15-745
Introduction

Seth Copen Goldstein
Seth@cs.cmu.Edu

CMU

Based in part on slides by
Todd Mowry and Michael Voss

Introduction

- Why study compilers?

- Administriva

- Structure of a Compiler
* Optimization Example

Reference: Muchnick 1.3-1.5

Moore's Law

Moore's Law

Imagine: Computers that
: Imagining it is hard enough,

achieving it requires a rethink of
the entire tool chain.

What is Behind Moore's Law?

-+ A lot of hard work!

- Two most important tools:
- Parallelism
- Bit-level
- Pipeline
* Function unit
* Multi-core

- Locality

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 5

Performance: Ops/Clk * Clks/Sec

1000.00

Wi Specint2000 it

Inlel 486 r
intel pentium -
¥ inizipantium 2 [o]
& nizipantium 3

10000 L = Intalpantium 4 — ﬁk

= intel Hanium

Alpha 21064
Alpha211a4
Alpha 21264
Sparc
Suparspar:
Sparca4

.00 4 = mips

HP P&

FowerPC
AMDKS

AMDET
|

T
B5 86 B7 88 B89 90 01 02 93 94 95 06 97 98 99 00 01 02 . ..

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 6

SpecInt/Mhz

B intel 386

100 T intel486

intel pentium

X intel pentium 2
® intel pentium 3 4 XX X ¢ r
=+ intel pentiurn 4 + *+
®intel itanium *
= Alpha 21064
Alpha 21164
Alpha 21264
Sparc

010 T 1 SuperSparc

Sparct4 []

Wips

HP PA
Power PC
AMD K&
AMD K7

0.01

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 .
Horowitz

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 7

Another View of Moore's Law

1.E+03

1.E+02 A
=—=SRAM
={J~-DRAM
=/~ CPU cycle

1.E+01 A

1.E+00

1980 1985 1990 1995 2000

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 8

The Computer System

Processor

Memory-I/0 bus

I/0
controller

I/0
controller

Display I Network I

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 9

The Memory Hierarchy

cache virtual memory
c
88 |al 328 |Memory 8KB
c
e
Register Cache Memory Disk Memory
size: 200 B 32 KB/4MB 128 MB 20 GB
speed: 3ns 6 ns 60 ns 8 ms
$/Mbyte: $100/MB $.30/MB $0.005/MB
block size: 8 B 328B 8 KB

larger, slower, cheaper

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 10

eeeeee 1,15-745

Compiler Writer's Job

Improve locality

Increase
parallelism

Tolerate latency
Reduce power

© 2002-7 Seth Copen Goldstein

Why study compilers

They are really amazing
Combines theory & practice

- CS is about abstraction

* Primary abstraction: programming language
» Compiler lowers PL to ISA (or further!)

- Compiler is a big system

Crucial for performance

- especially for modern processors
- practically part of the architecture

eeeeee 1,15-745

I bet: Everyone will write a compiler

© 2002-7 Seth Copen Goldstein

Why study compilers
They are really amazing

Combines theory & practice

- CS is about abstraction
* Primary abstraction: programming language
» Compiler lowers PL to ISA (or further!)

- Compiler is a big system

Crucial for performance

- especially for modern processors

- practically part of the architecture

I bet: Everyone will write a compiler

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 13

What this course is about

Low-level
language

High-level
language

(Eg., C) (Eg., C6x)

Sourc.e code iR iR ASM
(E.g., Pegasus)

* Theory and practice of modern optimizing compilers
* No lexing or parsing
* Focus on IR, back-end, optimizations

* Internals of today's (and fomorrow's) compilers

* Building a real compiler for embedded processor

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 14

Prerequisites

- 211 & 213 or the equivalent

* Parts of 411 or the equivalent
- Basic compiler data structures

- Frames, calling conventions, def-use
chains, etc.

- Don't really care about front-end
* Proficient in C/C++ programming
» Basic understanding of architecture

My Expectations

* You have the prerequisites

- If not come see tim or me asap
* 4 assignments + a project

» Class participation

- THIS IS A MUST!

- Read text/papers before class
- Attendance is essentially mandatory

Grading

- Class participation ~20%
- Throughout the semester

- During paper presentations

- Project presentations

* Labs ~20%

* Project ~30%

- Midterm ~15%

* Final ~15%
Grading

- Class participation ~20%

- Throughout the semester
- During paper presentations
- Project presentations

* Labs ~25%
* Project ~35%
* Midterm ~20%

Labs

+ ADCE & CCP in Pegasus

* Global register allocation
* Global Code Scheduling

* Profile-based optimization

» All labs and the final project will be
done in a state-of-the-art research

compiler. N

The Text

- Steven S. Muchnick, Advanced
Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997

* Papers will be assigned

Before we get too bored
- More admin at the end, but first ...

* What exactly is an optimizing compiler?

- An optimizing compiler transforms a program
into an equivalent, but "better” form.

- What is equivalent?

- What is better?

Full Employment Theorem

* No such thing as "The optimizing compiler”
- Why not?

* There is always a better optimizing
compiler, but ...

- Compiler must preserve correctness

- On average improve X, where X is:
* Performance
* Power

- Finish in your lifetime

How might performance be improved?

execution time = > cycles per instruction
instructions

* Reduce the number of instructions
* Replace "expensive” instructs with “"cheap” ones

» Reduce memory cost
- Improve locality
- Reduce # of memory operations

* Increase parallelism

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

Ingredients to a compiler opt

Identify opportunity

- Avail in many programs

- Occurs in key areas (what are these?)
- Amenable to "efficient” algorithm

Formulate Problem
Pick a Representation

Develop an Analysis

- Detect when legal
- And desirable

Implement Code Transformation
- Evaluate (and repeat!)

ecture 1, 15-745 2002-7 Seth Copen Goldstein

Examples of Optimizations
* Machine Independent
Algebraic simplification
Constant propagation
Constant folding
Common Sub-expression elimination
Dead Code elimination
Loop Invariant code motion
Induction variable elimination

* Machine Dependent
Jump optimization
Reg allocation
Scheduling
Strength reduction

eeeeee 1137951 AAr o rnmiitatiAn a® 2002-7 seth Copen Goldstein 25

Really Powerful Opts we won't do
- How to optimize:
SumfromltoN(int max) {
sum = 0;
for (1=1; i1I<=max; 1++) sum+=i;
return sum;

}

eeeeee 1,15-745 © 2002-7 Seth Copen Goldstein 26

Really Powerful Opts we won't do

- How to optimize:
SumfromltoN(int max) {
sum = 0;
for (1=1; i1<=max; 1++) sum+=1i;
return sum;

+
* What we should, but won't do:
inline sumfromltoN(int max) {

return max > 0 ?
((max+max*max)>>1) : O;

}

eeeeee 1,15-745

© 2002-7 Seth Copen Goldstein 27

Algebraic Simplifications
a*l: =a
a/l; = a
a*0; =0

a+0; = a

Use algebraic identities to simplify computations

eeeeee 1,15-745 © 2002-7 Seth Copen Goldstein 28

Jump Optimizations

cmp dO,dl1 cmp dO,dl1

beq L1

bra L2 bne L2
L1: - = L1: -
L2: : L2:

Simplify jump and branch instructions.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

Constant Propagation

a = 5; a = 93;

b = 3; b = 3;

n :-a + b: = n = 5_+ 3;] _
for (i = 0; i<n; ++i) for (i = 0; i<n; ++i)
{

} }

If the compiler can determine that the values
of a and b are constants, then it can replace
the variable uses with constant values.

ecture 1, 15-745 © 2002-7 Seth Copen Goldstein

Constant Folding

n= 8 ;
for (1 =0 ; i1 <8 ; ++i) {

}

* The compiler evaluates an expression (at
compile time) and inserts the result in the code.

- Can lead to further optimization opportunities;
esp. constant propagation.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

ecture 1, 15-

Common Subexpression Elimination

(CSE)
a = c*d; a = c*d;
I = Z
d = (c;d +) *u d = (a-+ t) *u

If the compiler can determine that:
- an expression was previously computed

- and that the values of its variables have not
changed since the previous computation,

Then, the compiler can use the previously
_computed value.

02-7 Seth Copen Goldstein

Strength Reduction

- On some processors, the cost of an addition is less
than the cost of multiplication.

* The compiler can replace expensive multiplication
instructions by less expensive ones.

c=b=*2: c=Db + b; c = Ish(b);
move $2000, dO move $2000, do Mmove $2000, dO
muls #2, dO add do, do Isl #1, dO
move dO, $3000 move dO, $3000 Mmove dO, $3000
c = -1*Db; c = negative(b);

move $2000, dO move $2000, dO

muls #-1,dO neg do

move dO, $3000 move dO, $3000

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 33

Dead Code Elimination

debug = False;
iIT (debug) {

}
a = f(b);

If the compiler can determine that code will
never be executed or that the result of a
computation will never be used, then it can
eliminate the code or the computation.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 34

Loop Invariant Code Motion

for (i=0; 1<100 ; ++1) { for (i=0; 1<100 ; ++1) {
for (J=0; j<100 ; ++j) { for (J=0; j<100 ; ++j) {
for (k=0 ; k<100 ; ++k) tl = alillJl;
{ t2 = i*j;
a[i1[1IK] = i*j*k; for (k=0 ; k<100 ; ++k)
+ {
} ti[k] = t2*k;
+ +
+
+

* Loop invariant: expression evaluates to the same
value each iteration of the loop.

- Code motion: move loop invariant outside loop.
- Very important because inner-most loop executes
most frequently.

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

35

Loop Invariant Code Motion

int *a; int *a;
int n;

int n;

scant(“%d”, &n);

scanf(“%d”, &n);
f = a/p;

for (1=0; i1<n ; ++1) {

for (i=0; i<n ; ++i) {

for (J=0; j<n ; ++j}
for({k:O ! k<n 12k§ for (3=0; j<n ; ++j) {
[t1 = a[i][il:
f = a/p; 12 = iy
a[iI1010K] = Fri*j*k; IOF (k=0 ; k<n ; ++k)
}} ti[k] = F*t2%k;
3} }
}

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

36

Cache Optimizations

for (3=0; j<n ; ++j) {
for (1=0; i1<n ; ++i1) {
x += ali]lli]:
¥
¥

i

P

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

eeeeee 1,15-745 © 2002-7 Seth Copen Goldstein 37

Cache Optimizations

for (J=0; j<n ; ++3) {

for (i=0; i<n ; ++i) { for (1=0; i<n ; ++1) {
x += a[i]lil; for (J=0; j<n ; ++j) {
} x += alill1;
¥ ¥
}
—
M eeelesseteesseens
.
P T T T

Loop permutation changes the order of the loops
to improve the spatial locality of a program.

eeeeee 1,15-745 © 2002-7 Seth Copen Goldstein 38

Example

A program that sorts 4-byte elements in an n-
element array of integers A[1..n] using
bubblesort.

A
for (i=n-1; i >=1 ; —--i) { 1 0]
for g =1; J <=1 ; +j) { 2| |4
if (AL1]1 > AD+1D { 3 8
temp = ALl]: :
AO] = ALO+1]; 7 P _1)*
A[j"‘l] _ temp; ,/,/. .:;». addr(A) + U 1) 4
} n-1
}

}

// 1 and j are not used later

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 39

A Generated IR

, i = n-1 t10 = j+1
f”‘“{s5: if i <1 goto Exit tll = t10-1 ALj+1]
, j=1 t12 = 4*tll
for i{ s4: f j > i goto S2 t13 = [A+t12]
i tl = j-1 t14 = j-1 Faril
2 = 4*tl t15 = 4*tl4
13 = [A+t2] [A+t15] = t13 JALI=AL+1]
it t4 = j+1 t16 = j+1 _
[j+11 t5 = t4-1 t17 = t16-1 }AU*”
t6 = 4*t5 t18 = 4*tl7
if L t7 = [A+t6] [A+t18] = temp3Alj+1]=temf
Alj]
. { t8 = j-1 S3: j = j+1 }forj
temp= L t9 = 4*t8 goto S4
ALl temp = [A+t9] S2: i = i-1 Feor
goto S5

lecture 1,15-745 © 2002-7 Seth Copen cdasiéll T2 40

Another generated IR

lecture 1, 15-745

© 2002-7 Seth Copen Goldstein

41

Optimizations I - Algebraic Simplifications

S5:

S4:

lecture 1, 15-745

i = n-1 t10 = j+1
if 1 <1 goto Exi (1 = t10-1
j=1 t12 = 4%j— | [t12 = 4*tll
if J > 1 goto S2 t13 = [A+t12]
tl = j-1
t2 = 4*t1 t14 = j-1
t3 = [A+t2] tl8 = 4% t15 = 4*tl4
t4 = j+1 [A+t15] = t13
ts = t4-1 t16 = j+1
t6 = 4*t5\ . t17 = t16-1
t7 = [A+t6] 6 = 4%) t18 = 4*tl7

[A+t18] =
t8 = j-1 temp
t9 = 4*t8 S3: j = j+1
temp = [A+t9] goto S4

S2: 1 = 1-1
goto S5

© 2002-7 Seth Copen Goldstein

Exit:

42

Optimizations IT - CSE

i = n-1 t12 = 4%j
S5: i1f i < 1 goto Exit t13 = [A+tl2]
j=1 ——] tid = j-1
sa: if j > i goto s2 [H4 Tt T €5 = 4*t1|4
| t1 = j-1 [A+t15] = t13
t2 = 4*tl t18 = 4%j
t3 = [A+t2] [A+t18] = temp
t6 = 4*] S3: jJ = j+1
t7 = [A+t6] goto 5S4
S2: 1 = 1-1
|8 = j-1 —t8 = 11 goto S5
t9 = 4*t8 Exit:
temp = [A+t9]
lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 43
Optimizations IT - CSE
i = n-1 t12 = 4%
S5: if i < 1 goto Exit|tl2 = t6 ‘////ﬁ 113 = [A+th2]
j=1 tl4 = t1
S4: it j > 1 goto S2 tl5 = 4*tl4
tl = j-1 [A+t15] = t13
12 = 4*t1 t18 = 64— 118 = 4*j |
t3 = [A+t2] [A+t18] = temp
| t6 = 4%j | S3: j = j+1
t7 = [A+t6] goto S4
S2: i1 = i-1
t8 = tl goto S5
t9 = 4*t8 Exit:
temp = [A+t9]

lecture 1, 15-745

© 2002-7 Seth Copen Goldstein

44

Optimizations ITT - Copy Propagation

t13 = [A+t6]

‘\\\\t12

i =n-1 = t6
S5: if i < 1 goto Exit t13 = [A+t12]
j=1 t1i4 = t1
S4: if j > i goto S2[15 = gegr |~ [L15 = 4*tl4
tl = j-1 [Art15] = t13
t2 = 4*tl t18 = t6
t3 = [A+t2] ~—— |[A+t18] = temp
t6 = 4% [A+T6] = temp |s3: § = j+1
t7 = [A+t6] goto 5S4
S2: 1 =1-1
t8 = t1 . o goto S5
t9 = 4*t8 9 = A%l | it
temp = [A+t9]
lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 45
Optimizations IV - CSE (2)
t13 = t7 |
i = n-1 ——— 13 = [A+t6]
S5: if i < 1 goto Exit 115 = 4*tl
j=1 [A+ti5] = t13
S4: if j > i1 goto S2 - y [A+t6] = temp
t1 = j-1 tls = 27 3. j = j+1
| ©2 = 4*tl | goto S4
t3 = [A+t2] S2: i =i-1
t6 = 4*] goto S5
[t7 = [A+t6]] 9 = t2| Exit:
| 19 = 4*t1 r—————””/l
temp = [A+t9]

lecture 1, 15-745

© 2002-7 Seth Copen Goldstein

46

Optimizations V - Copy Propagation (2)

i = n-1 t13 = t7
S5: if i < 1 goto EXit tl5 = 2
j=1 [A+t2] = t7 [| [A+t15] = t13
S4: 1f j > 1 goto S2 [A+t6] = temp
tl = j-1
t2 = 4*t1 S3: jJ = j+1
t3 = [A+t2] goto S4
t6 = 4*] S2: 1 =1-1
t7 = [A+t6] goto S5
Exit:
t = t2
temp = [A+19] -~ temp = [A+t2]
lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 47
Optimization VI - CSE (3)
1 = n-1 [A+t2] = t7
S5: 1f 1 < 1 goto Exit [A+t6] = temp
i=1
S4: it j > 1 goto S2 S3: j = j+1
tl = j-1 goto S4
t2 = 4*tl S2: 1 = 1i-1
|t3 = [A+t2]| goto S5

t7 [A+t6] ——’//////
temp = [A+t2]

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein

48

Optimization VII - Copy Propagation (3)

S5:

S4:

lecture 1, 15-745

i =n-1 [A+t2] = t7
if 1 <1 goto Exit [A+t6] = temp
J=1 |

if j > 1 goto SP[A+t6] = [t3][S3: J = J+1

tl = j-1 goto S4

t2 = 4*t1 S2: 1 = i-1

t3 = [A+t2] goto S5

t6 = 4*] Exit:

t7 = [A+t6]

temp = [t3]

© 2002-7 Seth Copen Goldstein

49

Optimizations VIIT - IVE & Strength

lecture 1, 15-745

S5:

S4:

Reduction

1 = n-1

iIT 1 <1 goto Exit
J=1

if J > 1 goto S2
tl = j-1

t2 = 4*tl
= +L]

t/ =

[A+t2] = t7
[A+t6] = t3
J =3+
goto $4

1= 1i-1
goto S5

© 2002-7 Seth Copen Goldstein

50

Optimizations VIIT - IVE & Strength

Reduction
1 = n-1 i = n-1
S5: 1f i1 < 1 goto Exit S5: 1f i1 < 1 goto Exit
j=1 t2 =0
S4: if j > i goto S2 t6 = 4
tl1 = j-1 S4: 1t19 = 4*i
| t2 = 4*tl if t6 > t19 goto S2
= [A+T2] Loop Invariant t3 = [A+t2]
| t6 = 4*j Code Motion...
t7 = [A+t6] t7 = [A+t6]
[A+t2] = t7 [A+t2] = t7
[A+t6] = t3 [A+t6] = €3
S3: j = j+1 S3: |t2 = t2+4
goto 34 t6 = t6+4
S2: 1 = 1i-1 goto SZ&
goto S5 S2: 1 =1-1
Exit: goto S5
Exit:
Done?
1 = n—%_’,,ff”’__“‘-t19 = 1*4
SS:/;;:£E§E§1??TO Exit
6 = 4 t19 < 4
S4: H9—4x) —
if t6 > t19 goto S2
[A+&2]
[A-4+t6] [A+t6]
[A+%2] = t7
[A+t6] = 3
S3: 2= e2¥2
t6 = t6+4
goto S4 _
S2: i t19 = t19-4
goto S5

lecture 1, 15-745

© 2002-7 Seth Copen Goldstein

52

Done?

1 = n-1
t19 = i*4

S5: 1f t19 < 4 goto Exit
t6 = 4

S4: if t6 > t19 goto S2
t3 = [A+t6-4]
t7 = [A+t6]

[A+t6-4] = t7

[A+t6] = €3
S3: t6 = t6+4
goto S4 Lo
S2: 119 = t19 - 4 Eliminate mult,
goto S5 Use double load (if aligned?)
Exit: Unroll?
Eliminate jmp

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 53

Done For Now.

1 = n-1
t19 = i1<<2
S5: ;g 1::1?1 4 ooto Bar Inner loop: 7 instructions
if t6 > t19 goto S2 4 mem ops
S4: t3 = [A+t6-4] 2 branches
t7 = [A+t6] 1 addition

[A+t6-4] = t7 Original inner loop: 25 instructi

= 6 mem ops

A+t6] = t3
S3- E6+: 16+4 3 branches
- 10 addition

iIfT t6 <= tl19 goto s4
S2: 119 = t19 - 4
it t19 >= 4 goto s5

6 multiplication

lecture 1, 15-745 © 2002-7 Seth Copen Goldstein 54

Course Schedule

- www.cs.cmu.edu/afs/cs/academic/class/
15745-s07h/www/

- The Web site is a vital resource
- Also, class newsgroup

* (And, of course us to0)

Course Staff

» Tim Callahan www..../~tcal
- Seth Goldstein www..../~seth
* Mahim Mishra www..../~mishra

* Marilyn Walgora
mwalgora@cs.cmu.edu

