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Instruction-level Parallelism

• Most modern processors have the ability to 
execute several adjacent instructions 
simultaneously.
– Pipelined machines.
– Very-long-instruction-word machines (VLIW).
– Superscalar machines.
– Dynamic scheduling/out-of-order machines.

• ILP is limited by several kinds of execution
constraints:
– Data dependence constraints.
– Resource constraints (“hazards”)
– Control hazards
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Execution Constraints
• Data-dependence constraints:

– If instruction A computes a value that is 
read by instruction B, then B cannot execute 
before A is completed.

• Resource hazards:
– Limited # of functional units.

• If there are n functional units of a particular kind (e.g., n 
multipliers), then only n instructions that require that kind 
of unit can execute at once.

– Limited instruction issue.
• If the instruction-issue unit can issue only n instructions at 
a time, then this limits ILP.

– Limited register set.
• Any schedule of instructions must have a valid register 
allocation.

For example: 
ld [%fp-28], %o1

add %o1, %l2, %l3
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Instruction Scheduling

• The purpose of instruction scheduling (IS) is to 
order the instructions for maximum ILP.

– Keep all resources busy every cycle.

– If necessary, eliminate data dependences and 
resource hazards to accomplish this.

• The IS problem is NP-complete (and bad in 
practice).

– So heuristic methods are necessary.
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Instruction Scheduling

• There are many different techniques for IS.
– Still an open area of research.

• Most optimizing compilers perform good local 
IS, and only simple global IS.

• The biggest opportunities are in scheduling the 
code for loops…..
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Should the Compiler Do IS?

• Many modern machines perform dynamic reordering of 
instructions.

– Also called “out-of-order execution” (OOOE).

– Not yet clear whether this is a good idea.

– Pro:
• OOOE can use additional registers and register renaming to 
eliminate data dependences that no amount of static IS can 
accomplish.

• No need to recompile programs when hardware changes.

– Con:
• OOOE means more complex hardware (and thus longer cycle times 
and more wattage).

• And can’t be optimal since IS is NP-complete.
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What we will cover

• Scheduling basic blocks
– List scheduling
– Long-latency operations
– Delay slots

• Software Pipelining

• What we need to know
– pipeline structure
– data dependencies
– register renaming
– scalar replacement
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Defining Dependencies

• Flow Dependence W � R δf

• Anti-Dependence R � W δa

• Output Dependence W � W δo

• Input Dependence R � R δi

true

false

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;

Not generally 
defined
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Example Dependencies
S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e; S1 δf S2 due to a

S1 δf S3 due to a

S2 δf S4 due to b

S3 δa S4 due to d

S4 δa S5 due to b

S2 δo S5 due to b

S3 δi S5 due to a

1

2

3

4

5
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Renaming of Variables

• Sometimes constraints are not “real,” in the 
sense that a simple renaming of 
variables/registers can eliminate them.
– Output dependence (WW): 
A and B write to the same variable.

– Anti dependence (RW): 
A reads from a variable to which B writes.

• In such cases, the order of A and B cannot be 
changed unless variables are renamed.
– Can sometimes be done by the hardware, to a 
limited extent.
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Register Renaming Example

r1 ← r2 + 1

[fp+8] ← r1

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

[fp+8] ← r7

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

r1 ← r3 + 2

[fp+8] ← r7

[fp+12] ← r1

• Can perform register renaming after register 
allocation

• Constrained by available registers

• Constrained by live on entry/exit

• Instead, do scheduling before register allocation

Phase ordering problem
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The Scheduler

• Given:

– Code to schedule

– Resources available (FU and # of Reg)

– Latencies of instructions

• Goal:

– Correct code

– Better code [fewer cycles, less power, 
fewer registers, …]

– Do it quickly
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More Abstractly

• Given a graph G = (V,E) where
– nodes are operations

• Each operation has an associated delay and type

– edges between nodes represent dependencies
– The number of resources of type t, R(t)

• A schedule assigns to each node a cycle number:
– σ(n) ≥ 0
– If (n,m) ∈ G, σ(m) ≥ σ(n) + delay(n)
– |{ n | σ(n) = x and type(n) = t}| <= R(t)

• Goal is shortest length schedule, where length
– L(S) = max over n, σ(n)+delay(n)
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List Scheduling

• Keep a list of ready instructions, I.e.,
• If we are at cycle k, then all predecessors, p, in graph have 
all been scheduled so that 
σ(p)+delay(p) ≤ k

• Alternate?

• Pick some instruction, n, from ready queue such 
that there are available resources for type(n)

• move n from “ready” to “scheduled”

• Update lists and continue
• maybe move some from “not ready” to “ready”
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Lots of Heuristics 

• forward or backward

• choose instructions on critical path

• ASAP or ALAP

• Balanced paths

• depth in schedule graph
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Slack
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Software Pipelining

• Software pipelining is an IS technique that reorders 
the instructions in a loop.

– Possibly moving instructions from one iteration to 
the previous or the next iteration.

– Very large improvements in running time are possible.

• The first serious approach to software pipelining was 
presented by Aiken & Nicolau.

– Aiken’s 1988 Ph.D. thesis.

– Impractical as it ignores resource hazards (focusing 
only on data-dependence constraints).
• But sparked a large amount of follow-on research.
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Software Pipelining
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Software Pipelining
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Software Pipelining
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Goal of SP

• Increase distance between dependent 
operations by moving destination operation to a 
later iteration

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d ← d + 4

Assume all have latency of 2

BA C D
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Can we decrease the latency?

• Lets unroll

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d ← d + 4
A1: a ← ld [d]
B1: b ← a * a
C1: st [d], b
D1: d ← d + 4

DCBA B1A1 C1 D1
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Rename variables

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d ← d1 + 4

DCBA B1A1 C1 D1
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Schedule

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d ← d1 + 4

A

B

C

D

A1

B1

C1
D1

B1

C

A1

B

D

A

C1

D1
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Unroll Some More
A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2
D2

C1B1A1D

C

A2

B

D1

A

C2B2

D2
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Unroll Some More
A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3C2B2A2D1

C1B1A1D

A3

C

D2

BA

C3B3

D3

D2

A3

B3

C3
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One More Time
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

C3B3A3D2

B4

C2B2A2D1

C1B1A1D

C

D3

BA

C4A4

D4

D2

A3

B3

C3

A4

B4

C4
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Can Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

C3B3A3D2

B4

C2B2A2D1

C1B1A1D

C

D3

BA

C4A4

D4

D2

A3

B3

C3

A4

B4

C4
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Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3
B3

C2B2A2D1

C1B1A1D

D2

CBA

C3A3

D3

D2

A3

B3

C3

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4
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Rearrange
A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D3

B3

C2B2A2D1

C1B1A1D

D2

CBA

C3A3

D3

D2

A3

B3

C3

A: a ← ld [d]
B: b ← a * a
C: st [d], b
D: d1 ← d + 4
A1: a1 ← ld [d1]
B1: b1 ← a1 * a1
C1: st [d1], b1
D1: d2 ← d1 + 4
A2: a2 ← ld [d2]
B2: b2 ← a2 * a2
C2: st [d2], b2
D2: d ← d2 + 4
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SP Loop
A: a ← ld [d]
B: b ← a * a
D: d1 ← d + 4
A1: a1 ← ld [d1]
D1: d2 ← d1 + 4

C: st [d], b
B1: b1 ← a1 * a1
A2: a2 ← ld [d2]
D2: d ← d2 + 4

B2: b2 ← a2 * a2
C1: st [d1], b1
D3: d2 ← d1 + 4
C2: st [d2], b2

D2

A2

B1

C

C2B2A2A2D1

C1B1B1A1D

D2

CBA

D2

D3C

Prolog

Body

Epilog
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Goal of SP

• Increase distance between dependent 
operations by moving destination operation to a 
later iteration

A

B

C

dependencies 
in initial loop

A

B

C

iteration i i+1 i+2

after SP



15-745 Lecture 10 2/15/2007

9

15-745 © Seth Copen Goldstein 2000-5 33

Goal of SP

• Increase distance between dependent 
operations by moving destination operation to a 
later iteration

• But also, to uncover ILP across iteration 
boundaries!
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Example
Assume operating on a infinite wide machine

A0

A1 B0

A2 B1 C0

A3 B2 C1

B3 C2

C3

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci
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Example
Assume operating on a infinite wide machine

A0

A1 B0

Ai Bi-1 Ci-2

Bi Ci-1

Ci

Prolog

epilog

loop body
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for (i=0; i<N; i++) 

{

Ai

Bi

Ci

}

Dealing with exit conditions

i=0

if (i >= N) goto done

A0

B0

if (i+1 == N) goto last

i=1

A1

if (i+2 == N) goto epilog

i=2

loop:

Ai

Bi-1

Ci-2

i++

if (i < N) goto loop

epilog:

Bi

Ci-1

last:

ci
done:
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Loop Unrolling V. SP

For SuperScalar or VLIW

• Loop Unrolling reduces loop overhead

• Software Pipelining reduces fill/drain

• Best is if you combine them 

Software Pipelining

Loop Unrolling

# of 

overlapped 

iterations

Time 15-745 © Seth Copen Goldstein 2000-5 38

Aiken/Nicolau Scheduling
Step 1

Perform scalar replacement to eliminate memory
references where possible.

for i:=1 to N do

a := j ⊕⊕⊕⊕ V[i-1]

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

15-745 © Seth Copen Goldstein 2000-5 39

Aiken/Nicolau Scheduling
Step 2

Unroll the loop and compute the data-dependence
graph (DDG).

DDG for rolled loop:

for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

a

b

c

d

e

fg

h

j
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Aiken/Nicolau Scheduling
Step 2, cont’d

DDG for unrolled loop:

for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

a1

b1

c1

d1

e1

j1

f1

g1
h1a2

b2

a3

b3

g2

j2

f2

c2

d2

e2
h1

c3
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Aiken/Nicolau Scheduling
Step 3

Build a tableau of iteration number vs cycle time.

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

a1

b1

c1

d1

e1

j1

f1

g1
h1a2

b2

a3

b3

g2

j2

f2

c2

d2

e2
h1

c3
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Aiken/Nicolau Scheduling
Step 3

Build a tableau of iteration number vs cycle time.

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

a1

b1

c1

d1

e1

j1

f1

g1
h1a2

b2

a3

b3

g2

j2

f2

c2

d2

e2
h1

c3

basically, you’re emulating
a superscalar with infinite
resources, infinite register
renaming, always predicting

the loop-back branch:
thus, just pure
data dependency
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Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e
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Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e
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Aiken/Nicolau Scheduling
Step 4

Find repeating patterns of instructions.

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e Go back and 

relate slopes
to DDG
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Aiken/Nicolau Scheduling
Step 5

“Coalesce” the slopes.

acfj

bd fj

egh a

cb fj

dg a

eh b  fj

cg a

d  b

eh g  fj

c  a

d  b

eh g

c

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

acfj fj fj fj fj fj

bd

egh a

cb

dg a

eh b

cg a

d  b

eh g  a

c  b

d  g  a

eh    b

c  g

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e
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Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

acfj

bd fj

egh a

cb fj

dg a

eh b  fj

cg a

d  b

eh g  fj

c  a

d  b

eh g

c

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e
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Aiken/Nicolau Scheduling
Step 6

Find the loop body and “reroll” the loop.

acfj

bd fj

egh a

cb fj

dg a

eh b  fj

cg a

d  b

eh g  fj

c  a

d  b

eh g

c

d

eh

iteration
1    2   3   4   5   6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cy
cl
e

Prologue/entry code

Loop body

Epilogue/exit code
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Aiken/Nicolau Scheduling
Step 7

Generate code.
(Assume VLIW-like machine for this example.  The instructions on
each line should be issued in parallel.)

a1 := j0 ⊕⊕⊕⊕ b0    c1 := e0 ⊕⊕⊕⊕ j0    f1 := U[1]     j1 := X[1]

b1 := a1 ⊕⊕⊕⊕ f0    d1 := f0 ⊕⊕⊕⊕ c1    f2 := U[2]     j2 := X[2]

e1 := b1 ⊕⊕⊕⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕⊕⊕⊕ b1

c2 := e1 ⊕⊕⊕⊕ j1    b2 := a2 ⊕⊕⊕⊕ f1    f3 := U[3]     j3 := X[3]

d2 := f1 ⊕⊕⊕⊕ c2    V[2] := b2       a3 := j2 ⊕⊕⊕⊕ b2

e2 := b2 ⊕⊕⊕⊕ d2    W[2] := d2       b3 := a3 ⊕⊕⊕⊕ f2  f4 := U[4]    j4 := X[4]

c3 := e2 ⊕⊕⊕⊕ j2    V[3] := b3       a4 := j3 ⊕⊕⊕⊕ b3   i := 3

L:

d
i
:= f

i-1
⊕⊕⊕⊕ c

i
b
i+1

:= a
i

⊕⊕⊕⊕ f
i

e
i
:= b

i
⊕⊕⊕⊕ d

i
W[i] := d

i  
V[i+1] := b

i+1
f
i+2

:= U[I+2]  j
i+2

:= X[i+2]

c
i+1

:= e
i

⊕⊕⊕⊕ j
i 

a
i+2

:= j
i+1

⊕⊕⊕⊕ b
i+1

i := i+1       if i<N-2 goto L

d
N-1

:= f
N-2

⊕⊕⊕⊕ c
N-1

b
N
:= a

N
⊕⊕⊕⊕ f

N-1

e
N-1

:= b
N-1

⊕⊕⊕⊕ d
N-1

W[N-1] := d
N-1

v[N] := b
N

c
N
:= e

N-1
⊕⊕⊕⊕ j

N-1

d
N
:= f

N-1
+ c

N

e
N
:= b

N
⊕⊕⊕⊕ d

N
w[N] := d

N
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Aiken/Nicolau Scheduling
Step 8

• Since several versions of a variable (e.g., ji and ji+1) 
might be live simultaneously, we need to add new temps 
and moves

a1 := j0 ⊕⊕⊕⊕ b0    c1 := e0 ⊕⊕⊕⊕ j0    f1 := U[1]     j1 := X[1]

b1 := a1 ⊕⊕⊕⊕ f0    d1 := f0 ⊕⊕⊕⊕ c1    f2 := U[2]     j2 := X[2]

e1 := b1 ⊕⊕⊕⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕⊕⊕⊕ b1

c2 := e1 ⊕⊕⊕⊕ j1    b2 := a2 ⊕⊕⊕⊕ f1    f3 := U[3]     j3 := X[3]

d2 := f1 ⊕⊕⊕⊕ c2    V[2] := b2       a3 := j2 ⊕⊕⊕⊕ b2

e2 := b2 ⊕⊕⊕⊕ d2    W[2] := d2       b3 := a3 ⊕⊕⊕⊕ f2 f4 := U[4]    j4 := X[4]

c3 := e2 ⊕⊕⊕⊕ j2    V[3] := b3       a4 := j3 ⊕⊕⊕⊕ b3   i := 3

L:

d
i
:= f

i-1
⊕⊕⊕⊕ c

i
b
i+1

:= a
i

⊕⊕⊕⊕ f
i

e
i
:= b

i
⊕⊕⊕⊕ d

i
W[i] := d

i  
V[i+1] := b

i+1
f
i+2

:= U[I+2]  j
i+2

:= X[i+2]

c
i+1

:= e
i

⊕⊕⊕⊕ j
i 

a
i+2

:= j
i+1

⊕⊕⊕⊕ b
i+1

i := i+1       if i<N-2 goto L

d
N-1

:= f
N-2

⊕⊕⊕⊕ c
N-1

b
N
:= a

N
⊕⊕⊕⊕ f

N-1

e
N-1

:= b
N-1

⊕⊕⊕⊕ d
N-1

W[N-1] := d
N-1

v[N] := b
N

c
N
:= e

N-1
⊕⊕⊕⊕ j

N-1

d
N
:= f

N-1
+ c

N

e
N
:= b

N
⊕⊕⊕⊕ d

N
w[N] := d

N
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Aiken/Nicolau Scheduling
Step 8

• Since several versions of a variable (e.g., ji and ji+1) 
might be live simultaneously, we need to add new temps 
and moves

a1 := j0 ⊕⊕⊕⊕ b0    c1 := e0 ⊕⊕⊕⊕ j0    f1 := U[1]     j1 := X[1]

b1 := a1 ⊕⊕⊕⊕ f0    d1 := f0 ⊕⊕⊕⊕ c1    f’’ := U[2]     j2 := X[2]

e1 := b1 ⊕⊕⊕⊕ d1    V[1] := b1       W[1] := d1     a2 := j1 ⊕⊕⊕⊕ b1

c2 := e1 ⊕⊕⊕⊕ j1    b2 := a2 ⊕⊕⊕⊕ f1    f’ := U[3]     j’ := X[3]

d2 := f1 ⊕⊕⊕⊕ c2    V[2] := b2       a3 := j2 ⊕⊕⊕⊕ b2

e2 := b2 ⊕⊕⊕⊕ d2    W[2] := d2       b3 := a3 ⊕⊕⊕⊕ f’’ f4 := U[4]    j4 := X[4]

c3 := e2 ⊕⊕⊕⊕ j2    V[3] := b3       a4 := j’ ⊕⊕⊕⊕ b3   i := 3

L:

d
i
:= f’’ ⊕⊕⊕⊕ c

i
b
i+1

:= a’ ⊕⊕⊕⊕ f’ b’ := b; a’=a; f’’=f’; f’=f; j’’=j’; j’=j

e
i
:= b’ ⊕⊕⊕⊕ d

i
W[i] := d

i  
V[i+1] := b

i+1
f
i+2

:= U[I+2]  j
i+2

:= X[i+2]

c
i+1

:= e
i

⊕⊕⊕⊕ j’ a
i+2

:= j’’ ⊕⊕⊕⊕ b
i+1

i := i+1       if i<N-2 goto L

d
N-1

:= f
N-2

⊕⊕⊕⊕ c
N-1

b
N
:= a

N
⊕⊕⊕⊕ f

N-1

e
N-1

:= b
N-1

⊕⊕⊕⊕ d
N-1

W[N-1] := d
N-1

v[N] := b
N

c
N
:= e

N-1
⊕⊕⊕⊕ j

N-1

d
N
:= f

N-1
+ c

N

e
N
:= b

N
⊕⊕⊕⊕ d

N
w[N] := d

N
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Next Step in SP

• AN88 did not deal with resource constraints.

• Modulo Scheduling is a SP algorithm that does.

• It schedules the loop based on

– resource constraints

– precedence constraints

• Basically, it’s list scheduling that takes into 
account resource conflicts from overlapping 
iterations



15-745 Lecture 10 2/15/2007

14

15-745 © Seth Copen Goldstein 2000-5 53

Resource Constraints

• Minimally indivisible sequences, i and j, can 
execute together if combined resources in a 
step do not exceed available resources.

• R(i) is a resource configuration vector

R(i) is the number of units of resource i

• r(i) is a resource usage vector s.t.

0 ≤ r(i) ≤ R(i)

• Each node in G has an associated r(i)
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

s

s

s
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

s

s

s

resources must 
be within
constraints
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

s

resources must 
be within
constraints

s

s
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

s

resources must 
be within
constraints

s

s
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

s

resources must 
be within
constraints

s

s
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

resources must 
be within
constraints

U
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Software Pipelining Goal

• Find the same schedule for each iteration.

• Stagger by iteration initiation interval, s
• Goal: minimize s.

resources must 
be within
constraints

s

modulo resource table
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Precedence Constraints

• Review: for acyclic scheduling, constraint is just 
the required delay between two ops u, v:
<d(u,v)>

• For an edge, u→v, we must have

σ(v)-σ(u) ≥ d(u,v)
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Precedence Constraints

• Cyclic: constraint becomes a tuple: <p,d>
– p is the minimum iteration delay
(or the loop carried dependence distance)

– d is the delay
• For an edge, u→v, we must have

σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
• p ≥ 0
• If data dependence is  

– within an iteration, p=0
– loop-carried across p iter boundaries,  p>0
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Iterative Approach

• Finding minimum S that satisfies the 
constraints is NP-Complete.

• Heuristic:

– Find lower and upper bounds for S

– foreach s from lower to upper bound?
• Schedule graph.

• If succeed, done

• Otherwise try again (with next higher s)

• Thus: “Iterative Modulo Scheduling” Rau, et.al.
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Iterative Approach

• Heuristic:

– Find lower and upper bounds for S

– foreach s from lower to upper bound
• Schedule graph.

• If succeed, done

• Otherwise try again (with next higher s)

• So the  key difference:

– AN88 does not assume S when scheduling

– IMS must assume an S for each scheduling 
attempt to understand resource conflicts
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Lower Bounds

• Resource Constraints: SR  (also called IIres)
maximum over all resources of # of uses 
divided by # available… rounded up or down?

• Precedence Constraints: SE  (also called IIrec)
max over all cycles: d(c)/p(c)

In practice, one is easy, other is hard.
Tim’s secret approach: just use SR as lower bound, 
then do binary search for best S
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Acyclic Example

a

b

c

<0,2>

<0,1>

<0,3>

Lower Bound: SR=2
Upper Bound: 5

15-745 © Seth Copen Goldstein 2000-5 67

Lower Bound on s

for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

a

b

c

d

e

f

g
h

j

• Assume 1 ALU and 1 MU
• Assume latency Op or load is 1 cycle

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>

Resources => 5 cycles
Dependencies => 3 cycles
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Scheduling data structures

To schedule for initiation interval s:

• Create a resource table with s rows and R 
columns

• Create a vector, σσσσ, of length N for n 
instructions in the loop

– σσσσ[n] = the time at which n is scheduled,
or NONE

• Prioritize instructions by some heuristic

– critical path (or cycle)

– resource critical
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Scheduling algorithm

• Pick an instruction, n

• Calculate earliest time due to dependence constraints
For all x=pred(n), 

earliest = max(earliest, σσσσ(x)+d(x,n)-s.p(x,n))

• try and schedule n from earliest to (earliest+s-1) 
s.t. resource constraints are obeyed.

– possible twist: deschedule a conflicting node to make 
way for n, maybe randomly, like sim anneal

• If we fail, then this schedule is faulty
(i.e. give up on this s)
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Scheduling algorithm – cont.

• We now schedule n at earliest, I.e., σσσσ(n) = 
earliest

• Fix up schedule

– Successors, x, of n must be scheduled s.t.
σσσσ(x) >= σσσσ(n)+d(n,x)-s.p(n,x), otherwise they 
are removed (descheduled) and put back on 
worklist.

• repeat this some number of times until either

– succeed, then register allocate

– fail, then increase s
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

}

a

b

<1,1>
<1,1>

<0,1> <0,1>
c

What is IIres?
What is IIrec?

1 1Resources:
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

0

1

0

1
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

}

a

b c

Try II = 2

1

Modulo Resource Table:

1

0

1

0

1
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1 1

Modulo Resource Table:

1

0

1

0

1

2
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

}

a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest a: sigma(c) + delay(c) - 2
= 2+1-2 = 1
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

} ab

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

earliest b?
scheduled b?
what next?
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Simplest Example
for () {

a = b+c

b = a*a

c = a*194

} a

b

c
Try II = 2

1

Modulo Resource Table:

1

0

1

0

1

2

3

Lesson: lower bound 
may not be achievable
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Example
for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: ?

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>
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Example
for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g
h

j

<1,1>

<1,1>

<1,1>

<0,1>

<0,1>

<0,1>
<1,1>

<0,1>

<0,1>
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: c,d,e,a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

e

d

c

b

a

j

h

g

f

instr σσσσ
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: a,b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

e

c

2e

1d

0c

b

a

j

h

g

f

instr σσσσ
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

a

e

c

2e

1d

0c

b

3a

j

h

g

f

instr σσσσ
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: b,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

b

a

e

c

2e

1d

0c

4b

3a

j

h

g

f

instr σσσσ
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

b

a

c

e

1d

0c

4b

3a

j

h

g

f

instr σσσσ

b causes b->e edge violation
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: e,f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

b

a

e

c

7e

1d

0c

4b

3a

j

h

g

f

instr σσσσ

e causes e->c edge violation
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities: f,j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

d

b

a

e

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σσσσ

0
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:j,g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

jd

b

a

e

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σσσσ

1

0
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for i:=1 to N do

a := j ⊕⊕⊕⊕ b

b := a ⊕⊕⊕⊕ f

c := e ⊕⊕⊕⊕ j

d := f ⊕⊕⊕⊕ c

e := b ⊕⊕⊕⊕ d

f := U[i]

g: V[i] := b

h: W[i] := d

j := X[i]

Priorities:g,h

a

b

c

d

e

f

g

h

j

s=5

MUALU

jd

b

ha

ge

fc

7e

6d

5c

4b

3a

j

h

g

f

instr σσσσ

7

1

8

0
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Creating the Loop

• Create the body from the schedule.
• Determine which iteration an instruction 

falls into
– Mark its sources and dest as 
belonging to that iteration.

– Add Moves to update registers
• Prolog fills in gaps at  beginning

– For each move we will have an 
instruction in prolog, and we fill in 
dependent instructions

• Epilog fills in gaps at end

7e

6d

5c

4b

3a

j

h

g

f

instr σσσσ

7

1

8

0
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f0 = U[0];
j0 = X[0];

FOR i = 0 to N
f1 := U[i+1]
j1 := X[i+1]
nop
a := j0 ? b
b := a ? f0
c := e ? j0
d := f0 ? c
e := b ? d g: V[i] := b

h: W[i] := d
f0 = f1
j0 = j1
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Conditionals

• What about internal control structure, I.e., 
conditionals

• Three approaches

– Schedule both sides and use conditional 
moves

– Schedule each side, then make the body of 
the conditional a macro op with appropriate 
resource vector

– Trace schedule the loop
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What to take away

• Dependence analysis is very important

• Software pipelining is cool

• Registers are a key resource


