15-745 Lecture 10

15-745

Instruction Scheduling
Software Pipelining

Copyright © Seth Copen Goldstein 2000-5
® Tim Callahan 2007

(some slides borrowed from M. Voss)

15-745 © Seth Copen Goldstein 2000-5

1

Instruction-level Parallelism

* Most modern processors have the ability to

execute several adjacent instructions
simultaneously.

- Pipelined machines.

- Very-long-instruction-word machines (VLIW).
- Superscalar machines.

- Dynamic scheduling/out-of-order machines.

+ ILPis limited by several kinds of execution

constraints.

- Data dependence constraints.

- Resource constraints (“*hazards")
- Control hazards

15-745 © Seth Copen Goldstein 2000-5

+ Resource hazards:

Execution Constraints
* Data-dependence constraints:

- If instruction A computes a value that is
read by instruction B, then B cannot execute
before A is completed.

For example:

- Limited # of functior Id [%fp-28], %ol

+ If there are n functional o 5 o
multipliers), then only 7 in: add %ol, %I2, %I3

of unit can execute at once.
- Limited instruction issue.
+ If the instruction-issue unit can issue only 7 instructions at
a time, then this limits ILP.
- Limited register sef.

+ Any schedule of instructions must have a valid register
allocation.

15-745 © Seth Copen Goldstein 2000-5

Instruction Scheduling

* The purpose of instruction scheduling (IS) is to

order the instructions for maximum ILP.
- Keep all resources busy every cycle.

- If necessary, eliminate data dependences and
resource hazards to accomplish this.

* The IS problem is NP-complete (and bad in

practice).
- So heuristic methods are necessary.

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

15-745 Lecture 10

Instruction Scheduling

* There are many different techniques for IS.
- Still an open area of research.

* Most optimizing compilers perform good local
IS, and only simple global IS.

* The biggest opportunities are in scheduling the
code for loops.....

15-745 © Seth Copen Goldstein 2000-5

Should the Compiler Do IS?

* Many modern machines perform dynamic reordering of

instructions.
- Also called "out-of-order execution" (OOOE).
- Not yet clear whether this is a good idea.
- Pro:
+ OOOE can use additional registers and register renaming to

eliminate data dependences that no amount of static IS can
accomplish.

+ No need to recompile programs when hardware changes.
- Con:

+ OOOE means more complex hardware (and thus longer cycle times
and more wattage).

* And can't be optimal since IS is NP-complete.

15-745 © Seth Copen Goldstein 2000-5

What we will cover

+ Scheduling basic blocks

- List scheduling

- Long-latency operations
- Delay slots

+ Software Pipelining

+ What we need to know

- pipeline structure
- data dependencies
- register renaming
- scalar replacement

15-745 © Seth Copen Goldstein 2000-5

Defining Dependencies

* Flow Dependence WSR & Jtue
+ Anti-Dependence R 2W &
* Output Dependence W=2W & }false
+ Input Dependence R 2R ¥
s1) a=0; Not generally
$2) b=a; defined
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

15-745 Lecture 10

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e; S1.8fS2 duetoa
S18fS3 duetoa
S2 &f S4 duetob
S3 8254 duetod
S4 62 S5 duetob
S2 3° S5 duetob
S3 8 S5 duetoa

Example Dependencies

Renaming of Variables

- Sometimes constraints are not “real,” in the

sense that a simple renaming of
variables/registers can eliminate them.
- Output dependence (WW):
A and B write to the same variable.
- Anti dependence (RW):
A reads from a variable to which B writes.

+ Insuch cases, the order of A and B cannot be

changed unless variables are renamed.

- Can sometimes be done by the hardware, fo a
limited extent.

Register Renaming Example

ri «—r2+1 r7 «—r2+1 ||r7

m:b [fp+8]\<’— r7 rl

“fr1 «r3+2|rl «r3+2||[fp+8]
[fpm 1 [f;m fl o ||[fpr12] «rl

allocation
+ Constrained by available registers
+ Constrained by live on entry/exit

Seth Copen Goldstein 2000-5

* Can perform register renaming a!!er r‘egls!er'

+ Instead, do scheduling before register allocation

The Scheduler

.+ Given:

- Code to schedule
- Resources available (FU and # of Reg)
- Latencies of instructions

+ Goal:

- Correct code

- Better code [fewer cycles, less power,
fewer registers, ...]

- Do it quickly

2/15/2007

15-745 Lecture 10

More Abstractly

* Given a graph G = (V,E) where

- nodes are operations
+ Each operation has an associated delay and type

- edges between nodes represent dependencies
- The number of resources of type t, R(t)

* A schedule assigns to each node a cycle number:
-o(n)>0

- If (nm) € 6, o(m) = o(n) + delay(n)

- |{ n| o(n) = x and type(n) = t}| <= R(*)

* Goal is shortest length schedule, where length

- L(S) = max over n, o(n)+delay(n)

15-745 © Seth Copen Goldstein 2000-5 13

List Scheduling

* Keep a list of ready instructions, I.e.,

* If we are at cycle k, then all predecessors, p, in graph have
all been scheduled so that
o(p)+delay(p) < k

* Alternate?

* Pick some instruction, n, from ready queue such

that there are available resources for type(n)
* move n from “ready” to “scheduled”

+ Update lists and continue

* maybe move some from “not ready” to “ready”

15-745 © Seth Copen Goldstein 2000-5 14

Lots of Heuristics

+ forward or backward
* choose instructions on critical path

« ASAP or ALAP

+ Balanced paths
+ depth in schedule graph

15-745 © Seth Copen Goldstein 2000-5 15

Slack

15-745 © Seth Copen Goldstein 2000-5 16

2/15/2007

15-745 Lecture 10

Software Pipelining

+ Software pipelining is an IS technique that reorders
the instructions in a loop.

- Possibly moving instructions from one iteration to
the previous or the next iteration.

- Very large improvements in running time are possible.
+ The first serious approach to software pipelining was
presented by Aiken & Nicolau.

- Aiken's 1988 Ph.D. thesis.

- Impractical as it ignores resource hazards (focusing

only on data-dependence constraints).
* But sparked a large amount of follow-on research.

15-745 © Seth Copen Goldstein 2000-5

Software Pipelining

15-745 © Seth Copen Goldstein 2000-5

Software Pipelining

1
’

v
15-745 © Seth Copen Goldstein 2000-5

Software Pipelining

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

15-745 Lecture 10 2/15/2007

Goal of SP Can we decrease the latency?
* Increase distance between dependent * Lets unroll
operations by moving destination operation to a
later iteration A a < [d[d]
B: b«a*a
C: st [d], b
Aac Id[d] Assume all have latency of 2 D: de d+4
B:b« a*a Al:a < Id [d]
C st [d], b Bl: b a*a
D:id« d+4 ct: st [d], b
Dl:d« d+4
Al [B] fe| [o] | lal [B] [c] o [at] [B1] et | [p1] |
Rename variables Schedule
@ ©
A: a« Id[d] A a« Id[d] e
B: b« a*a B: b« a*a @
C: st [d], b C: st [d], b G
D: dl« d+4 D: dl« d+4 @
Al: al « Id [d1] Al: al « Id [d1] D)
BL: bl al*al BL: bl al*al @
clL: st [d1], bl cl: st [d1], bl
Dl:d« di1+4 Dl:d« di1+4
la|l [B] [c] [p] [at] [B1] [et]| [p1] | A B c D1
D Al B1 cl

15-745 Lecture 10

goaw>

Cl:

Al:
bl al*al

D1:
A2:
B2:
c2:
D2:

Unroll Some More
a« Id[d]
b« a*a

st [d], b
dl« d+4
al « Id [d1]

st [d1], bl
d2 « dl1+4
a2 « Id [d2]
b2 « a2 * a2

st [d2], b2
de d2+4

A B c D2

D Al B1 C1

D1 A2 B2 c2

gow>

a«
b«

dl «

©oal «
¢ bl«

T d2 «

Pa2 «

T b2 «

Code

Unroll Some More
Id [d]
a*a
st [d], b
d+4
Id [d1]
al *al
st [d1], bl
di+4
Id [d2]
a2 * a2
st [d2], b2
d2 + 4

>

B

Al

D1

A2

D2

One More Time

>

Can Rearrange

2/15/2007

15-745 Lecture 10

gow>

a«
b«

dl «

Rearrange
Id [d]
g‘r [3], b
d+4

Al: al «
Bl: bl «

D1l: d2 «
A2: a2 «
B2: b2«

D2: d«

Id [d1]

al * al

cl: st [d1], bl
dl+ 4

Id [d2]

a2 * a2
c2: st [d2], b2
d2 + 4

/\

c

D3

D Al

o}

D1

[
| |B1
\

A2

B2 c2

D2

A3 B3

C3

N

15-745 © Seth Copen Goldstein 2000-5

Al a«
B: b«

D: dl«
Al al «
Dl: d2 «

Bl: bl«
A2: a2 «
D2: d«

B2: b2 «

D3: d2 «

Id [d]
a*a
d+4
Id [d1]
dl+4

st [d], b
al *al
Id [d2]
d2+4

a2 * a2

st [d1], bl
dl+ 4

st [d2], b2

SP Loop

Prolog

Body

Epilog

A

B

D

Al

D1

15-745 © Seth Copen Goldstein 2000-5

c2

Rearrange
Al a« Id [d]
B: b« a*a
c st[d], b
D: dle« d+4
Al: al« Id[d1]
Bl: bl« al*al
ct: st [d1], bl
DI: d2e dl+4
A2: a2« Id[d2]
B2: b2« a2*a2
c2: st [d2], b2
D2: d« d2+4
A B | [lc D3
D Al| [[B1 c1 &
p1| ||a2]| [B2]| |c2
D2 A3 B3 C3
\') 15-745 © Seth Copen Goldstein 2000-5 30
Goal of SP
* Increase distance between dependent

operations by moving destination operation to a

later iteration
@

e Q
o =

O

O

dependencies Iteration i

in initial loop

15-745 © Seth Copen Goldstein 2000-5

i+1

2/15/2007

15-745 Lecture 10

Goal of SP

* Increase distance between dependent
operations by moving destination operation to a
later iteration

+ But also, to uncover ILP across iteration
boundaries!

15-745 © Seth Copen Goldstein 2000-5 33

Example
Assume operating on a infinite wide machine

HR®E
@OEE®
®
@@L

15-745 © Seth Copen Goldstein 2000-5

Example
Assume operating on a infinite wide machine

900 o e
: epilog

15745 © Seth Copen Goldstein 2000-5 35

Prolog

ing with exit conditions

i=0 loop:
if (i >= N) goto done A
Ao Bis
Bo Ciz
if (i+1 == N) goto last j++
i=1 if (i < N) goto loop
A epilog:
if (i+2 == N) goto epilog B
i=2 Cia
last:
G
done:

15745 © Seth Copen Goldstein 2000-5

2/15/2007

15-745 Lecture 10

Loop Unrolling V. SP

For SuperScalar or VLIW

* Loop Unrolling reduces loop overhead
+ Software Pipelining reduces fill/drain
* Best is if you combine them

of
overlapped
iterations

=
VW N

15745 setn AN 2000

Aiken/Nicolau Scheduling
Step 1

Perform scalar replacement to eliminate memory
references where possible.

for i:=1 to N do for i:=1 to N do
a := j @ v[i-1] a:=3j®b
b:=a®f b:=a®f
c:=e®j c:=e®j
d :=£f ® ¢ d :=£f ® c
e :=b ®d e :=b ®d
f := U[i] £ := U[i]

g: V[i] := Db g: V[i] :=Db

h: W[i] :=d h: W[i] :=d
3 = X[i] j = X[i]

15-745 © Seth Copen Goldstein 2000-5

Aiken/Nicolau Scheduling
Step 2

Unroll the loop and compute the data-dependence
graph (DDG).

DD6 for rolled loop:

’/'ak\ «Cv
for i:=1 to N do /
a:=j@®b : :I
b:=a®f |
c:=e®j b B
d:=f®c /
e:=b®d g »
f := U[i]
g: V[i] := b
h: W[i] := d
j = X[i]

15745 © Seth Copen Goldstein 2000-5

Aiken/Nicolau Scheduling
Step 2, cont'd

DDG6 for unrolled loop: a, c,

|

: b,

for i:=1 to N do / '
a:=j®b

b:i=a®¢f 91 2

c:=e®j 1;
d:=f®c

e:=b®d / }

£ := U[i] a,

g: V[i] := b 92 l
h: W[i] := d

j := X[i] b,

15745 © Seth Copen Goldstein 2000-5

2/15/2007

10

15-745 Lecture 10

a;

Aiken/Nicolau Scheduling

15-745 © Seth Copen Goldstein

Step 3
Build a tableau of iteration number vs cycle time.
iteration
C 1 2 3 4 5 6
v 1 [acfj £3 £ £3 £3 £3
d 2 fod
1 3 |egh
N gh a
/ J1 l \ 4 cb
h 5 dg a
v 6 eh b
E 7 cg a
©8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 c g
14 d
15 eh

2000-5

Aiken/Nicolau Scheduling

Step 3

iteration
2 3 4

on number vs cycle time.

5 6

1
1
2 bd
3 |egh
4
5
)
[
&4
9
- - 10
11
| £, \ h, 12
b x//// e, 13
3 v 14
c, 15

15-745 © Seth Copen Goldstein 2000-5

actj £5 £5 £3 £3 £3

o

42

Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 [acEj £3 £3 £3 £3 £3
2 |[bd
3 |legh a
4 cb
5 dg a
v 6 eh b
E7 cg a
v 8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 c g
14 d
15 eh

15745 © Seth Copen Goldstein

2000-5

43

Aiken/Nicolau Scheduling

Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
1 [acEF £3 £5 £3-£3 %3
2 |[bd
3 |egh a
4 cb,
5 dy s
o 6 eh\b"
7 &g 3
O d\ b\
9 eh\g g
10 g b\
11 d\ g ‘a
12| eh', b
13 & g
14 d
15 eh

15745 © Seth Copen Goldstein 2000-5

2/15/2007

11

15-745 Lecture 10

Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

iteration
1 2 3 4 5 6
T [acEF £5 65 £55-£5- 13
2 |bd
3 legh a
4 b,
5 dy s
s g eh\b Go back and
<
T g o o relate slopes
9 eh\g ‘g to DDG
10 g b
11 d\ g ‘a
12 eh b
13 T g
14 d
15| eh

15-745 © Seth Copen Goldstein 2000-5 45

Aiken/Nicolau Scheduling
Step b

“Coalesce” the slopes.

iteration iteration
1 2 3 4 5 6 1 2 3 4.5 6
T [actF £5 65 £5-£5-53 T [acE;
2 |bd 2 bd £3
3 |egh a 3 legh a
4 b, 4 cb £3
5 dy 'a 5 dg a
o 6 eh\b, o 6 eh b f£j
S 7 &g \E\ $7 cg a
8 d\ b, ©8 d b
9 eh\g ‘a 9 eh g f£j
10| -t b\\\ 10| c a
11 d\, g ‘a 11 d b
12 eh\, b 12 eh g
13 % g 13 c
14| d 14| d
15 eh 15| eh

15-745 © Seth Copen Goldstein 2000-5 46

Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6
1 lacfj
2 bd f£5
3 legh a
4 cb £j
5 dg a
) eh b f£j
97 cg a
©8 d b
9 eh g f£j
10 c a
11 d b
12| eh g
13 c
14 d
15 eh

15-745 © Seth Copen Goldstein 2000-5 47

Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

iteration
1 2 3 4 5 6
1 lacfj
2 bd f£j
i egh :b £5 <— Prologue/entry code
5 dg a
) eh b f£j
97 cg a
©8 d b
9 eh g £3|+— Loop body
10| c a
11 d b
12| eh g
13 ¢ <«—— Epilogue/exit code
14 d
15| eh

15-745 © Seth Copen Goldstein 2000-5 48

2/15/2007

12

15-745 Lecture 10

2/15/2007

Aiken/Nicolau Scheduling

L:
d, := £, , ®c;
e, :=b; d;
G 1= e @ 3
dyy 1= Eyo © oy
ey 1= by, @ dy,y
Sy 1= ey @ Jyy
dy 1= £, + ¢y
ey := by ® d,

Step 7

Generate code.
(Assume VLIW-like machine for this example. The instructions on
each line should be issued in parallel.)
al := j0 & b0
bl := al & f0
el := bl ® dl
c2 := el ® j1
d2 := £1 @ c2

cl := e0 ® 3jO f1 := U[1]

dl := fO @ cl f2 := U[2]
V[1] := bl W[1l] :=d1

b2 := a2 @ f1 £3 := U[3]
V[2] := b2 a3 := j2 @ b2
W[2] := d2 b3 := a3 @ f2
V[3] := b3 a4 := j3 @ b3
b, =a @ f

W[i] :=d, V[i+l] := b,
Ay t= 3, ® by, i i= 4l

by := a, ® £,

W[N-1] := dg, vIN] := by
w[N] := dy

15-745 © Seth Copen Goldstein 2000-5

j1
j2
a2
33
f4

i

£

i+2

if i<N-2 goto L

i= j1 @ b1

= X[1]
1= X[2]

= X[3]

u[4] j4 = X[4]
3

= U[I+2] 3, := X[i+2]

Aiken/Nicolau Scheduling

Step 8

+ Since several versions of a variable (e.g., j; and ji.;)
might be live simultaneously, we need to add new temps

and moves

al := j0 & b0
bl := al @ f0
el := bl & dl
c2 : j
d2

e2 :
c3 :=e2 @ j2

L:
d, := £, , ®c;
e, :=b, ®d;
o 1= e @3
Ay 1= £y © oy
Cus 1= By, @ Ay,
G = en @ iy
dy 1= £y, * ¢y
e, := by ® d,

cl := e0 ® jO f1 := U[1] jl := X[1]

dl := fO @ cl f2 := U[2] j2 := X[2]

V[1] := bl W[1l] :=d1 a2 := jl @ bl

b2 := a2 @ f1 £3 := U[3] 33 := X[3]

V[2] := b2 a3 := j2 @ b2

W[2] := d2 b3 := a3 ® f2 f4 := U[4] j4 := X[4]
V[3] := b3 a4 := 53 @ b3 i :=3

b, =2 &f

W[il := d, V[i+l] := b, £, := U[I+2] 3, := X[i+2]
a,, = 3y, ® by, 1= i+l if i<N-2 goto L

b, := a, ® £,

W[N-1] := dg, vIN] := by

W[N] := d

15-745 © Seth Copen Goldstein 2000-5

Aiken/Nicolau Scheduling

and moves
al := 30 ® b0
bl := al ® £0
el := bl & d1
c2 := el ® jl1
d2 := f1 @ c2
e2 := b2 @ d2
c3 = e2 ® j2
L:

d, := £ @ c;
e, :=b’ ®d,
Cla =, @ 5
4, = £, ® o
rs =Dy, ® dp
= e @ 3y,
4 = £, * o
ey := by ® dy

Step 8

cl := e0 @ jO £f1 := U[1]

dl := £f0 @ cl £/7 1= U[2]
VI[1l] := bl W[1l] :=d1

b2 := a2 @ f1 £’ := U[3]
VI[2] := b2 a3 := j2 @ b2
W[2] := d2 b3 := a3 & £’
V[3] := b3 a4 := j’ @ b3
by, =

W[i] :

B4z ¢

by :=

W[N-1]

w[N] := dy

15-745 © Seth Copen Goldstein 2000-5

+ Since several versions of a variable (e.g., j; and ji.;)
might be live simultaneously, we need to add new temps

31 := X[1]
32 := X[2]
a2 := jl @ bl
j’ = X[3]
f4 := U[4] j4 := X[4]
i:=3

;OE=Er £r=f; §00=30; 37=3
£, := U[I+2] 3., := X[i+2]

if i<N-2 goto L

- ANB88 did

Next Step in SP

not deal with resource constraints.

* Modulo Scheduling is a SP algorithm that does.
* It schedules the loop based on

- resource constraints

- precedence constraints

* Basically, it's list scheduling that takes into
account resource conflicts from overlapping

iterations

15-745 © Seth Copen Goldstein 2000-5

13

15-745 Lecture 10

Resource Constraints

* Minimally indivisible sequences, 7and j, can
execute together if combined resources in a
step do not exceed available resources.

* R(i) is a resource configuration vector
R(i) is the nhumber of units of resource i
* r(i) is a resource usage vector s.t.
0 <r(i) <R(i)
+ Each node in G has an associated r(i)

15-745 © Seth Copen Goldstein 2000-5

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
+ Goal: minimize s,

15-745 © Seth Copen Goldstein 2000-5

Software Pipelining Goal

* Find the same schedule for each iteration.
+ Stagger by iteration initiation interval, s
* Goal: minimize s.

resources must
be within
constraints

Software Pipelining Goal

* Find the same schedule for each iteration.
+ Stagger by iteration initiation interval, s
* Goal: minimize s.

FFFFFFFFFF, l
VIIIIIIIIIA

T FTFFF

VIIIIIIIIIJ

resources must
be within
constraints

2/15/2007

14

15-745 Lecture 10

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
+ Goal: minimize s,

Lt i l

il FFFFrrr.,

AT T TTTTT

resources must
be within
constraints

15-745 © Seth Copen Goldstein 2000-5 57

Software Pipelining Goal

- Find the same schedule for each iteration.
- Stagger by iteration initiation interval, s
+ Goal: minimize s,

VIIIIIIIIIA

AT TTTTTTS l

T FFFFrF.

'IIIIIIIIII

resources must
be within
constraints

15-745 © Seth Copen Goldstein 2000-5 58

Software Pipelining Goal

* Find the same schedule for each iteration.
+ Stagger by iteration initiation interval, s
* Goal: minimize s.

SN

e Pl i FFFFFi

resources must
be within
constraints

15-745 © Seth Copen Goldstein 2000-5 59

Software Pipelining Goal

* Find the same schedule for each iteration.
+ Stagger by iteration initiation interval, s
* Goal: minimize s.

AT T FTTS
T T TTTTTS S
I FFFFFFF

resources must
be within
constraints

modulo resource table

15-745 © Seth Copen Goldstein 2000-5 60

2/15/2007

15

15-745 Lecture 10

Precedence Constraints

* Review: for acyclic scheduling, constraint is just
the required delay between two ops u, v:
«d(u,v)>

* For an edge, u—v, we must have
o(v)-o(u) = d(u,v)

Precedence Constraints

* Cyclic: constraint becomes a tuple: <p,d>

- p is the minimum iteration delay
(or the loop carried dependence distance)

- d is the delay

* For an edge, u—v, we must have

o(v)-o(u) = d(u,v)-s*p(u,v)

- p20
* If data dependence is

- within an iteration, p=0
- loop-carried across p iter boundaries, p>0

2/15/2007

Iterative Approach

+ Finding minimum S that satisfies the
constraints is NP-Complete.

* Heuristic:
- Find lower and upper bounds for S

- foreach s from lower to upper bound?
+ Schedule graph.
+ If succeed, done
+ Otherwise try again (with next higher s)

* Thus: "Iterative Modulo Scheduling” Rau, et.al.

Iterative Approach

« Heuristic:

- Find lower and upper bounds for S

- foreach s from lower to upper bound
+ Schedule graph.
+ If succeed, done
+ Otherwise try again (with next higher s)

*+ So the key difference:

- AN88 does not assume S when scheduling

- IMS must assume an S for each scheduling
attempt to understand resource conflicts

Seth Copen Goldstein 2000-5

16

15-745 Lecture 10

Lower Bounds

* Resource Constraints: Sy (also called IT,,,)

maximum over all resources of # of uses
divided by # available...

* Precedence Constraints: Sg (also called IT,,.)
max over all cycles: d(c)/p(c)

In practice, one is easy, other is hard.

Tim's secret approach: just use Sy as lower bound,
then do binary search for best S

15-745 © Seth Copen Goldstein 2000-5 65

Acyclic Example

oo @ Eal @—»ﬂ

E-: Q <0,3>

<0,1> e
"

Lower Bound: Sg=2
Upper Bound: 5

15-745 © Seth Copen Goldstein 2000-5 66

Lower Bound on s

+ Assume 1 ALU and 1 MU
+ Assume latency Op or load is 1 cycle

for i:=1 to N do ’,’I
a:=j@®b i
b :=a®f :
c:i=e®j :
d:=£f®c <A T ple :
e :=b ®d ;
£ := U[i] ;
g: V[i] := b
h: W[i] := d
j = X[i]
<11
Resources =>5 cycles 11

Dependencies => 3 cycles

15-745 © Seth Copen Goldstein 2000-5 67

Scheduling data structures

To schedule for initiation interval s:

- Create a resource table with s rows and R
columns

* Create a vector, o, of length N for n
instructions in the loop

- o[n] = the time at which n is scheduled,
or NONE

* Prioritize instructions by some heuristic
- critical path (or cycle)
- resource critical

15-745 © Seth Copen Goldstein 2000-5 68

2/15/2007

17

15-745 Lecture 10

Scheduling algorithm

+ Pick an instruction, n
+ Calculate earliest time due to dependence constraints

For all x=pred(n),

earliest = max(earliest, o(x)*+d(x,n)-s-p(x,n))

+ try and schedule n from earliest to (earliest+s-1)

s.t. resource constraints are obeyed.

- possible twist: deschedule a conflicting node to make

way for n, maybe randomly, like sim anneal

+ If we fail, then this schedule is faulty

(i.e. give up on this s)

15-745 © Seth Copen Goldstein 2000-5

Simplest Example

for () {
a = b+c
b = a*a
c = a*194

Resources:

What is ITres?
What is IIrec?

15-745 © Seth Copen Goldstein 2000-5

Scheduling algorithm - cont.

+ We now schedule n at earliest, I.e., o(n) =

earliest
+ Fix up schedule
- Successors, x, of n must be scheduled s.t.

o(x) >= o(n)+d(n,x)-sp(n,x), otherwise they
are removed (descheduled) and put back on
worklist.

* repeat this some number of times until either

- succeed, then register allocate

- fail, then increase s

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

70

Simplest Example

for

o n -~

a b+c
b
c

a*a ’@-
a*194 ' /

Modulo Resource Table:

o [1][]
1 []]

15-745 © Seth Copen Goldstein 2000-5

18

15-745 Lecture 10

for () {
a = b+c
b = a*a
c = a*194

}

Modulo Resource Table:

Simplest Example

B
CER

}

Modulo Resource Table:

o [1]
1 [[1]

o [1][]
© L[]
Simplest Example
for () { 0
a = b+c
b = a*a ’Q‘
c = a*194 @ \ 1

earliest a: sigma(c) + delay(c) - 2
=2+1-2=1

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

Simplest Example

for
b+c

a
b
c

mun—~

o

Modulo Resource Table:

o [1][1]
1 [][1]

15-745 © Seth Copen Goldstein 2000-5

a*a . ‘E‘
a*194 \ 1

74

Simplest Example

-~

{
a b+c
b a*a
c

a*194

for

o n -~

Modulo Resource Table:

earliest b?
o [| scheduled b?
1 |:| what next?

75

15-745 © Seth Copen Goldstein 2000-5

19

15-745 Lecture 10

Simplest Example

for () { 0
a = b+c
b = a*a
c = a*194 1

} e

:
\ @ 3
Modulo Resource Table:
0 D Lesson: lower bound
1 |:| may nhot be achievable
Example

15-745 © Seth Copen Goldstein 2000-5 79

Example
for i:=1 to N do
a:i=3@b Priorities: ?
b:=a®f
c:=e ®j
d:=f®c
e :=b ®d \\\fl,l) <1,1’?/"
£ := U[i] N -
g: V[i] :=Db
h: W[i] :=d
j = X[i]
for i:=1 to N do N
a:i=j®b =5 instr
b :=a®f
c:=e ®j a
d :=f® c b
e :=b ®d
£ .= ULi] ALU |MU
g: V[i] := b c
h: W[i] :=d
j = X[i] d
Priorities: c,d,e,a,b,f,j.gh e
f
g
h
J

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

20

15-745 Lecture 10

15-745 © Seth Copen Goldstein 2000-5

for i:=1 to N do "
a:=j®b s=h instr| o
b:=a®f a
c:=e®j
d:=f®c b
siinge ALU [mu
5 0
: := b C
=d
& y d |t
e 2
e
f
g
h
J
for i:=1 to N do N
a:=j@®b s=5 instr| o
b :=a®f
c:=e®j a 3
d :=f® c b 4
sl ALU MU
= U[i] 0
g: VIi] := b ¢
h: W[i] :=d
j = X[i] d d 1
e 2
e
f
g9
h
J

for i:=1 to N do "
a:=j®b s=h instr| o
b:=a®f
c:=e®j a 3
d:=f®c b
Siinge ALU [mu
5 0
: := b C
=d
] d d
e 2
e
a f
g
h
J
for i:=1 to N do N
a:=j@®b s=5 instr| o
b :=a®f
c:=e®j a 3
d :=f® c b 4
s iIinge ALU MU
T oLl c 0
g: V[i] := b c
h: W[i] :=d
j = X[i] d d 1
e
f
g
h
J

15-745 © Seth Copen Goldstein 2000-5

b causes b->e edge violation

2/15/2007

21

15-745 Lecture 10

for i:=1 to N do

MU

a:=j@®b s=hH
b:=a®f
c:=e®j
d:=f®c
e :=b ®d
£ i= O[] ALU
g: V[i] :=Db
h: W[i] :=d
j = X[i] d
e

15-745 © Seth Copen Goldstein 2000-5

instr| o
a 3
b 4
c 0
d 1
e 7
f

g

h

J

e causes e->c edge violation

for i:=1 to N do

for i:=1 to N do

a:=j®b s=h

b:=a®f

c:=e®j

d :=f® c

e :=b ®d

2iie® ALU_ [MU
g: V[i] := b f
h: W[i] :=d

j = X[i] d J

e

15-745 © Seth Copen Goldstein 2000-5

instr| ¢
a 3
b 4
c 5
d 6
e 7
f 0
g9

h

J 1

=3 @b s=5 instr| o
b:=a®f
c:=e®j a 3
d:=f®c
_ b 4
Siinge ALU [mu
g: V[i] :=Db f c 5
h: W[i] :=d
j 1= X[i] d d 6
e 7
e
f 0
g
h
J
for i:=1 to N do
a:=j@®b s=5 instr| o
b:=a®f
c:=e®j a 3
d :=f®c
o b 4
st ALU_[MU
g: V[i] := b f c 5
h: W[i] :=d
j = X[i] d J d 6
e 7
e g
h f 0
g 7
h 8
J 1

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

22

15-745 Lecture 10

Creating the Loop [instr[s
a 3
+ Create the body from the schedule. b 2
+ Determine which iteration an instruction
falls into c 5
- Mark its sources and dest as d 6
belonging to that iteration.
- Add Moves to update registers e 7
+ Prolog fills in gaps at beginning F 0
- For each move we will have an
instruction in prolog, and we fill in g 7
dependent instructions
- Epilog fills in gaps at end h 8
J 1

15-745 © Seth Copen Goldstein 2000-5 89

f0 = U[O];
jO = X[0];

FORi=0toN
f1:= U[i+1]
j1:= X[i+1]
nop
a:=j0?b
b:i=a?f0
c:=e?j0
d:=f0?c
ei=b?d g: V[i]:=b

h: W[i]:=d
fo=f1
jo=jt

15-745 © Seth Copen Goldstein 2000-5

Conditionals

« What about internal control structure, Le.,
conditionals

* Three approaches

- Schedule both sides and use conditional
moves

- Schedule each side, then make the body of
the conditional a macro op with appropriate
resource vector

- Trace schedule the loop

15-745 © Seth Copen Goldstein 2000-5 91

What to take away

+ Dependence analysis is very important
+ Software pipelining is cool
* Registers are a key resource

15-745 © Seth Copen Goldstein 2000-5

2/15/2007

23

