
lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 1

15-745
Introduction

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based in part on slides by
Todd Mowry and Michael Voss

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 2

Introduction
• Why study compilers?

• Administriva
• Structure of a Compiler
• Optimization Example

Reference: Muchnick 1.3-1.5

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 3

Moore’s Law

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 4

Happy
B’day
Happy
B ‘ Day

Happy
B’Day

Moore’s Law

Imagine: Computers that
• Small enough to fit inside cells
• Cheap enough to be disposable
• Dense enough to embed a supercomputer
• Smart enough to assemble themselves

Computers from atomic scale components

Imagining it is hard enough,
achieving it requires a rethink of

the entire tool chain.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 5

What is Behind Moore’s Law?
• A lot of hard work!
• Two most important tools:

– Parallelism
• Bit-level
• Pipeline
• Function unit
• Multi-core

– Locality

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 6

Performance: Ops/Clk * Clks/Sec
1000.00

Horowitz

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 7

SpecInt/Mhz

Horowitz

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 8

Another View of Moore’s Law

1.E+00

1.E+01

1.E+02

1.E+03

1980 1985 1990 1995 2000

SRAM

DRAM

CPU cycle

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 9

The Computer System

DiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller
I/O

controller
I/O

controller
I/O

controller
I/O

controller

DisplayDisplay NetworkNetwork

Reg

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 10

The Memory Hierarchy

CPUCPU
regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
block size:

200 B
3 ns

8 B

Register Cache Memory Disk Memory
32 KB/4MB
6 ns
$100/MB
32 B

128 MB
60 ns
$.30/MB
8 KB

20 GB
8 ms
$0.005/MB

larger, slower, cheaper

8 B 32 B 8 KB

cache virtual memory

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 11

Compiler Writer’s Job

• Improve locality
• Increase

parallelism
• Tolerate latency
• Reduce power

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 12

Why study compilers
• They are really amazing
• Combines theory & practice

– CS is about abstraction
• Primary abstraction: programming language
• Compiler lowers PL to ISA (or further!)

– Compiler is a big system
• Crucial for performance

– especially for modern processors
– practically part of the architecture

• I bet: Everyone will write a compiler

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 13

Why study compilers
• They are really amazing
• Combines theory & practice

– CS is about abstraction
• Primary abstraction: programming language
• Compiler lowers PL to ISA (or further!)

– Compiler is a big system
• Crucial for performance

– especially for modern processors
– practically part of the architecture

• I bet: Everyone will write a compiler

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 14

What this course is about

Front End Optimizer

High-level
language

(E.g., C)

Low-level
language

(E.g., C6x)

Source code IR
(E.g., Pegasus)

IR

Code
Generator

ASM

• Theory and practice of modern optimizing compilers

• No lexing or parsing

• Focus on IR, back-end, optimizations

• Internals of today’s (and tomorrow’s) compilers

• Building a real compiler for embedded processor

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 15

Prerequisites
• 211 & 213 or the equivalent
• Parts of 411 or the equivalent

– Basic compiler data structures
– Frames, calling conventions, def-use

chains, etc.
– Don’t really care about front-end

• Proficient in C/C++ programming
• Basic understanding of architecture

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 16

My Expectations
• You have the prerequisites

– If not come see tim or me asap
• 4 assignments + a project
• Class participation

– THIS IS A MUST!
– Read text/papers before class
– Attendance is essentially mandatory

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 17

Grading
• Class participation ~20%

– Throughout the semester
– During paper presentations
– Project presentations

• Labs ~20%
• Project ~30%
• Midterm ~15%
• Final ~15%

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 18

Grading
• Class participation ~20%

– Throughout the semester
– During paper presentations
– Project presentations

• Labs ~25%
• Project ~35%
• Midterm ~20%

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 19

Labs
• ADCE & CCP in Pegasus
• Global register allocation
• Global Code Scheduling
• Profile-based optimization

• All labs and the final project will be
done in a state-of-the-art research
compiler.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 20

The Text
• Steven S. Muchnick, Advanced

Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997

• Papers will be assigned

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 21

Before we get too bored
• More admin at the end, but first …

• What exactly is an optimizing compiler?
– An optimizing compiler transforms a program

into an equivalent, but “better” form.
– What is equivalent?
– What is better?

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 22

Full Employment Theorem

• No such thing as “The optimizing compiler”
– Why not?

• There is always a better optimizing
compiler, but …
– Compiler must preserve correctness
– On average improve X, where X is:

• Performance
• Power
• …

– Finish in your lifetime

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 23

How might performance be improved?

execution time = cycles per instructionΣ
instructions

• Reduce the number of instructions
• Replace “expensive” instructs with “cheap” ones
• Reduce memory cost

– Improve locality
– Reduce # of memory operations

• Increase parallelism

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 24

Ingredients to a compiler opt
• Identify opportunity

– Avail in many programs
– Occurs in key areas (what are these?)
– Amenable to “efficient” algorithm

• Formulate Problem
• Pick a Representation
• Develop an Analysis

– Detect when legal
– And desirable

• Implement Code Transformation
• Evaluate (and repeat!)

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 25

Examples of Optimizations
• Machine Independent

– Algebraic simplification
– Constant propagation
– Constant folding
– Common Sub-expression elimination
– Dead Code elimination
– Loop Invariant code motion
– Induction variable elimination

• Machine Dependent
– Jump optimization
– Reg allocation
– Scheduling
– Strength reduction
– Loop permutations

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 26

Really Powerful Opts we won’t do
• How to optimize:

Sumfrom1toN(int max) {

sum = 0;

for (i=1; i<=max; i++) sum+=i;

return sum;

}

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 27

Really Powerful Opts we won’t do
• How to optimize:

Sumfrom1toN(int max) {

sum = 0;

for (i=1; i<=max; i++) sum+=i;

return sum;

}

• What we should, but won’t do:
inline sumfrom1toN(int max) {

return max > 0 ?
((max+max*max)>>1) : 0;

}

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 28

Algebraic Simplifications
a*1; ⇒ a

a/1; ⇒ a

a*0; ⇒ 0

a+0; ⇒ a

a-0; ⇒ a

⇒ c = ba = b + 1
c = a - 1

Use algebraic identities to simplify computations

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 29

Jump Optimizations

cmp d0,d1
beq L1
bra L2

L1: :
:

L2: :
:

cmp d0,d1

bne L2
L1: :

:
L2: :

:

⇒

Simplify jump and branch instructions.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 30

Constant Propagation

a = 5;
b = 3;

:
:

n = a + b;
for (i = 0; i<n; ++i)
{

:
}

If the compiler can determine that the values
of a and b are constants, then it can replace
the variable uses with constant values.

a = 5;
b = 3;

:
:

n = 5 + 3;
for (i = 0; i<n; ++i)
{

:
}

⇒

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 31

Constant Folding

• The compiler evaluates an expression (at
compile time) and inserts the result in the code.

• Can lead to further optimization opportunities;
esp. constant propagation.

:
:
:
:

n = 5 + 3;
for (i = 0 ; i < n ; ++i) {

:
}

8
8

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 32

Common Subexpression Elimination
(CSE)

a = c*d;
:
:

d = (c*d + t) * u

a = c*d;
:
:

d = (a + t) * u

⇒

If the compiler can determine that:
• an expression was previously computed
• and that the values of its variables have not

changed since the previous computation,
Then, the compiler can use the previously

computed value.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 33

Strength Reduction
• On some processors, the cost of an addition is less

than the cost of multiplication.
• The compiler can replace expensive multiplication

instructions by less expensive ones.
c = b * 2;

move $2000, d0
muls #2, d0
move d0, $3000

c = b + b;

move $2000, d0
add d0, d0
move d0, $3000

c = lsh(b);

move $2000, d0
lsl #1, d0
move d0, $3000

c = -1*b;

move $2000, d0
muls #-1,d0
move d0, $3000

c = negative(b);

move $2000, d0
neg d0
move d0, $3000

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 34

Dead Code Elimination

debug = False;
:
:

if (debug) {
:
:

}
a = f(b);

If the compiler can determine that code will
never be executed or that the result of a
computation will never be used, then it can
eliminate the code or the computation.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 35

Loop Invariant Code Motion
for (i=0; i<100 ; ++i) {

for (j=0; j<100 ; ++j) {
for (k=0 ; k<100 ; ++k)
{

a[i][j][k] = i*j*k;
}

}
}

for (i=0; i<100 ; ++i) {
for (j=0; j<100 ; ++j) {

t1 = a[i][j];
t2 = i*j;
for (k=0 ; k<100 ; ++k)
{

t1[k] = t2*k;
}

}
}

• Loop invariant: expression evaluates to the same
value each iteration of the loop.

• Code motion: move loop invariant outside loop.
• Very important because inner-most loop executes

most frequently.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 36

int *a;
int n;

:
:

scanf(“%d”, &n);
for (i=0; i<n ; ++i) {
for (j=0; j<n ; ++j) {
for (k=0 ; k<n ; ++k)
{

f = q/p;
a[i][j][k] = f*i*j*k;

}
}

}

int *a;
int n;

:
:

scanf(“%d”, &n);
f = q/p;
for (i=0; i<n ; ++i) {
for (j=0; j<n ; ++j) {
t1 = a[i][j];
t2 = i*j;
for (k=0 ; k<n ; ++k)
{

t1[k] = f*t2*k;
}

}
}

Loop Invariant Code Motion

Oooops!!!!!

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 37

Cache Optimizations

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

for (j=0; j<n ; ++j) {
for (i=0; i<n ; ++i) {

x += a[i][j];
}

}

M

C

P

j

i

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 38

Cache Optimizations

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

for (j=0; j<n ; ++j) {
for (i=0; i<n ; ++i) {

x += a[i][j];
}

}

M

C

P

for (i=0; i<n ; ++i) {
for (j=0; j<n ; ++j) {

x += a[i][j];
}

}

j

i

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 39

Example

for (i=n-1; i >= 1 ; --i) {
for (j = 1; j <= i ; ++j) {

if (A[j] > A[j+1]) {
temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

}
}

}
// i and j are not used later

A

n-1

1
2
3

n

:

:

0
4
8

addr(A) + (j-1)*4j

A program that sorts 4-byte elements in an n-
element array of integers A[1..n] using
bubblesort.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 40

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t4 = j+1
t5 = t4-1
t6 = 4*t5
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = j-1
t9 = 4*t8
temp = [A+t9]

t10 = j+1
t11 = t10-1
t12 = 4*t11
t13 = [A+t12]
t14 = j-1
t15 = 4*t14
[A+t15] = t13
t16 = j+1
t17 = t16-1
t18 = 4*t17
[A+t18] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

for i

for j

A[j]

A[j+1]

A[j]=A[j+1]

A[j+1]=temp

A[j+1]

for j

for i

A[j]

A[j+1]

temp=
A[j]

if

A[j]

A Generated IR

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 41

Another generated IR

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 42

Optimizations I - Algebraic Simplifications

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t4 = j+1
t5 = t4-1
t6 = 4*t5
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = j-1
t9 = 4*t8
temp = [A+t9]

t10 = j+1
t11 = t10-1
t12 = 4*t11
t13 = [A+t12]

t14 = j-1
t15 = 4*t14
[A+t15] = t13
t16 = j+1
t17 = t16-1
t18 = 4*t17
[A+t18] =

temp
S3: j = j+1

goto S4
S2: i = i-1

goto S5
Exit:

t6 = 4*j

t18 = 4*j

t12 = 4*j

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 43

Optimizations II - CSE

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = j-1
t9 = 4*t8
temp = [A+t9]

t12 = 4*j
t13 = [A+t12]
t14 = j-1
t15 = 4*t14
[A+t15] = t13
t18 = 4*j
[A+t18] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

t14 = t1

t8 = t1

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 44

Optimizations II - CSE

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = t1
t9 = 4*t8
temp = [A+t9]

t12 = 4*j
t13 = [A+t12]
t14 = t1
t15 = 4*t14
[A+t15] = t13
t18 = 4*j
[A+t18] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

t12 = t6

t18 = t6

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 45

Optimizations III - Copy Propagation

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
t8 = t1
t9 = 4*t8
temp = [A+t9]

t12 = t6
t13 = [A+t12]
t14 = t1
t15 = 4*t14
[A+t15] = t13
t18 = t6
[A+t18] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exitt9 = 4*t1

t13 = [A+t6]

t15 = 4*t1

[A+t6] = temp

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 46

Optimizations IV - CSE (2)
i = n-1

S5: if i < 1 goto Exit
j = 1

S4: if j > i goto S2
t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
t9 = 4*t1
temp = [A+t9]

t13 = [A+t6]
t15 = 4*t1
[A+t15] = t13
[A+t6] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

t15 = t2

t9 = t2

t13 = t7

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 47

Optimizations V - Copy Propagation (2)

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
t9 = t2
temp = [A+t9]

t13 = t7
t15 = t2
[A+t15] = t13
[A+t6] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

temp = [A+t2]

[A+t2] = t7

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 48

Optimization VI - CSE (3)

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
temp = [A+t2]

[A+t2] = t7
[A+t6] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:temp = t3

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 49

Optimization VII - Copy Propagation (3)

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
temp = [t3]

[A+t2] = t7
[A+t6] = temp

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

[A+t6] = [t3]

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 50

Optimizations VIII – IVE & Strength
Reduction

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 51

Optimizations VIII – IVE & Strength
Reduction

i = n-1
S5: if i < 1 goto Exit

j = 1
S4: if j > i goto S2

t1 = j-1
t2 = 4*t1
t3 = [A+t2]
t6 = 4*j
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: j = j+1
goto S4

S2: i = i-1
goto S5

Exit:

i = n-1
S5: if i < 1 goto Exit

t2 = 0
t6 = 4

S4: t19 = 4*i
if t6 > t19 goto S2
t3 = [A+t2]

t7 = [A+t6]
if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: t2 = t2+4
t6 = t6+4
goto S4

S2: i = i-1
goto S5

Exit:

Loop Invariant
Code Motion…

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 52

Done?

i = n-1
S5: if i < 1 goto Exit

t2 = 0
t6 = 4

S4: t19 = 4*i
if t6 > t19 goto S2
t3 = [A+t2]
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t2] = t7
[A+t6] = t3

S3: t2 = t2+4
t6 = t6+4
goto S4

S2: i = i-1
goto S5

Exit:

t19 = i*4

t19 < 4

t19 = t19-4

[A-4+t6]

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 53

Done?

i = n-1
t19 = i*4

S5: if t19 < 4 goto Exit
t6 = 4

S4: if t6 > t19 goto S2
t3 = [A+t6-4]
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t6-4] = t7
[A+t6] = t3

S3: t6 = t6+4
goto S4

S2: t19 = t19 - 4
goto S5

Exit:

Eliminate mult,
Use double load (if aligned?)

Unroll?
Eliminate jmp

…

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 54

Done For Now.

i = n-1
t19 = i<<2
if t19 < 4 goto Exit

S5: t6 = 4
if t6 > t19 goto S2

S4: t3 = [A+t6-4]
t7 = [A+t6]
if t3 <= t7 goto S3
[A+t6-4] = t7
[A+t6] = t3

S3: t6 = t6+4
if t6 <= t19 goto s4

S2: t19 = t19 - 4
if t19 >= 4 goto s5

Exit:

Inner loop: 7 instructions
4 mem ops
2 branches
1 addition

Original inner loop: 25 instructi
6 mem ops
3 branches
10 addition
6 multiplication

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 55

Course Schedule
• www.cs.cmu.edu/afs/cs/academic/class/

15745-s07h/www/

• The Web site is a vital resource

• Also, class newsgroup

• (And, of course us too)

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 56

Course Staff
• Tim Callahan www…./~tcal

• Seth Goldstein www…./~seth

• Mahim Mishra www…./~mishra

• Marilyn Walgora
mwalgora@cs.cmu.edu

