Each of these instructions performs a store to memory from a general-purpose
register (src). Table 3–16 summarizes the data types supported by stores.
Table 3–17 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW, re-
spectively. After scaling, offsetR/ucst5 is added to or subtracted from baseR.
For the preincrement, predecrement, positive offset, and negative offset ad-
dress generator options, the result of the calculation is the address to be ac-
cessed in memory. For postincrement or postdecrement addressing, the value
of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.3).

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file, regardless of
the .D unit or baseR or offsetR used. The s bit determines which file the source
is read from: s = 0 indicates src will be in the A register file, and s = 1 indicates
src will be in the B register file.
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Table 3–16. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Table 3–17. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R– –[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5
offset is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively.
Parentheses, ( ), can be used to set a nonscaled, constant offset. For example,
STW (.unit) *+baseR(12) dst represents an offset of 12 bytes whereas STW
(.unit) *+baseR[12] dst represents an offset of 12 words, or 48 bytes.

Execution if (cond) src → mem
else nop

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4, TMS320C62xx
Pipeline.
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Example 1 STB .D1 A1,*A10

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Example 2 STH .D1 A1,*+A10(4)

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Example 3 STW .D1 A1,*++A10[1]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A37 7634h

Example 4 STH .D1 A1,*A10––[A11]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 009Ch A10 0000 009Ch

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem 9Ch 0000h mem 9Ch 0000h mem 9Ch 0000h

mem 100h 0000 mem 100h 0000h mem 100h 2634h
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Syntax STB  (.unit) src, *+B14/B15[ucst15]
or

STH (.unit) src, *+B14/B15[ucst15]
or

STW (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

55

z src

6 0

ld/st 1 1 s p

31

creg

29 28 27 23 22 7

13 1 1

ucst

3

8

y

4

1

3

Description These instructions perform stores to memory from a general-purpose register
(src). Table 3–18 summarizes the data types supported by stores. The
memory address is formed from a base address register B14 (y = 0) or B15
(y = 1) and an optional offset that is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW,
respectively. After scaling, ucst15 is added to or subtracted from baseR. The
result of the calculation is the address that is sent to memory. The addressing
arithmetic is always performed in linear mode.

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file. The s bit deter-
mines which file the source is read from: s = 0 indicates src is in the A register
file, and s = 1 indicates src is in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2, 1, or 0
for word, halfword, and byte loads, respectively. Parentheses, ( ), can be used
to set a nonscaled, constant offset. For example, STW (.unit) *+B14/B15(60)
dst represents an offset of 12 bytes, whereas STW (.unit) *+B14/B15[60]
dst represents an offset of 60 words, or 240 bytes.
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Table 3–18. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Execution if (cond) src → mem
else nop

Instruction Type Store

Delay Slots 0

Note:

This instruction executes only on the .D2 unit.

Example 1 STB .D2 B1,*+B14[40]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h
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Syntax SUB  (.unit) src1, src2, dst
or

SUBU (.unit) src1, src2, dst
or

SUB (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000111 SUB

src1
src2
dst

xsint
sint
sint

.L1, .L2 0010111 SUB

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100111 SUB

src1
src2
dst

xsint
sint
slong

.L1, .L2 0110111 SUB

src1
src2
dst

uint
xuint
ulong

.L1, .L2 0101111 SUBU

src1
src2
dst

xuint
uint
ulong

.L1, .L2 0111111 SUBU

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000110 SUB

src1
src2
dst

scst5
slong
slong

.L1, .L2 010010
0

SUB

src1
src2
dst

sint
xsint
sint

.S1, .S2 010111 SUB

src1
src2
dst

scst5
xsint
sint

.S1, .S2 010110 SUB
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Opcode map field used... MnemonicOpfieldUnitFor operand type...

src2
src1
dst

sint
sint
sint

.D1, .D2 010001 SUB

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010011 SUB

Description for .L1, .L2 and .S1, .S2 opcodes
src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 opcodes
if (cond) src1 – src2 → dst
else nop

Description for .D1, .D2 opcodes
src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 opcodes
if (cond) src2 – src1 → dst
else nop

Note:

Subtraction with a signed constant on the .L and .S units allows either the first
or the second operand to be the signed 5-bit constant.

SUB  scst5, src2, dst
   or
SUB  src1,  scst5, dst  (Encoded as ADD  –scst5, src2, dst where the src1
register is now src2 and scst5 is now –scst5)

However, the .D unit provides only the second operand as a constant since
it is an unsigned 5-bit constant. ucst5 allows a greater offset for addressing
with the .D unit.

Instruction Type Single-cycle

Delay Slots 0

Example 1 SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 A1 0000 325Ah

A2 FFFF FF12h –238 A2 FFFF FF12h

A3 XXXX XXXXh A3 0000 3348h 13128
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Example 2 SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah †12810 A1 0000 325Ah

A2 FFFF FF12h †4294967058 A2 FFFF FF12h

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 0000 00FFh 0000 3348h ‡–4294954168

† Unsigned 32-bit integer
‡ Signed 40-bit (long) integer



 Integer Subtraction Using Addressing Mode SUBA(B)(H)(W)

3-113  Instruction Set

Syntax SUBAB  (.unit) src2, src1, dst
or

SUBAH  (.unit) src2, src1, dst
or

SUBAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 Byte: 110001
Halfword: 110101

Word: 111001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 Byte: 110011
Halfword: 110111

Word: 111011

Description src1 is subtracted from src2. The subtraction defaults to linear mode. Howev-
er, if src2 is one of A4–A7 or B4–B7, the mode can be changed to circular mode
by writing the appropriate value to the AMR (see section 2.3). src1 is left shifted
by 1 or 2 for halfword and word data sizes, respectively. SUBAB , SUBAH , and
SUBAW  are byte, halfword, and word mnemonics, respectively. The result is
placed in dst.

Execution if (cond) src2 –a src1 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SUBAB .D1 A5,A0,A5

Before instruction 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0



SUBA(B)(H)(W) Integer Subtraction Using Addressing Mode

3-114  

Example 2 SUBAW .D1 A5,2,A3

Before instruction 1 cycle after instruction

A3 XXXX XXXXh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0
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3-115  Instruction Set

Syntax SUBC  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1001011

Description Subtract src2 from src1. If result is greater than or equal to zero, left shift result
and add 1 to it. Place the result in dst. This step is commonly used in division.

Execution if (cond) {
if (src1 – src2 � 0) 

( (src1–src2) << 1) + 1 → dst
else src1 << 1 → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137777 A0 0000 2464h 128575

A1 0001 F63Fh 73490 A1 0001 F63Fh



SUB2 Two 16-Bit Integer Subtractions on Upper and Lower Register Halves
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Syntax SUB2  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 010001

Description The upper and lower halves of src2 are subtracted from the upper and lower
halves of src1. Any borrow from the lower-half subtraction does not affect the
upper-half subtraction.

Execution if (cond) {
((lsb16(src1) – lsb16(src2)) and FFFFh) or

 ((msb16(src1) – msb16(src2)) << 16) → dst
}

else nop

Instruction Type Single-cycle

Delay Slots 0

Example SUB2 .S2 B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h †33  ‡12913 A0 0021 3271h

B1 003A 1B48h †58  ‡6984 B1 003A 1B48h

B2 XXXX XXXXh B2 6019 E8D7h †25  ‡–5929

† Signed integer, 16 MSBs
‡ Signed integer, 16 LSBs



 Exclusive OR XOR

3-117  Instruction Set

Syntax XOR (.unit) src2, src1, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1101110

src1
src2
dst

uint
xuint
uint

.S1, .S2 001011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 001010

Description A bitwise exclusive-OR is performed between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 xor src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example 1 XOR .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0721 325Ah A1 0721 325Ah

A2 0019 0F12h A2 0019 0F12h

A3 XXXX XXXXh A3 0738 3D48h

Example 2 XOR .L2 B1,dh,B2

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B2 XXXX XXXXh B2 0000 102Eh



ZERO Zero a Register (Pseudo-Op)

3-118  

Syntax ZERO  (.unit) dst

.unit = .L1, .L2, .D1, .D2, .S1, or .S2

Description This is a pseudo operation used to zero out the dst register by subtracting the
dst from itself and placing the result in the dst. The assembler uses the opera-
tion SUB (.unit) src1, src2, dst to perform this task where src1 and src2 both
equal dst.

Execution if (cond) dst – dst → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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 TMS320C62xx Pipeline

The ’C62xx pipeline provides flexibility to simplify programming and improve
performance. Two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through each pipeline
phase.

� Serial instructions proceed through the pipeline with a fixed relative phase
difference between instructions.

� Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and de-
code, but require a varying number of execute phases. This chapter contains
a description of the number of execution phases for each type of instruction.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully opti-
mizing a program and taking full advantage of the pipeline, see the
TMS320C62xx Programmer’s Guide.
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4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the ’C62xx instruction set flow through the fetch, decode and
execute stages of the pipeline. The fetch stage of the pipeline has four phases
for all instructions, and the decode stage has two phases for all instructions.
The execute stage of the pipeline requires a varying number of phases, de-
pending on the type of instruction. The stages of the ’C62xx pipeline are shown
in Figure 4–1.

Figure 4–1. Pipeline Stages

Fetch Decode Execute
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4.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The ’C62xx uses a fetch packet (FP) of eight instructions. All eight of the
instructions proceed through fetch processing together, through the PG, PS,
PW, and PR phases. Figure 4–2(a) shows the fetch phases in sequential order
from left to right. Figure 4–2(b) shows a functional diagram of the flow of
instructions through the fetch phases. During the PG phase, the program ad-
dress is generated in the CPU. In the PS phase, the program address is sent
to memory. In the PW phase, a memory read occurs. Finally, in the PR phase,
the fetch packet is received at the CPU. Figure 4–2(c) shows fetch packets
flowing through the phases of the fetch stage of the pipeline. In Figure 4–2(c),
the first fetch packet (in PR) is made up of 4 execute packets, and the second
and third fetch packets (in PS and PW) contain 2 execute packets each. The
last fetch packet (in PG) contains a single-cycle execute packet of eight
instructions.

Figure 4–2. Fetch Phases of the Pipeline
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4.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel
instructions. During the DP phase, the instructions in an execute packet are
assigned to the appropriate functional units. In the DC phase, the the source
registers, destination registers, and associated paths are decoded for the
execution of the instructions in the functional units.

Figure 4–3(a) shows the decode phases in sequential order from left to right.
Figure 4–3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched (DP) on the previous
cycle. This execute packet contains two MPY instructions that are now in de-
code (DC) one cycle before execution. There are no instructions decoded for
the .L, .S, and .D functional units for the situation illustrated.

Figure 4–3. Decode Phases of the Pipeline
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DC MPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.



Pipeline Operation Overview

4-5 TMS320C62xx Pipeline

4.1.3 Execute

The execute portion of the pipeline is subdivided into five phases (E1–E5). Dif-
ferent types of instructions require different numbers of these phases to com-
plete their execution. These phases of the pipeline play an important role in
your understanding the device state at CPU cycle boundaries. The execution
of different types of instructions in the pipeline is described in section 4.2, Pipe-
line Execution of Instruction Types. Figure 4–4(a) shows the execute phases
of the pipeline in sequential order from left to right. Figure 4–4(b) shows the
portion of the functional block diagram in which execution occurs.

Figure 4–4. Execute Phases of the Pipeline and Functional Block Diagram
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(b)

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

Execute

E1

.D1
STH

.D2
STH



Pipeline Operation Overview

 4-6

4.1.4 Summary of Pipeline Operation

Figure 4–5 shows all the phases in each stage of the ’C62xx pipeline in se-
quential order, from left to right.

Figure 4–5. Pipeline Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

Figure 4–6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, observe cycle 7 in Figure 4–6. When the instructions from FPn
reach E1, the instructions in the execute packet from FPn +1 are being de-
coded. FPn + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are each
in one of four phases of program fetch. See section 4.3, Performance Consid-
erations on page 4-17, for additional detail on code flowing through the pipe-
line.

Figure 4–6. Pipeline Operation: One Execute Packet per Fetch Packet
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Table 4–1 summarizes the pipeline phases and what happens in each.

Table 4–1. Operations Occurring During Pipeline Phases
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For load instructions, the address is sent to
memory. For store instructions, the address and
data are sent to memory.†

Single-cycle instructions that saturate results set
the SAT bit in the control status register (CSR) if
saturation occurs.†

For multiply instructions, results are written to a
register file.†
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† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write any results or have any pipeline operation after E1.
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Figure 4–7 shows a ’C62xx functional block diagram laid out vertically by
stages of the pipeline.

Figure 4–7. Functional Block Diagram Based on Pipeline Phases
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The pipeline operation is based on CPU cycles. A CPU cycle is the period dur-
ing which a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the ’C62xx. Figure 4–7 shows a full pipeline with a fetch packet in every
phase of fetch. One execute packet of eight instructions is being dispatched
at the same time as a 7-instruction execute packet is in decode. The arrows
between DP and DC correspond to the functional units identified in the code
in Example 4–1.

Example 4–1. Execute Packet in Dispatch (DP) Phase in Figure 4–7

LOOP1:
STH .D1 A5,*A8++[2]

|| STH .D2 B5,*B8++[2]
|| SADD .L1 A2,A7,A2
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
||[B1] SUB .S2 B1,1,B1
||[B1] B .S1 LOOP1

In the DC phase portion of Figure 4–7, one box is empty because a NOP was
the eighth instruction in the fetch packet in DC. Finally, the figure shows six
functional units processing code during the same cycle of the pipeline. The
instructions processed in E1 are shown in the code in Example 4–2.

Example 4–2. Execute Packet in E1 Phase of Execution in Figure 4–7

SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| SADD .L1 A2,A7,A2
|| SADD .L2 B2,B7,B2
|| B .S1 LOOP1
|| MVK .S2 117,B1

Registers used by the instructions in E1 are shaded in Figure 4–7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. Note the bold crosspaths used by the MPY instructions.

Most ’C62xx instructions are single-cycle instructions, which means they have
only one execution phase (E1). A small number of instructions require more
than one execute phase. The types of instructions, each of which require differ-
ent numbers of execute phases, are described in section 4.2, Pipeline Execu-
tion of Instruction Types.
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4.2 Pipeline Execution of Instruction Types

The pipeline operation of the ’C62xx instructions can be categorized into six
instruction types. Five of these are shown in Table 4–2 (NOP is not included
in the table), which is a mapping of operations occurring in each execution
phase for the different instruction types. The delay slots associated with each
instruction type are listed in the bottom row.

Table 4–2. Execution Stage Length Description for Each Instruction Type
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ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Single Cycle
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Multiply
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
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ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Load
ÁÁÁÁÁ
ÁÁÁÁÁ
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Branch

Execution
phases

E1 Compute result
and write to 
register

Read operands
and start 
computations

Compute 
address

Compute 
address

Target code
in PG‡

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
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ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute result
and write to 
register

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
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Send address
and data to
memory
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Send address to
memory
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ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁE3 Access memory Access memory

ÁÁÁÁ
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ÁÁÁ
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E4
ÁÁÁÁÁÁ
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ÁÁÁÁÁÁ

Send data back
to CPU
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Delay
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0 1 0† 4† 5‡

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.
† See section 4.2.3 and 4.2.4 for more information on execution and delay slots for stores and loads.
‡ See section 4.2.5 for more information on branches.

The execution of instructions can be defined in terms of delay slots. A delay
slot is a CPU cycle that occurs after the first execution phase (E1) of an instruc-
tion. Results from instructions with delay slots are not available until the end
of the last delay slot. For example, a multiply instruction has one delay slot,
which means that one CPU cycle elapses before the results of the multiply are
available for use by a subsequent instruction. However, results are available
from other instructions finishing execution during the same CPU cycle in which
the multiply is in a delay slot.
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4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line. Figure 4–8 shows the fetch, decode, and execute phases of the pipeline
that single-cycle instructions use.

Figure 4–8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 4–9 shows the single-cycle execution diagram. The operands are read,
the operation is performed, and the results are written to a register, all during
E1. Single-cycle instructions have no delay slots.

Figure 4–9. Single-Cycle Execution Block Diagram
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Functional
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E1

4.2.2 Multiply Instructions

Multiply instructions use both the E1 and E2 phases of the pipeline to complete
their operations. Figure 4–10 shows the pipeline phases the multiply instruc-
tions use.

Figure 4–10. Multiply Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot
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Figure 4–11 shows the operations occurring in the pipeline for a multiply. In the
E1 phase, the operands are read and the multiply begins. In the E2 phase, the
multiply finishes, and the result is written to the destination register. Multiply
instructions have one delay slot.

Figure 4–11.Multiply Execution Block Diagram
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4.2.3 Store Instructions

Store instructions require phases E1 through E3 to complete their operations.
Figure 4–12 shows the pipeline phases the store instructions use.

Figure 4–12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3
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Figure 4–13 shows the operations occurring in the pipeline phases for a store.
In the E1 phase, the address of the data to be stored is computed. In the E2
phase, the data and destination addresses are sent to data memory. In the E3
phase, a memory write is performed. The address modification is performed
in the E1 stage of the pipeline. Even though stores finish their execution in the
E3 phase of the pipeline, they have no delay slots.
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Figure 4–13. Store Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

There is additional explanation of why stores have zero delay slots in section
4.2.4.
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4.2.4 Load Instructions

Data loads require all five of the pipeline execute phases to complete their op-
erations. Figure 4–14 shows the pipeline phases the load instructions use.

Figure 4–14. Load Instruction Phases
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Figure 4–15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Figure 4–15. Load Execution Block Diagram

E5

Address

E3
Memory

E2

E4Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary. Final-
ly, in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Because pointer
results are written to the register in E1, there are no delay slots associated with
the address modification.
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In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW  .D1  *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.

4.2.5 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code. Figure 4–16
shows the pipeline phases used by the branch instruction and branch target
code. The delay slots are shaded.

Figure 4–16. Branch Instruction Phases
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target
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5 delay slots
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Figure 4–17 shows a branch execution block diagram. If a branch is in the E1
phase of the pipeline (in the .S2 unit in the figure), its branch target is in the
fetch packet that is in PG during that same cycle (shaded in the figure). Be-
cause the branch target has to wait until it reaches the E1 phase to begin
execution, the branch takes five delay slots before the branch target code
executes.

Figure 4–17. Branch Execution Diagram
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4.3 Performance Considerations
The ’C62xx pipeline is most effective when it is kept as full as the algorithms
in the program allow it to be. It is useful to consider some situations that can
affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes seri-
ally with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 4.3.2
covers the effect of including a multicycle NOP in an individual EP.

Finally,  the effect of the memory system on the operation of the pipeline is con-
sidered. The access of program and data memory is discussed, along with
memory stalls.

4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Again referring to Figure 4–6 on page 4-6, pipeline operation is shown with
eight instructions in every fetch packet. Figure 4–18, however, shows the pipe-
line operation with a fetch packet that contains multiple execute packets. Code
for Figure 4–18 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D 
|| instruction E 

instruction F ; EP k + 2 FP n
|| instruction G 
|| instruction H 

instruction I ; EP k + 3 FP n + 1
|| instruction J 
|| instruction K 
|| instruction L 
|| instruction M 
|| instruction N 
|| instruction O 
|| instruction P 

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.
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Figure 4–18. Pipeline Operation: Fetch Packets With Different Numbers of Execute
Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13
n k PG PS PW PR ÉÉÉDP DC E1 E2 E3 E4 E5

n k+1
ÉÉ
ÉÉDP DC E1 E2 E3 E4 E5

n k+2 ÉÉÉ
ÉÉÉ

DP DC E1 E2 E3 E4 E5

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3

n+3 k+5 PG PS stall PW PR DP DC E1 E2

n+4 k+6 PG PS PW PR DP DC E1

n+5 k+7 PG PS PW PR DP DC

n+6 k+8 PG PS PW PR DP

In Figure 4–18, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one
execute packet (containing eight parallel instructions). The first fetch packet
(n) goes through the program fetch phases during cycles 1–4. During these
cycles, a program fetch phase is started for each of the fetch packets that fol-
low.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and de-
tects that there are three execute packets (k through k + 2) in fetch packet n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets
(k through k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles
6 and 7: it was not allowed to enter the PG phase until after the pipeline stall
was released in cycle 8. The pipeline continues operation as shown with fetch
packets n + 5 and n + 6 until another fetch packet containing multiple execu-
tion packets enters the DP phase, or an interrupt occurs.

4.3.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY’s results
will be available for use by instructions in the next execute packet.
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Figure 4–19 shows how a multicycle NOP can drive the execution of other
instructions in the same execute packet.  Figure 4–19(a) shows a NOP in an
execute packet (in parallel) with other code. The results of the LD, ADD, and
MPY will all be available during the proper cycle for each instruction. Hence
NOP has no effect on the execute packet.

Figure 4–19(b) shows a multicycle NOP (NOP 5) in the same execute packet
in place of the single-cycle NOP. The NOP 5 will cause no operation to perform
other than the operations from the instructions inside its execute packet. The
results of the LD, ADD, and MPY cannot be used by any other instructions until
the NOP 5 period has completed.

Figure 4–19. Multicycle NOP in an Execute Packet
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Figure 4–20 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch tar-
get begins execution five delay slots after the branch was issued.

Figure 4–20. Branching and Multicycle NOPs
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See Figure 4–19(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 will force the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coin-
cide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it
executes.
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4.3.3 Memory Considerations

The ’C62xx has a memory configuration typical of a DSP, with program
memory in one physical space and data memory in another physical space.
Data loads and program fetches have the same operation in the pipeline, they
just use different phases to complete their operations. With both data loads
and program fetches, memory accesses are broken up into multiple phases.
This enables the ’C62xx to access memory at a high speed. These phases are
shown in Figure 4–21.

Figure 4–21. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the ’C62xx and
perform the same types of operations (listed in Table 4–3) to accommodate
those memories. Table 4–3 shows the operation of program fetches pipeline
versus the operation of a data load.

Table 4–3. Program Memory Accesses Versus Data Load Accesses
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Depending on the type of memory and the time required to complete an ac-
cess, the pipeline may stall to ensure proper coordination of data and instruc-
tions. This is discussed in section 4.3.3.1, Memory Stalls.
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In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 4.3.3.2, Memory Bank Hits.

4.3.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory ac-
cess and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle, caus-
ing execution to take additional clock cycles to finish. The results of the pro-
gram execution are identical whether a stall occurs or not. Figure 4–22 illus-
trates this point.

Figure 4–22. Program and Data Memory StallsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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4.3.3.2 Memory Bank Hits

Most ’C62xx devices use an interleaved memory bank scheme, as shown in
Figure 4–23. Each number in the diagram represents a byte address. A load
byte (LDB ) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) from address 0 loads the halfword value in bytes 0 and 1, which are also
in bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Figure 4–23. 4-Bank Interleaved Memory

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are
allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 4–3. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank
0 on cycle i + 3 (in the E3 phase). See Table 4–4 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loads must access data from different banks (B4 address
would need to be in bank 1). For more information on programming topics, see
the TMS320C62xx Programmer’s Guide.

Example 4–3. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0

Table 4–4. Loads in Pipeline From Example 4–3

i i +1 i +2 i +3 i +4 i +5

LDW .D1
Bank 0

E1 E2 E3 * E4 E5

LDW .D2
Bank 0

E1 E2 * E3 E4 E5
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For devices that have more than one memory space (see Figure 4–24), an
access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

Figure 4–24. 4-Bank Interleaved Memory With Two Memory Spaces

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

8M + 6 8M + 78M + 58M + 48M + 2 8M + 38M + 18M

Memory
 space 0

Memory
 space 1

Bank 3Bank 2Bank 1Bank 0

The internal memory of the ’C62xx family varies from device to device.  See
the TMS320C62xx Peripherals Reference Guide to determine the memory
spaces in your particular device.
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Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable
interrupt (NMI). It details the related CPU control registers and their functions
in controlling interrupts. It also describes interrupt processing, the method the
CPU uses to detect automatically the presence of interrupts and divert pro-
gram execution flow to your interrupt service code. Finally, the chapter de-
scribes the programming implications of interrupts.
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5.1 Overview of Interrupts

Typically, DSPs work in an environment that contains multiple external
asynchronous events. These events require tasks to be performed by the DSP
when they occur. An interrupt is an event that stops the current process in the
CPU so that the CPU can attend to the task needing completion because of
the event. These interrupt sources can be on chip or off chip, such as timers,
analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, com-
pleting the interrupt task, restoring the registers and the process context, and
resuming the original process. There are eight registers that control servicing
interrupts.

An appropriate transition on an interrupt pin sets the pending status of the in-
terrupt within the interrupt flag register (IFR). If the interrupt is properly en-
abled, the CPU begins processing the interrupt and redirecting program flow
to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the ’C62xx CPU. These three types are
differentiated by their priorities, as shown in Table 5–1. The reset interrupt has
the highest priority and corresponds to the RESET signal. The nonmaskable
interrupt is the interrupt of second highest priority and corresponds to the NMI
signal. The lowest priority interrupts are interrupts 4–15. They correspond to
the INT4–INT15 signals. RESET, NMI, and some of the INT4–INT15 signals
are mapped to pins on ’C62xx devices. Some of the INT4–INT15 interrupt sig-
nals are used by internal peripherals and some may be unavailable or can be
used under software control. Check your data sheet to see your device’s inter-
rupt specifications.
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Table 5–1. Interrupt Priorities ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁPriority

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
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NameÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁResetÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
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5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return
it to a known state. The reset interrupt is unique in a number of ways:

� RESET is an active-low signal. All other interrupts are active-high signals.

� RESET must be held low for 10 clock cycles before it goes high again to
reinitialize the CPU properly.

� The instruction execution in progress is aborted and all registers are re-
turned to their default states.

� The reset interrupt service fetch packet must be located at address 0.

� RESET is not affected by branches.

5.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the
CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in
the interrupt enable register must be set to 1. If NMIE is set to 1, the only condi-
tion that can prevent NMI processing is if the NMI occurs during the delay slots
of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared
at the occurrence of an NMI to prevent another NMI from being processed. You
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cannot manually clear NMIE, but you can set NMIE to allow nested NMIs.
While NMI is cleared, all maskable interrupts (INT4–INT15) are disabled.

5.1.1.3 Maskable Interrupts (INT4–INT15)

The ’C62xx CPU has twelve interrupts that are maskable. These have lower
priority than the NMI and reset interrupts. These interrupts can be associated
with external devices, on-chip peripherals, software control, or not be avail-
able.

Assuming that a maskable interrupt does not occur during the delay slots of
a branch (this includes conditional branches that do not complete execution
due to a false condition), the following conditions must be met to process a
maskable interrupt:

� The global interrupt enable bit (GIE) bit in the control status register (CSR) is
set to1.

� The NMIE bit in the interrupt enable register (IER) is set to1.

� The corresponding interrupt enable (IE) bit in the IER is set to1.

� The corresponding interrupt occurs, which sets the corresponding bit in
the IFR to 1 and there are no higher priority interrupt flag (IF) bits set in the
IFR.

5.1.1.4 Interrupt Acknowledgment (IACK and INUMx)

The IACK and INUMx signals alert hardware external to the ’C62xx that an in-
terrupt has occurred and is being processed. The IACK signal indicates that
the CPU has begun processing an interrupt. The INUMx signals (INUM3–
INUM0) indicate the number of the interrupt (bit position in the IFR) that is be-
ing processed.

For example:

INUM3 = 0 (MSB)
INUM2 = 1
INUM1 = 1
INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being
processed.
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5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt ser-
vice table (IST). The IST is a table of fetch packets that contain code for servic-
ing the interrupts. The IST consists of 16 consecutive fetch packets. Each in-
terrupt service fetch packet contains eight instructions. A simple interrupt ser-
vice routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5–1. Because
each fetch packet contains eight 32-bit instruction words (or 32 bytes), each
address in the table is incremented by 32 bytes (20h) from the one adjacent
to it.

Figure 5–1. Interrupt Service Table

Interrupt service table
(IST)

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP
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5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5–2 shows an
ISFP that contains an interrupt service routine small enough to fit in a single
fetch packet (FP). To branch back to the main program, the FP contains a
branch to the interrupt return pointer instruction (B IRP). This is followed by a
NOP 5 instruction to allow the branch target to reach the execution stage of
the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five
execute packets that are associated with the next ISFP.

Figure 5–2. Interrupt Service Fetch Packet

Instr3

Interrupt service table
(IST)

Instr2

Instr4

Instr5

Instr6

B IRP

NOP 5

ISFP for INT6

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service rou-
tine for INT6 is short

enough to be  contained
in a single fetch packet.

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Instr1
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If the interrupt service routine for an interrupt is too large to fit in a single FP,
a branch to the location of additional interrupt service routine code is required.
Figure 5–3 shows that the interrupt service routine for INT4 was too large for
a single FP, and a branch to memory location 1234h is required to complete
the interrupt service routine.

Figure 5–3. IST With Branch to Additional Interrupt Service Code Located Outside the IST

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for INT4

1220h

The interrupt service routine
for INT4 includes this

7-instruction extension of
the interrupt ISFP. Instr1

Instr2

B 1234h

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for INT4

080h

084h

088h

08Ch

090h

094h

098h

09Ch

Program memory

–

–

–

–

–

Instr9

Instr11

1224h

1228h

122Ch

1230h

1234h

1238h

123Ch

B IRP

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Additional ISFP for INT4

1240h Instr12

Instr13

Instr14

Instr15

–

–

–

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

–

Note:

The instruction B 1234h branches into the middle of a fetch packet (at 1220h)
and processes code starting at address 1234h. The CPU ignores code from
address 1220–1230h, even if it is in parallel to code at address 1234h.
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5.1.2.2 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer (ISTP) register is used to locate the interrupt
service routine. One field, ISTB identifies the base portion of the address of
the IST; another field, HPEINT, identifies the specific interrupt and locates the
specific fetch packet within the IST. Figure 5–4 shows the fields of the ISTP.
Table 5–2 describes the fields and how they are used.

Figure 5–4. Interrupt Service Table Pointer (ISTP)

31 0

R, +0

0

R, W, +0

10

HPEINTISTB 0000

59

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is cleared at reset

Table 5–2. ISTP Fields
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ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
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Description
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Set to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

5–9ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
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HPEINTÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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Highest priority enabled interrupt. This field gives the number (related bit position in the IFR)
of the highest priority interrupt (as defined in Table 5–1) that is enabled by its bit in the IER.
Thus, the ISTP can be used for manual branches to the highest priority enabled interrupt.
If no interrupt is pending and enabled, HPEINT contains the value 00000b. The correspond-
ing interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

10–31
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
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ISTB
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt service table base portion of the IST address. This field is set to 0 on reset. Thus,
upon startup the IST must reside at address 0. After reset, you can relocate the IST by writ-
ing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset sets the ISTB to 0. See Example 5–1.
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The reset fetch packet must be located at address 0, but the rest of the IST can
be at any program memory location that is on a 256-word boundary. The loca-
tion of the IST is determined by the interrupt service table base (ISTB).
Example 5–1 shows the relationship of the ISTB to the table location.

Example 5–1. Relocation of Interrupt Service Table

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

820h

840h

860h

880h

8A0h

8C0h

8E0h

900h

920h

940h

96h0

980h

9A0h

9C0h

9E0h

Program memory

800h

RESET ISFP

1) Copy the IST, located between 0h and 200h, to the memory loca-
tion between 800h and A00h.

2) Write 800h to the ISTP register: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
 IER = 1230h = 0001 0010 0011 0001b
2 enabled interrupts pending: INT9 and INT12

The 1s in the IFR indicate pending interrupts; the 1s in the IER
indicate the interrupts that are enabled. INT9 has a higher 
priority than INT12, so HPEINT is encoded with the value for 
INT9, 01001b.

HPEINT corresponds to bits 9–5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs the CPU to the appropriate ISFP in the
relocated IST

  

(a) Relocating the IST to 800h
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5.1.3 Summary of Interrupt Control Registers

Table 5–3 lists the eight interrupt control registers on the ’C62xx devices. The
control status register (CSR) and the interrupt enable register (IER) enable or
disable interrupt processing. The interrupt flag register (IFR) identifies pending
interrupts. The interrupt set (ISR) and interrupt clear (ICR) registers can be
used in manual interrupt processing.

There are three pointer registers. ISTP points to the interrupt service table.
NRP and IRP are the return pointers used when returning from a nonmaskable
or a maskable interrupt, respectively. More information on all the registers can
be found at the locations listed in the table.

Table 5–3. Interrupt Control Registers

Abbreviation Name Description
Page

Number

CSR Control status register Allows you to globally set or disable interrupts 5-11

IER Interrupt enable register Allows you to enable interrupts 5-13

IFR Interrupt flag register Shows the status of interrupts 5-14

ISR Interrupt set register Allows you to set flags in the IFR manually 5-14

ICR Interrupt clear register Allows you to clear flags in the IFR manually 5-14

ISTP Interrupt service table pointer Pointer to the beginning of the interrupt service
table

5-8

NRP Nonmaskable interrupt return
pointer

Contains the return address used on return from
a nonmaskable interrupt. This return is accom-
plished via the B NRP instruction.

5-16

IRP Interrupt return pointer Contains the return address used on return from
a maskable interrupt. This return is accom-
plished via the B IRP instruction.

5-17
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5.2 Globally Enabling and Disabling Interrupts 
(Control Status Register–CSR)

The control status register (CSR) contains two fields that control interrupts:
GIE and PGIE, as shown in Figure 5–5. The other fields of the registers serve
other purposes and are discussed in section 2.4 on page 2-9.

Figure 5–5. Control Status Register (CSR)
31 24

CPU ID

1623

Revision ID

R

15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +x R, W, +0R, C, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

Table 5–4. CSR Interrupt Control Field Descriptions

Bit
Field
Name Description

0 GIE Global interrupt enable; globally enables or disables all
maskable interrupts.
GIE = 1  maskable interrupts globally enabled
GIE = 0, maskable interrupts globally disabled

1 PGIE Previous GIE; saves the value of GIE when an interrupt is
taken. This value is used on return from an interrupt.

The global interrupt enable (GIE) allows you to enable or disable all maskable
interrupts by controlling the value of a single bit. GIE is bit 0 of the control status
register (CSR).

� GIE = 1 enables the maskable interrupts so that they are processed.
� GIE = 0 disables the maskable interrupts so that they are not processed.

Bit 1 of the CSR is PGIE and contains the previous value of GIE. During pro-
cessing of a maskable interrupt, PGIE is loaded with GIE and GIE is cleared.
GIE is cleared during a maskable interrupt to keep another maskable interrupt
from occurring before the device state has been saved. Upon return from an
interrupt, by way of the B IRP instruction, the PGIE value is copied back to GIE
and remains unchanged. The purpose of PGIE is to allow proper clearing of
GIE when an interrupt has already been detected for processing.

Globally Enabling and Disabling Interrupts (Control Status Register–CSR)
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Suppose the CPU begins processing an interrupt. Just as the interrupt proces-
sing begins, GIE is being cleared by you writing a 0 to bit 0 of the CSR with the
MVC instruction. GIE is cleared by the MVC instruction prior to being copied
to PGIE. Upon returning from the interrupt, PGIE is copied back to GIE, result-
ing in GIE being cleared as directed by your code.

Example 5–2 shows how to disable maskable interrupts globally and
Example 5–3 shows how to enable maskable interrupts globally.

Example 5–2. Code Sequence to Disable Maskable Interrupts Globally 

MVC .S2 CSR,B0 ; get CSR
AND .S2 -2,B0,B0 ; get ready to clear GIE
MVC .S2 B0,CSR ; clear GIE

Example 5–3. Code Sequence to Enable Maskable Interrupts Globally 

MVC .S2 CSR,B0 ; get CSR
OR .S2 1,B0,B0 ; get ready to set GIE
MVC .S2 B0,CSR ; set GIE

Globally Enabling and Diasable Interrupts (Control Status Register–CSR)
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5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of
interrupts: reset, nonmaskable, and maskable. Enabling and disabling individ-
ual interrupts is done with the interrupt enable register (IER). The status of
pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt
processing can be accomplished through the use of the interrupt set register
(ISR) and interrupt clear register (ICR). The interrupt return pointers restore
context after servicing nonmaskable and maskable interrupts. 

5.3.1 Enabling and Disabling Interrupts (Interrupt Enable Register–IER)

You can enable and disable individual interrupts by setting and clearing bits
in the IER that correspond to the individual interrupts. An interrupt can trigger
interrupt processing only if the corresponding bit in the IER is set. Bit 0, corre-
sponding to reset, is not writeable and is always read as 1, so the reset inter-
rupt is always enabled. You cannot disable the reset interrupt. Bits IE4–IE15
can be written as 1 or 0, enabling or disabling the associated interrupt, respec-
tively. The IER is shown in Figure 5–6.

Figure 5–6. Interrupt Enable Register (IER)
31 16

Reserved

15 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4

R, W, +0

NMIE 1

R, +1

rsv rsv

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
rsv = Reserved
+1 = Value after reset
+0 = Value after reset

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption
of an NMI. NMIE is cleared at reset to prevent any interruption of processor
initialization until you enable NMI. After reset, you must set NMIE to enable the
NMI and to allow INT15–INT4 to be enabled by GIE and the appropriate IER
bit. You cannot manually clear the NMIE; the bit is unaffected by a write of 0.
NMIE is also cleared by the occurrence of an NMI. If cleared, NMIE is set only
by completing a B NRP instruction or by a write of 1 to NMIE. Example 5–4 and
Example 5–5 show code for enabling and disabling individual interrupts, re-
spectively.
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Example 5–4. Code Sequence to Enable an Individual Interrupt–INT9
MVK.S2 200h,B1 ; set bit 9
MVC.S2 IER,B0 ; get IER
OR .S2 B1,B0,B0 ; get ready to set IE9
MVC.S2 B0,IER ; set bit 9 in IER

Example 5–5. Code Sequence to Disable an Individual Interrupt–INT9
MVK.S2 FDFFh,B1 ; clear bit 9
MVC.S2 IER,B0
AND.S2 B1,B0,B0 ; get ready to clear IE9
MVC.S2 B0,IER ; clear bit 9 in IER

5.3.2 Status of, Setting, and Clearing Interrupts 
(Interrupt Flag, Set, and Clear Registers – IFR, ISR, ICR)

The interrupt flag register (IFR) contains the status of INT4–INT15 and NMI.
Each interrupt’s corresponding bit in the IFR is set to 1 when that interrupt oc-
curs; otherwise, the bits have a value of 0. If you want to check the status of
interrupts, use the MVC instruction to read the IFR. Figure 5–7 shows the IFR.

Figure 5–7. Interrupt Flag Register (IFR)
31 16

Reserved

R, +0

15 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 rsv rsv NMIF 0

R, +0

Legend : R = Readable by the MVC instruction
+0 = Cleared at reset
rsv = Reserved

The interrupt set register (ISR) and interrupt clear register (ICR) allow you to
set or clear maskable interrupts manually in the IFR. Writing a 1 to IS4–IS15
of the ISR causes the corresponding interrupt flag to be set in the IFR. Similar-
ly, writing a 1 to a bit of the ICR causes the corresponding interrupt flag to be
cleared. Writing a 0 to any bit of either the ISR or the ICR has no effect. Incom-
ing interrupts have priority and override any write to the ICR. You cannot set
or clear any bit in the ISR or ICR to affect NMI or reset.

Note:

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR
until two cycles after the write to the ISR or ICR.

Any write to the ICR is ignored by a simultaneous write to the same bit in the
ISR.
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Figure 5–8. Interrupt Set Register (ISR)

31 16

Reserved

15 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4

W

rsv rsv rsv rsv

Legend : W = Writeable by the MVC instruction
rsv = Reserved

Figure 5–9. Interrupt Clear Register (ICR)

31 16
Reserved

15 0
IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 rsv rsvrsv rsv

W

Legend : W = Writeable by the MVC instruction
rsv = Reserved

Example 5–6 and Example 5–7 show code examples to set and clear individu-
al interrupts.

Example 5–6. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK.S2 40h,B3
MVC.S2 B3,ISR
NOP
MVC.S2 IFR,B4

Example 5–7. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK.S2 40h,B3
MVC.S2 B3,ICR
NOP
MVC.S2 IFR,B4
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5.3.3 Returning From Interrupt Servicing

After RESET goes high, the control registers are brought to a known value and
program execution begins at address 0h. After nonmaskable and maskable
interrupt servicing, use a branch to the corresponding return pointer register
to continue the previous program execution.

5.3.3.1 CPU State After RESET

After RESET, the control registers and bits will contain the corresponding val-
ues:
� AMR, ISR, ICR, IFR, and ISTP = 0h
� IER = 1h
� IRP and NRP = undefined
� Bits 15–0 of the CSR = 100h in little endian mode, 000h in big endian mode

5.3.3.2 Returning From Nonmaskable Interrupts (NMI Return Pointer Register–NRP)

The NMI return pointer register contains the return pointer that directs the CPU
to the proper location to continue program execution after NMI processing. A
branch using the address in the NRP (B NRP) in your interrupt service routine
returns to the program flow when NMI servicing is complete. Example 5–8
shows how to return from an NMI.

Example 5–8. Code to Return from NMI

B .S2 NRP ; return, sets NMIE
NOP 5 ; delay slots

The NRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a nonmaskable interrupt. Although you
can write a value to this register, any subsequent interrupt processing may
overwrite that value. Figure 5–10 shows the NRP register.

Figure 5–10. NMI Return Pointer (NRP)
31 16

NRP

R, W, +x

15 0
NRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = value undefined after reset
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5.3.3.3 Returning From Maskable Interrupts (Interrupt Return Pointer Register - IRP)

The interrupt return pointer register contains the return pointer that directs the
CPU to the proper location to continue program execution after processing a
maskable interrupt. A branch using the address in the IRP (B IRP) in your inter-
rupt service routine returns to the program flow when interrupt servicing is
complete. Example 5–9 shows how to return from a maskable interrupt.

Example 5–9. Code to Return from a Maskable Interrupt

B .S2 IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots

The IRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a maskable interrupt. Although you can
write a value to this register, any subsequent interrupt processing may over-
write that value. Figure 5–11 shows the IRP register.

Figure 5–11.Interrupt Return Pointer (IRP)

31 16
IRP

R, W, +x

15 0
IRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = Value undefined after reset



Interrupt Detection and Processing

 5-18

5.4 Interrupt Detection and Processing
When an interrupt occurs, it sets a flag in the IFR register. Depending on cer-
tain conditions, the interrupt may or may not be processed. This section dis-
cusses the mechanics of setting the flag bit, the conditions for processing an
interrupt, and the order of operation for detecting and processing an interrupt.
The similarities and differences between reset and nonreset interrupts are
also discussed.

5.4.1 Setting the Interrupt Flag – Nonreset

Figure 5–12 shows the processing of a nonreset interrupt (INTm). The flag
(IFm) for INTm in the IFR is set following the low-to-high transition of the INTm
signal on the CPU boundary. This transition is detected on a clock-cycle by
clock-cycle basis and is not affected by memory stalls that might extend a CPU
cycle. Once there is a low-to-high transition on an external interrupt pin
(cycle 1), it takes two clock cycles for the signal to reach the CPU boundary
(cycle 3). When the interrupt signal enters the CPU, it is has been detected
(cycle 4). Two clock cycles after detection, the interrupt’s corresponding flag
bit in the IFR is set (cycle 6).

In Figure 5–12, IFm is set during CPU cycle 6. You could attempt to clear bit
IFm by using an MVC instruction to write a 1 to bit m of the ICR in execute pack-
et n + 3 (during CPU cycle 4). However, in this case, the automated write by
the interrupt detection logic takes precedence and IFm remains set.

Figure 5–12 assumes INTm is the highest priority pending interrupt and is en-
abled by GIE and NMIE as necessary. If it is not, IFm remains set until either
you clear it by writing a1 to bit m of the ICR, or the processing of INTm occurs.

5.4.2 Conditions for Processing an Interrupt – Nonreset

In clock cycle 4 of Figure 5–12, a nonreset interrupt in need of processing is
detected. For this interrupt to be processed, the following conditions must be
valid on the same clock cycle and are evaluated every clock cycle:

� IFm is set during CPU cycle 6. (This determination is made in CPU cycle
4 by the interrupt logic.)

� There is not another higher priority IFm bit set in the IFR.

� The corresponding bit in the IER is set (IEm = 1).

� GIE = 1

� NMIE = 1

� The five previous execute packets (n through n+4) do not contain a branch
(even if the branch is not taken) and are not in the delay slots of a branch.
Any pending interrupt will be taken as soon as pending branches are com-
pleted.
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Figure 5–12. Interrupt Detection and Processing: Pipeline Operation–Nonreset
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† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.
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5.4.3 Actions Taken During Interrupt Processing – Nonreset

During CPU cycles 6–12 of Figure 5–12, the following interrupt processing ac-
tions occur:

� Processing of subsequent nonreset interrupts is disabled.

� For all interrupts except NMI, PGIE is set to the value of GIE and then GIE
is cleared.

� For NMI, NMIE is cleared.

� The next execute packets (from n + 5 on) are annulled.  If an execute pack-
et is annulled during a particular pipeline stage, it does not modify any CPU
state. Annulling also forces an instruction to be annulled in future pipeline
stages.

� The address of the first annulled execute packet (n+5) is loaded in to the
NRP (in the case of NMI) or IRP (for all other interrupts).

� A branch to the address held in ISTP (the pointer to the ISFP for INTm)
is forced into the E1 phase of the pipeline during cycle 7.

� During cycle 7, IACK is asserted and the proper INUMx signals are as-
serted to indicate which interrupt is being processed. The timings for these
signals in Figure 5–12 represent only the signals’ characteristics inside
the CPU. The external signals may be delayed and be longer in duration
to handle external devices. Check the data sheet for your specific device
for particular timing values.

� IFm is cleared during cycle 8.
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5.4.4 Setting the Interrupt Flag – RESET

RESET must be held low for a minimum of ten clock cycles. Four clock cycles
after it goes high, processing of the reset vector begins. The flag for RESET
(IF0) in the IFR is set by the low-to-high transition of the RESET signal on the
CPU boundary. In Figure 5–13, IF0 is set during CPU cycle 15. This transition
is detected on a clock-cycle by clock-cycle basis and is not affected by memory
stalls that might extend a CPU cycle.

Figure 5–13. Interrupt Detection and Processing: Pipeline Operation–RESET
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† IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.
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5.4.5 Actions Taken During Interrupt Processing – RESET

A low signal on the RESET pin is the only requirement to process a reset. Once
RESET makes a high-to-low transition, the pipeline is flushed and CPU regis-
ters are returned to their reset values. GIE, NMIE, and the ISTB in the ISTP
are cleared. For the CPU state after RESET, see section 5.3.3.1. Four clock
cycles after the subsequent low-to-high transition, the IF0 bit is set in the IFR.

During CPU cycles 15–21 of Figure 5–12, the following reset processing ac-
tions occur:

� Processing of subsequent nonreset interrupts is disabled because GIE
and NMIE are cleared.

� A branch to the address held in ISTP (the pointer to the ISFP for INT0) is
forced into the E1 phase of the pipeline during cycle 16.

� During cycle 16, IACK is asserted and the proper INUMx signals are as-
serted to indicate RESET is being processed.

� IF0 is cleared during cycle 17.

Note:

Code which starts running after reset must explicitly enable GIE, NMIE and
IER to allow interrupts to be processed.
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5.5 Performance Considerations

The interaction of the ’C62xx CPU and sources of interrupts present perfor-
mance issues for you to consider when you are developing your code.

5.5.1 General Performance

� Overhead . Overhead for all CPU interrupts is 7 cycles. You can see this
in Figure 5–12, where no new instructions are entering the E1 pipeline
phase during CPU cycles 6 through 12 (cycles 15–21 for RESET in
Figure 5–13).

� Latency . Interrupt latency is 11 cycles (21 cycles for RESET). In
Figure 5–12, although the interrupt is active in cycle 2, execution of inter-
rupt service code does not begin until cycle 13.

� Frequency . The logic clears the nonreset interrupt (IFm) on cycle 8, with
any incoming interrupt having highest priority. Thus, an interrupt can be
recognized every second cycle. Also, because a low-to-high transition is
necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for inter-
rupt service and whether you reenable interrupts during processing,
thereby allowing nested interrupts. Effectively only two occurrences of a
specific interrupt can be recognized in two cycles.

5.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC
through E5 phases of the pipeline, no conflicts between code parallelism and
interrupts exist. There are three operations or conditions that can affect, or are
affected by, interrupts:

� Branches. Interrupts are delayed if any execute packets n through n + 4
in Figure 5–12 contain a branch or are in the delay slots of a branch.

� Memory stalls. Memory stalls delay interrupt processing, because they
inherently extend CPU cycles.

� Multicycle NOPs.  Multicycle NOPs (including IDLE) operate like other
instructions when interrupted, except when an interrupt causes annul-
ment of any but the first cycle of a multicycle NOP. In that case, the address
of the next execute packet in the pipeline is saved in the NRP or the IRP.
This prevents returning to an IDLE instruction or a multicycle NOP that
was interrupted.
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5.6 Programming Considerations

The interaction of the ’C62xx CPU and sources of interrupts present program-
ming issues for you to consider when you are developing your code.

5.6.1 Single Assignment Programming

Example 5–10 shows code without single assignment and Example 5–11
shows code using the single assignment programming method.

To avoid unpredictable operation, you must employ the single assignment
method to code that can be interrupted. When an interrupt occurs, all instruc-
tions entering E1 prior to the beginning of interrupt processing are allowed to
complete execution (through E5). All other instructions are annulled and re-
fetched upon return from interrupt. The instructions encountered after the re-
turn from the interrupt do not experience any delay slots from the instructions
prior to processing the interrupt. Thus, instructions with delay slots prior to the
interrupt can appear, to the instructions after the interrupt, to have fewer delay
slots than they actually have.

For example, suppose that register A1 contained zero and register A0 pointed
to a memory location containing a value of ten before reaching the code in
Example 5–10. The ADD instruction, which is in a delay slot of the LDW, sums
A2 with the value in A1 (zero) and the result in A3 is just a copy of A2. If an
interrupt occurred between the LDW and ADD, the LDW would complete the
update of A1 (ten), the interrupt would be processed, and the ADD would sum
A1 (ten) with A2 and place the result in A3 (equal to A2 + ten). Obviously, this
situation produces incorrect results.

In Example 5–11, the single assignment method is used. The register A1 is as-
signed only to the ADD input and not to the result of the LDW. Regardless of
the value of A6 with or without an interrupt, A1 does not change before it is
summed with A2. Result A3 is equal to A2.

Example 5–10. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1

Example 5–11. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6
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5.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are dis-
abled. However, when the interrupt service routine is for one of the maskable
interrupts (INT4–INT15), an NMI can interrupt processing of the maskable in-
terrupt. In other words, an NMI can interrupt a maskable interrupt, but neither
an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be
interrupted by another (particularly higher priority) interrupt. Even though the
processor by default does not allow interrupt service routines to be interrupted
unless the source is an NMI, it is possible to nest interrupts under software con-
trol. The process requires you to save the original IRP (or NRP) and IER to
memory or registers (either registers not used or saved if used by subsequent
interrupts), and if you desire, to set up a new set of interrupt enables once the
ISR is entered, and save the CSR. Then you could set the GIE bit, which would
reenable interrupts inside the interrupt service routine.

5.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to
the value held in the ISTP as shown below in Example 5–12.

The code sequence begins by copying the address of the highest priority inter-
rupt from the ISTP to the register B2. The next instruction extracts the number
of the interrupt, which is used later to clear the interrupt. The branch to the in-
terrupt service routine comes next with a parallel instruction to set up the ICR
word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return
address is stored in the B2 register and then copied to the interrupt return
pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1,
is used to shift the ICR word in B1 to clear the interrupt.

Example 5–12. Manual Interrupt Processing

MVC .S2 ISTP,B2 ; get related ISFP address
EXTU .S2 B2,23,27,B1 ; extract HPEINT

[B1] B .S2 B2 ; branch to interrupt
|| [B1] MVK .S1 1,A0 ; setup ICR word

[B1] MVK .S2 RET_ADR,B2 ; create return address
[B1] MVKH .S2 RET_ADR,B2 ;
[B1] MVC .S2 B2,IRP ; save return address
[B1] SHL .S2 A0,B1,B1 ; create ICR word
[B1] MVC .S2 B1,ICR ; clear interrupt flag
RET_ADR: (Post interrupt service routine Code)
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5.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software.
The trap condition can be stored in any one of the conditional registers: A1,
A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler rou-
tine processes the trap and the return.

Example 5–13 and Example 5–14 show a trap call and the return code
sequence, respectively. In the first code sequence, the address of the trap han-
dler code is loaded into register B0 and the branch is called. In the delay slots
of the branch, the context is saved in the B0 register, the GIE bit is cleared to
disable maskable interrupts, and the return pointer is stored in the B1 register.
If the trap handler were within the 21-bit offset for a branch using a displace-
ment, the MVKH instructions could be eliminated, thus shortening the code
sequence.

The trap is processed with the code located at the address pointed to by the
label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap han-
dler, their contents must be stored to memory and restored before returning.
The code shown in Example 5–14 should be included at the end of the trap
handler code to restore the context prior to the trap and return to the
TRAP_RETURN address.

Example 5–13. Code Sequence to Invoke a Trap

[A1] MVK .S2 TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH .S2 TRAP_HANDLER,B0
[A1] B .S2 B0 ; branch to trap handler
[A1] MVC .S2 CSR,B0 ; read CSR
[A1] AND .S2 -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC .S2 B1,CSR ; write to CSR
[A1] MVK .S2 TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH .S2 TRAP_RETURN,B1
TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 5–14. Code Sequence for Trap Return

B .S2 B1 ; return
MVC .S2 B0,CSR ; restore CSR
NOP 4 ; delay slots
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Appendix A

Glossary

A
address:  The location of a word in memory.

addressing mode: The method by which an instruction calculates the location
of an object in memory.

ALU: arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

annul: Any instruction that is annulled does not complete its pipeline stages.

B
bootloader: A built-in segment of code that transfers code from an external

source to program memory at power-up.

C
clock cycles: Cycles based on the input from the external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

CPU cycle: The period during which a particular execute packet is in a par-
ticular pipeline stage. CPU cycle boundaries always occur on clock cycle
boundaries; however, memory stalls can cause CPU cycles to extend
over multiple clock cycles.

D
data memory: A memory region used for storing and manipulating data.

delay slot: A CPU cycle that occurs after the first execution phase (E1) of
an instruction in which results from the instruction are not available.

Appendix A
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E

execute packet: A block of instructions that execute in parallel.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

F

fetch packet: A block of program data containing up to eight instructions.

G

global interrupt enable (GIE): A bit in the control status register (CSR)
used to enable or disable maskable interrupts.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

I

interrupt: A condition causing program flow to be redirected to a location in
the interrupt service table (IST).

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

interrupt service table (IST): 16 contiguous ISFPs, each corresponding to
a condition in the interrupt flag register (IFR). The IST resides in memory
accessible by the program memory system. The IST must be aligned on
a 256-word boundary (32 fetch packets x 8 words/fetch packet). Al-
though only 16 interrupts are defined, space in the IST is reserved for 32
for future expansion. The IST’s location is determined by the interrupt
service table pointer (ISTP) register.
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L
latency: The delay between when a condition occurs and when the device

reacts to the condition. Also, in a pipeline, the necessary delay between
the execution of two instructions to ensure that the values used by the
second instruction are correct.

LSB: least significant bit. The lowest-order bit in a word.

M
maskable interrupt : A hardware interrupt that can be enabled or disabled

through software.

memory stall: When the CPU is stalled waiting on a memory load or store.

MSB: most significant bit. The highest-order bit in a word.

N
nested interrupt: A higher-priority interrupt that must be serviced before

completion of the current interrupt service routine.

nonmaskable interrupt: An interrupt that can be neither masked nor dis-
abled.

O
overflow: A condition in which the result of an arithmetic operation exceeds

the capacity of the register used to hold that result.

P
pipeline: A method of executing instructions in an assembly-line fashion.

program memory: A memory region used for storing and executing programs.

R
register: A group of bits used for holding data or for controlling or specifying

the status of a device.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

Glossary
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S

shifter: A hardware unit that shifts bits in a word to the left or to the right.

sign extension: An operation that fills the high order bits of a number with
the sign bit.

W

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle for every wait state.

Z

zero fill: A method of filling the low- or high-order bits with zeros when load-
ing a 16-bit number into a 32-bit field.

Glossary
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Index

.D functional units 2-3 to 2-6

.L functional units 2-3 to 2-6

.M functional units 2-3 to 2-6

.S functional units 2-3 to 2-6

1X and 2X paths, conflicts 2-5, 3-14

40-bit data 2-2 to 2-4
conflicts 3-15

A
ABS instruction 3-25

ADD(U) instruction 3-26 to 3-29

ADD2 instruction 3-32

ADDA using circular addressing 3-19

ADDA(B)(H)(W) instruction 3-29 to 3-31

ADDK instruction 3-31

address paths 2-5

addressing mode register
field encoding 2-7
figure 2-7

addressing modes
circular mode 3-18
linear mode 3-18

AMR
field encoding 2-7
figure 2-7

AND instruction 3-33

annulled execute packet 5-20

applications
TMS320 1-3
TMS320 family 1-2

architecture 1-6

assembler conflict detectability for writes 3-17

B
B instruction

using a displacement 3-34 to 3-36
using a register 3-36 to 3-38

B IRP instruction 3-38, 5-6, 5-11, 5-17
B NRP instruction 3-40, 5-13, 5-16
block size calculations 2-8
branch execution, block diagram 4-16
branch instruction

using a displacement 3-34 to 3-36
using a register 3-36 to 3-38

branch instruction phases, figure 4-15
branch instruction types 4-15
branching

and multicycle NOPs 4-20
to additional interrupt service routine 5-7
to the middle of an execute packet 3-12

C
circular addressing 2-7

block size calculations 2-8
circular addressing mode 3-18
clearing an individual interrupt 5-15
clearing interrupts 5-14
clock cycle 4-9
CLR instruction 3-42 to 3-44
CMPEQ instruction 3-44 to 3-46
CMPGT(U) instruction 3-46 to 3-49
CMPLT(U) instruction 3-49 to 3-52
code, definition A-1
conditional operations 3-13
conditional registers 3-13
conflict detectability in write operations 3-17
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control
individual interrupts 5-13
of interrupts 5-11

control register, register addresses for acces-
sing 3-75

control register file 2-6
control registers

interrupt 5-10
table 2-6

control status register (CSR) 2-9
fields, table 2-9
figure 2-9, 5-11

CPU 1-7 to 1-9
control register file 2-6
data paths 2-1 to 2-10
functional units 2-3
general-purpose register files 2-2
load and store paths 2-5

CPU cycle 4-9, 4-10
CPU data paths, figure 2-4
CPU execution, block diagram 4-5
cross path conflicts 3-14
cross paths 2-5
CSR 2-6, 2-9, 5-10, 5-11

fields, table 2-9
figure 2-9

D
.D functional units 2-3 to 2-6
data address paths 2-5
data address pointer 4-14
data and program memory stalls 4-22
data load accesses, versus program memory ac-

cesses 4-21
data paths 2-1, 2-2

block diagram 2-4
DC pipeline phase 4-4
decoding instructions 4-4
delay slot summary, table 3-9
delay slots 3-9, 4-10

stores 4-15
detection of interrupts 5-18
disabling an individual interrupt, example 5-14

disabling maskable interrupts globally, exam-
ple 5-12

DP pipeline phase 4-4, 4-18

E
E1–E5 pipeline phases 4-5
enabling an individual interrupt, example 5-14
enabling maskable interrupts globally, exam-

ple 5-12
execute packets 3-10, 4-17

multicycle NOPs in 4-19
execute phases of the pipeline 4-21

figure 4-5
execution notations 3-2 to 3-4
EXT instruction 3-52 to 3-55
EXTU instruction 3-55 to 3-58

F
fetch packet (FP) 3-10, 4-17, 5-6
fetch phases of the pipeline 4-21

figure 4-3
fetching instructions 4-3
flag, interrupt 5-18, 5-21
functional unit to instruction mapping 3-5 to 3-7
functional units 2-3

G
general-purpose register files

cross paths 2-5
data address paths 2-5
memory, load, and store paths 2-5

general-purpose registers, constraints
on 3-16 to 3-18

GIE bit 5-4, 5-11, 5-18, 5-20
globally controlling interrupts, enabling and disab-

ling 5-11

H
HPEINT 5-8
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I
IACK signal 5-4, 5-20, 5-22

ICR. See interrupt clear register

IDLE instruction 3-58

IER. See interrupt enable register

IFm bits 5-20, 5-22

IFR. See interrupt flag register

instruction descriptions 3-21

individual interrupt control 5-13

instruction operation, notations for 3-2

instruction types
branch instructions 4-15
execution phases 4-10
load instructions 4-14
multiply instructions 4-11 to 4-13
pipeline execution 4-10
single-cycle 4-11
store instructions 4-12 to 4-14

instruction to functional unit mapping 3-4

instructions, descriptions, example 3-22 to 3-25

INT4–INT15 interrupt signals 5-4

interleaved memory bank scheme 4-23
four-bank memory 4-23
with two memory spaces 4-24

interrupt clear register (ICR) 5-13 to 5-15
writing to 5-14

interrupt control 5-11
individual 5-13

interrupt control registers 5-10
table 5-10

interrupt detection and processing 5-18 to 5-21
figure 5-19, 5-21

interrupt enable register (IER) 5-4, 5-10, 5-13, 5-18

interrupt flag, setting 5-18, 5-21

interrupt flag register (IFR) 5-2, 5-4, 5-10, 5-13, 5-14
writing to 5-14
figure 5-14

interrupt performance 5-23
frequency 5-23
latency 5-23
overhead 5-23

interrupt pipeline interaction
branching 5-23
code parallelism 5-23
memory stalls 5-23
multicycle NOPs 5-23

interrupt priorities 5-3
interrupt processing, actions taken during 5-20,

5-22
interrupt processing, manual 5-25
interrupt return pointer (IRP), 5-10, 5-17

figure 5-17
interrupt service fetch packet 5-6
interrupt service table

relocation of 5-9
table 5-5

interrupt service table pointer
(ISTP) 5-8, 5-10, 5-20, 5-22, 5-25

interrupt set register (ISR) 5-10, 5-15
interrupts

branching 5-20, 5-22
clearing 5-14
manual processing 5-25
nesting 5-25
overview 5-2
programming considerations 5-24
setting 5-14
signals used 5-2
traps 5-26
types of 5-2

introduction 1-1 to 1-8
INUM3–INUM0 signals 5-4, 5-20, 5-22
invoking a trap 5-26
IRP register 5-10, 5-17
ISFP. See interrupt service fetch packet
ISR. See interrupt set register
IST. See interrupt service table 5-5
ISTB 5-8, 5-9
ISTP. See interrupt service table pointer

L
.L functional units 2-3 to 2-6
latency 3-9
LD(B/BU)(H/HU)(W) instruction

15-bit constant offset 3-63 to 3-65
5-bit unsigned constant offset or register off-

set 3-59 to 3-63
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linear addressing mode 3-18

LMBD instruction 3-65 to 3-67

load address generation, syntax 3-20

load and store paths 2-5

load conflicts 3-15

load execution, block diagram 4-14

load from memory banks, example 4-23

load instruction phases, figure 4-14

load instruction types 4-14

load or store to the same memory location,
rules 4-13

load paths 2-5

loads, and memory banks 4-23

loads with circular addressing 3-18

long (40-bit) data
conflicts 3-15
register pairs 2-2 to 2-4

M
.M functional units 2-3 to 2-6

mapping
functional unit to instruction 3-5 to 3-7
instruction to functional unit 3-4

maskable interrupt
description 5-4
return from 5-17

maskable interrupts 5-4

memory
considerations 4-21
internal 1-8

memory accesses, pipeline phases used dur-
ing 4-21

memory bank hits 4-23

memory paths 2-5

memory stalls 4-22

MPY(U/US/SU) instruction 3-67

MPYH instruction 3-69

MPYHL instruction 3-71

MPYLH instruction 3-72

multicycle NOPs 4-18

multicycle NOPs, in execute packets, figure 4-19

multiply execution diagram 4-12

multiply instruction phases, figure 4-11

multiply instruction types 4-11 to 4-13
MV instruction 3-73
MVC instruction 3-74 to 3-77, 5-18, 5-21

writing to IFR or ICR 5-14
MVK instruction 3-77 to 3-79
MVK(H)(LH) instruction 3-79 to 3-81

N
NEG instruction 3-81
nesting interrupts 5-25
NMI. See nonmaskable interrupt
NMI return pointer (NRP), figure 5-16
NMIE bit 5-4, 5-13, 5-18
nonmaskable interrupt (NMI) 5-3, 5-20, 5-25

return from, example 5-16
nonmaskable interrupt return pointer

(NRP) 5-10, 5-16
NOP instruction 3-82 to 3-84, 4-4, 5-6
NORM instruction 3-84 to 3-86
NOT instruction 3-86
notations for instructions 3-2 to 3-4
NRP 5-10
NRP register 5-16

O
opcode map 3-7
operands, examples 3-22 to 3-24
OR instruction 3-87
overview, TMS320 family 1-2

P
parallel code, example 3-12
parallel fetch packets 3-11
parallel operations 3-10
partially serial fetch packets 3-12
p-bit 3-10
PCE1 3-34
performance considerations, pipeline 4-17
peripherals 1-8
PFC. See program fetch counter
PG pipeline phase 4-3
PGIE bit 5-11, 5-20
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pipeline
decode stage 4-4
execute stage 4-5
factors that provide flexibility 4-1
fetch stage 4-3
operation overview 4-2
performance considerations 4-17
phases 4-6
stages 4-2

pipeline execution 4-10

pipeline operation
fetch packets with different numbers of execute

packets, figure 4-18
multiple execute packets in a fetch packet 4-17
one execute packet per fetch packet 4-6
summary 4-6 to 4-10

pipeline phases
functional block diagram 4-8
operations occurring during, table 4-7
used during memory accesses 4-21

polling the IFR and IER 5-25

PR pipeline phase 4-3

program and data memory stalls 4-22

program counter 3-34

program fetch counter 3-34

program memory accesses, versus data load ac-
cesses 4-21

PS pipeline phase 4-3

push, definition A-3

PW pipeline phase 4-3

R
reading the IFR 5-15

register files
cross paths 2-5
data address paths 2-5
general-purpose 2-2
memory, load, and store paths 2-5

register read constraints 3-16

register storage scheme, 40-bit data, figure 2-3

register write conflicts 3-16 to 3-18

relocation of the interrupt service table (IST), 5-9

RESET, CPU state after 5-16

reset interrupt 5-3

RESET signal 5-3

resource constraints 3-14
returning from a trap 5-26
returning from interrupt servicing 5-16
returning from maskable interrupts 5-17
returning from NMI 5-16

S
.S functional units 2-3 to 2-6
SADD instruction 3-88 to 3-90
SAT instruction 3-90 to 3-92
serial fetch packets 3-11
SET instruction 3-92 to 3-94
setting an individual interrupt, example 5-15
setting interrupts 5-14
setting the interrupt flag 5-18, 5-21
SHL instruction 3-94 to 3-96
SHR instruction 3-96 to 3-98
SHRU instruction 3-98
single assignment 5-24
single-cycle instruction execution, block dia-

gram 4-11
single-cycle instructions 4-11
SMPY(L)(H) instruction 3-99 to 3-101
SSHL instruction 3-101 to 3-103
SSUB instruction 3-103 to 3-105
ST(B)(H)(W) instruction 15-bit off-

set 3-108 to 3-110
ST(B/BU)(H/HU)(W), register offset or 5-bit un-

signed constant offset 3-105 to 3-108
store address generation, syntax 3-20
store conflicts 3-15
store execution diagram 4-13
store instruction phases, figure 4-12
store instruction types 4-12 to 4-14
store or load to the same memory location,

rules 4-13
store paths 2-5
stores 3-106
stores with circular addressing 3-18
SUB(U) instruction 3-110 to 3-113
SUB2 instruction 3-116
SUBA using circular addressing 3-19
SUBA(B)(H)(W) instruction 3-113 to 3-115
SUBC instruction 3-115
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T
TMS320 family 1-2 to 1-6

advantages 1-2
applications 1-2 to 1-3
history 1-2
overview 1-2

TMS320C62xx devices
features 1-4
options 1-4 to 1-6
block diagram 1-6
performance 1-4

traps 5-26

X
XOR instruction 3-117

Z
ZERO instruction 3-118
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