
15-745 Lecture 17 3/20/2007

1

15-745 © Tim Callahan 1

15-745

Structural/Interval Analysis

+

Dataflow Analysis Take II

Copyright © Tim Callahan 2005-2007

15-745 © Tim Callahan 2

Review: Dominators

• X dom Y
iff every execution path
from the entry to Y goes
through X

• Solved by simple fwd
dataflow:

– meet: intersection
(only dominated by X if
all predecessors are
dominated by X)

– transfer: add myself

A

B

C D

E

F

Entry

A

A,B

A,B,D
A,B,C

A,B,E

A
A,F

A

15-745 © Tim Callahan 3

More Review: Natural Loops

• Defined by a backedge
Y -> X where X dom Y

• Finds (only) single-entry
loops.

• Body: X plus those blocks
that can reach Y without
going through X.

• Will find nested loop
structure

A

X

C D

Y

F

Entry

A

15-745 © Tim Callahan 4

Not all cycles are natural loops

• “irreducible”, “improper”,
not “well-structured”...

• a multi-entry loop

• a CFG is “well-structured”
iff its edge set can be
partitioned into forward
edges that form a DAG,
and backedges according
to our natural loop
definition (the head
dominates the tail)

A

X

C D

F

Entry

A

15-745 Lecture 17 3/20/2007

2

15-745 © Tim Callahan 5

Ok, let's find all the cycles

• Actually, usually want to
find strongly connected
components (SCC)

• SCC: every node in the SCC
can reach every other node
in that SCC by some
directed path

• Can SCCs be nested?

• SCCs important in many
areas – e.g. for cyclic
scheduling, you want to find
the SCCs in the DFG

• Singletons – not part of a
cycle, their own SCC

15-745 © Tim Callahan 6

Ok, let's find all the cycles

• Actually, usually want to
find strongly connected
components (SCC)

• SCC: every node in the SCC
can read every other node in
that SCC by some directed
path

• Can SCCs be nested? NO

• SCCs important in many
areas – e.g. for cyclic
scheduling, you want to find
the SCCs in the DFG

• Singletons – not part of a
cycle, their own SCC

every node
belongs to

exactly one

SCC

15-745 © Tim Callahan 7

Ok, let's find all the cycles

• Actually, usually want to
find strongly connected
components (SCC)

• SCC: every node in the SCC
can read every other node in
that SCC by some directed
path

• Can SCCs be nested? NO

• SCCs important in many
areas – e.g. for cyclic
scheduling, you want to find
the SCCs in the DFG

• Singletons – not part of a
cycle, their own SCC

every node
belongs to

exactly one

SCC

well…

15-745 © Tim Callahan 8

Finding SCCs: Tarjan's

Algorithm
visit(v)

{

N[v] = c; /* Mark v visited by assigning it a visit number. */

L[v] = c; /* Low-link initially equal to visit number. */

c++;

push v onto the stack;

for each w in OUT(v) {

if N[w] == UNDEFINED { /* N[w] == UNDEFINED means w is unvisited. */

visit(w);

L[v] = min(L[v], L[w]); /* Low-link number can propagate upward. */

} else if w is on the stack {

L[v] = min(L[v], N[w]);

}

}

/* Check if SC component found. */

if L[v] == N[v] {

pop vertices off stack down to v; /* These make up an SC component. */

}

}

this is the subtlety...

15-745 Lecture 17 3/20/2007

3

15-745 © Tim Callahan 9

Finding SCCs: Tarjan's Algorithm

main_program {

c : = 0; /* c is the counter for visit numbers. */

for each vertex, v, in the graph,

N[v] = UNDEFINED /* Mark v "unvisited". */

visit(v0); /* v0 is the starting vertex. */

}

15-745 © Tim Callahan 10

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: a

stack:

N0L0

a

15-745 © Tim Callahan 11

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: b

stack:

N0L0

a

N1L1

b

15-745 © Tim Callahan 12

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: c

stack:

N0L0

a

N1L1

b

N2L2

c

15-745 Lecture 17 3/20/2007

4

15-745 © Tim Callahan 13

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: c

stack:

N0L0

a

N1L1

b

N2L2

c

c sees visited

successor c;

L[c] = min(L[c],N[c])

15-745 © Tim Callahan 14

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: e

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L3

15-745 © Tim Callahan 15

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: e

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1

e sees visited

successor b;

L[e] = min(L[e],N[b])

Copyright Tim Callahan

15-745 © Tim Callahan 16

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: f

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4

15-745 Lecture 17 3/20/2007

5

15-745 © Tim Callahan 17

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: g

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

15-745 © Tim Callahan 18

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: h

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

15-745 © Tim Callahan 19

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: i

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L7

i

15-745 © Tim Callahan 20

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: i

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L6

i

i sees visited

successor h;

L[i] = min(L[i],N[h])

15-745 Lecture 17 3/20/2007

6

15-745 © Tim Callahan 21

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: j

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L6

i

N8L8

j

15-745 © Tim Callahan 22

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: j

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L6

i

N8L8

j
j sees N=L;

pops stack to create

SCC {j}

15-745 © Tim Callahan 23

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: i

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L6

i

N8L8

i sees N != L;

does nothing

15-745 © Tim Callahan 24

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: h

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6

h

N7L6

i

N8L8

h sees N = L;

pops stack to form

SCC {i,h}

15-745 Lecture 17 3/20/2007

7

15-745 © Tim Callahan 25

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: g

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4
g

N5L5

N6L6 N7L6

N8L8

g sees N = L;

pops stack to form

SCC {g}

15-745 © Tim Callahan 26

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: f

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

f

N4L4

N5L5

N6L6 N7L6

N8L8

f sees N = L;

pops stack to form

SCC {f}

15-745 © Tim Callahan 27

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: e

stack:

N0L0

a

N1L1

b

N2L2

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

e sees N != L;

does nothing

15-745 © Tim Callahan 28

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: c

stack:

N0L0

a

N1L1

b

N2L1

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

c updates

L[c]=min(L[c],L[e]);

sees L != N;

does nothing

15-745 Lecture 17 3/20/2007

8

15-745 © Tim Callahan 29

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: d

stack:

N0L0

a

N1L1

b

N2L1

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L9

dd

stack contents:

interesting...

15-745 © Tim Callahan 30

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: d

stack:

N0L0

a

N1L1

b

N2L1

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L3
d sees visited

successor e;

L[d] = min(L[d],N[e])

d

15-745 © Tim Callahan 31

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: d

stack:

N0L0

a

N1L1

b

N2L1

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L3
d sees N != L;

does nothing

d

15-745 © Tim Callahan 32

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: b

stack:

N0L0

a

N1L1

b

N2L1

c
e

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L3
b updates

L[b]=min(L[b],L[d]);

sees N = L;

pops stack down to b

SCC = {d,e,c,b}d

15-745 Lecture 17 3/20/2007

9

15-745 © Tim Callahan 33

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: a

stack:

N0L0

a

N1L1

N2L1

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L3
a sees visited succ g;

L[a]=min(L[a],N[g])

a sees N = L, forms

SCC {a}

15-745 © Tim Callahan 34

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

N0L0

N1L1

N2L1

N3L1
Copyright Tim Callahan

N4L4

N5L5

N6L6 N7L6

N8L8

N9L3
One description: this algorithm
interleaves two tree traversals:

one is the DFS, the other is

encoded in the stack popping...

15-745 © Tim Callahan 35

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be quarantined
to a small area

15-745 © Tim Callahan 36

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 Lecture 17 3/20/2007

10

15-745 © Tim Callahan 37

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 38

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 39

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 40

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 Lecture 17 3/20/2007

11

15-745 © Tim Callahan 41

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 42

But what if you want more detail?

• Structural / Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 43

But what if you want more detail?

• Structural / Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 44

But what if you want more detail?

• Structural and Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 Lecture 17 3/20/2007

12

15-745 © Tim Callahan 45

But what if you want more detail?

• Structural / Interval
analysis: recognize and
categorize both cyclic and
acyclic control patterns.

• Form nested regions, each
of which has a pattern
type

• While forming regions,
collapse each region to a
supernode

• Hopefully irreducible
regions can be
quarantined to small area

15-745 © Tim Callahan 46

Some Patterns

if-then if-then-else block

do-while
while improper

15-745 © Tim Callahan 47

Some Patterns

general proper acyclic

...can't have a template for

every example, so have some

general categories to catch the

misfits...

15-745 © Tim Callahan 48

Some Patterns

general proper acyclic general improper cyclic

15-745 Lecture 17 3/20/2007

13

15-745 © Tim Callahan 49

Control tree

• Can build a tree of the nested regions:

– each node is a region

– leaves are basic blocks

– the root is the entire procedure

– a region's parent is the immediately enclosing region

a

b c

d

a b c d

loop

if-then-else

seq

loop

15-745 © Tim Callahan 50

T1-T2 Reduction

• Oldest and simplest

• Can reduce all well-
structured graphs!

T1: self loop

T2: two-block sequenceonly requirement for T2:

second block has

single predecessor

15-745 © Tim Callahan 51

T1-T2 Reduction

• Oldest and simplest

• Can reduce all well-
structured graphs!

• But...cannot reduce
irreducible graphs!
--end up w/ “limit flow graph”

T1: self loop

T2: two-block sequence

15-745 © Tim Callahan 52

T1-T2 Example

• Hierarchy can seem
strange....

15-745 Lecture 17 3/20/2007

14

15-745 © Tim Callahan 53

T1-T2 Example

• Hierarchy can seem
strange....

T2

(out edges from new region
get merged – not shown)

15-745 © Tim Callahan 54

T1-T2 Example

• Hierarchy can seem
strange....

T2

15-745 © Tim Callahan 55

T1-T2 Example

• Hierarchy can seem
strange....

T1

15-745 © Tim Callahan 56

T1-T2 Example

• Hierarchy can seem
strange....

T2

15-745 Lecture 17 3/20/2007

15

15-745 © Tim Callahan 57

But why????

• Makes IR -> source conversion prettier....

15-745 © Tim Callahan 58

But why...really????

• An alternate approach to dataflow analysis
– before, we iterated on basic blocks

• Now, each time we form a region ->
form a composite transfer function that
summarizes the effect of that region

• Simple example:

A

BfB()

fA()

x

fA(x)

fB(fA(x))

A

B[fB•fA]()

fB(fA(x)) =

[fB•fA](x)

x

15-745 © Tim Callahan 59

Dataflow Analysis on the Control

Tree
• After all regions are formed -
when there is just one region for the whole proc -
when you've reached the root of the control tree -
you get one transfer function for the whole proc

• But what good is it to have dataflow info at the exit
node?

• The rest of the story: you also build functions for
distributing the results back down the control tree to
each region, eventually to the leaves (basic blocks)

15-745 © Tim Callahan 60

• How to calculate fB•fA?

• Well, we have already done this when computing the
transfer function of a block that is a sequence of
instructions...but to spell it out:

fA(x) = GenA U (x-KillA)

fB(fA(x))
= GenB U (fA(x) – KillB)
= GenB U ((GenA U (x-KillA)) – KillB)
= GenB U (GenA – KillB) U (x – (KillA U KillB))

Details...

A

BfB()

fA()

x

fA(x)

fB(fA(x))

15-745 Lecture 17 3/20/2007

16

15-745 © Tim Callahan 61

More Sample Calculations

fA

fB

fR(x) = fB(fA(x)) ^ fA(x)

= [(fB•fA) ^ fA](x)

= [(fB ^ I) • fA](x)

^ is the meet operator

• gets just slightly more complicated

for flow-sensitive transfer functions

where fA
then

is different than fA
else

• distribution caluclation (coming down

the control tree) is obvious

x

y

R

15-745 © Tim Callahan 62

More Sample Calculations

fA

fB

y = fR(x) = fA(x) ^ [fA•fB•fA](x) ^

= [fA•(fB•fA)*] (x)

* is Kleene (“clay-nee”) closure:

f* = I ^ f ^ f•f ^ f•f•f ^

top-down calculations:

• in(fA) = [(fB•fA)*](x)

• in(fB) = fA(in(fA))

x

y

R

15-745 © Tim Callahan 63

Review

• Structural, Interval, or T1-T2: find nested
regions and build the control tree

• Summarize transfer function for each region as
you go up the control tree

• Evaluate

• Distribute results going back down the control
tree

• Analogies:

– solving system of equations by elimination
– parallel prefix

15-745 © Tim Callahan 64

But still ... why????

• Is this better than an iterative data flow solution?

– Well, can be useful with incremental changes: could confine
re-analysis to a small subtree of the control tree

– Might be better than iterative for deeply nested graphs (if
loop closures can be computed efficiently)

– Historically, at the time this approach was developed,
it was not recognized that iterative dataflow can be solved
quickly IF you visit the basic blocks in the correct order
(fwd or bkwd topological)

• But....

– doesn't handle irreducible areas well

– backward dataflow problems – difficult!

• iterative dataflow symmetric; dom/postdom symmetric;
BUT, many CFGs are not reducible when reversed... why?

15-745 Lecture 17 3/20/2007

17

15-745 © Tim Callahan 65 15-745 © Tim Callahan 66

Another use for profiling: loop count

• A large class of loop optimizations improve the time per
iteration but add a fixed overhead

• Characteristic break-even point

iterations

total

loop

time
break

even

optimized

unoptimized

o
v

er
h

ea
d

15-745 © Tim Callahan 67

Another use for profiling: loop count

• Obvious approach: if average loop count (from profiling)
is less than the break-even point, then use the un-
optimized version

• But what if loop count varies greatly? ...and the average
is near the break-even point?

• From vectorization: compile two versions of the loop

if (N > breakeven)

[vector_loop];

else

[non-vector_loop];

15-745 © Tim Callahan 68

Another use for profiling: loop count

• But...how do you know beforehand if the loop count
varies? No profiling we've described summarizes
variance of loop counts.

• And if there is no variance, the added code for two loop
versions is useless code expansion, and the loop count
check at the loop entry is useless overhead.

• So you want 2 versions ONLY when there's variance

• Possible approaches:

– special record of loop counts
– whole program path
– simple predictors (works even with WHILE loops)
– dynamic optimization

15-745 Lecture 17 3/20/2007

18

15-745 © Tim Callahan 69

When is run-time check worth the

overhead?
• See also: Calpa – in reading list

– Uses compile-time analysis to decide where it is
beneficial to add dynamic (run-time) checks for run-
time re-optimization

15-745 © Tim Callahan 70

Big Profiling Issue: Robustness

• Can your profile-driven optimization hurt if the actual
data set differs much from the training data set?

• How much?

• Are you hosed?

• Can you buy insurance?

15-745 © Tim Callahan 71

Profile-based gcc optimization
• -fprofile-arcs

– Instrument arcs during compilation to generate coverage data or for
profile-directed block ordering. During execution the program records
how many times each branch is executed and how many times it is
taken. When the compiled program exits it saves this data to a file
called sourcename.da for each source file.

• -fbranch-probabilities

– After running a program compiled with -fprofile-arcs (see Options for
Debugging Your Program or gcc), you can compile it a second time using
-fbranch-probabilities, to improve optimizations based on the number
of times each branch was taken.

• -fno-guess-branch-probability

– Do not guess branch probabilities using a randomized model.

– Sometimes gcc will opt to use a randomized model to guess branch
probabilities, when none are available

15-745 © Tim Callahan 72

done.

15-745 Lecture 17 3/20/2007

19

15-745 © Tim Callahan 73

Outline I
• motivating example, other motivation (test coverage)
• can we exploit “probably” rather than “always”?
• common case fast – what is the common case?
• gprof, node, edge – brief how-to
• big pic – branch prediction is just hw profiling..trace..

• profile usage for standard optimizations

– tail dup, superblock – cost is code expansion

– just xform, then use existing opts

– extended by ammons – actual benefit from
duplication?

• hyperblock formation heuristic
• will add paths as long as doesn't impact main path

• my case – loops – kernel – excluding – prune points
15-745 © Tim Callahan 74

Outline II
• probability quiz ---aka lies, damn lies, statistics
• edge profiles alone cannot predict common path
• path profiling use: branch correlation

• san diego vs. pittsburgh
• also important for test coverage

• efficient path profiling

– built on earlier work to improve edge profiling

• common situation – per iteration savings, fixed overhead
• runtime test – worth the overhead?
• similar situation – calpa
• Data profiling?
• more general issue – robustness in the face of different
datasets – or even different phases in the same dataset

