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Review: Dominators

• X dom Y
iff every execution path 
from the entry to Y goes 
through X

• Solved by simple fwd 
dataflow:

– meet: intersection 
(only dominated by X if 
all predecessors are 
dominated by X)

– transfer: add myself
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More Review: Natural Loops

• Defined by a backedge
Y -> X  where X dom Y

• Finds (only) single-entry 
loops.

• Body: X plus those blocks 
that can reach Y without 
going through X.

• Will find nested loop 
structure
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F

Entry
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Not all cycles are natural loops

• “irreducible”, “improper”, 
not “well-structured”...

• a multi-entry loop

• a CFG is “well-structured”
iff  its edge set can be 
partitioned into forward 
edges that form a DAG, 
and backedges according 
to our natural loop 
definition (the head 
dominates the tail)

A

X

C D

F

Entry

A
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Ok, let's find all the cycles

• Actually, usually want to 
find strongly connected 
components (SCC)

• SCC: every node in the SCC 
can reach every other node 
in that SCC by some  
directed path

• Can SCCs be nested?

• SCCs important in many 
areas – e.g. for cyclic 
scheduling, you want to find 
the SCCs in the DFG

• Singletons – not part of a 
cycle, their own SCC
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exactly one 
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Finding SCCs: Tarjan's 

Algorithm
visit(v)

{

N[v] = c;  /* Mark v visited by assigning it a visit number. */

L[v] = c;  /* Low-link initially equal to visit number. */

c++;

push v onto the stack;

for each w in OUT(v) {

if N[w] == UNDEFINED {      /* N[w] == UNDEFINED means w is unvisited. */

visit(w);

L[v] = min(L[v], L[w]);        /* Low-link number can propagate upward.  */

}  else if w is on the stack {

L[v] = min(L[v], N[w]);

}

}

/* Check if SC component found. */

if L[v] == N[v] {

pop vertices off stack down to v;    /* These make up an SC component. */

}

}

this is the subtlety...
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Finding SCCs: Tarjan's Algorithm

main_program {

c : = 0;     /* c is the counter for visit numbers. */

for each vertex, v, in the graph,

N[v] = UNDEFINED  /* Mark v "unvisited". */

visit(v0);  /* v0 is the starting vertex. */

}
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Finding SCCs: Tarjan's Algorithm
a

b

d c
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stack:

N0L0

a
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Finding SCCs: Tarjan's Algorithm
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Finding SCCs: Tarjan's Algorithm
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e
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g

h i

j

visiting:  c

stack:

N0L0

a

N1L1

b

N2L2 

c

c sees visited 

successor c;

L[c] = min(L[c],N[c]) 
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Finding SCCs: Tarjan's Algorithm
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visiting:  e

stack:

N0L0
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N2L2 
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting:  e

stack:

N0L0

a

N1L1

b

N2L2 

c
e

N3L1 

e sees visited 

successor b;

L[e] = min(L[e],N[b]) 

Copyright Tim Callahan
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting:  f

stack:

N0L0

a

N1L1

b

N2L2 

c
e

N3L1 
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f

N4L4 
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e
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g

h i

j

visiting:  g

stack:

N0L0

a

N1L1

b

N2L2 

c
e

N3L1 
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f

N4L4 
g

N5L5 
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Finding SCCs: Tarjan's Algorithm
a

b

d c
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visiting:  h

stack:

N0L0
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N2L2 

c
e

N3L1 
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Finding SCCs: Tarjan's Algorithm
a

b

d c
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visiting:  i

stack:
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a
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b

N2L2 

c
e

N3L1 
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N4L4 
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i
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Finding SCCs: Tarjan's Algorithm
a
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visiting:  i

stack:
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a

N1L1

b

N2L2 

c
e

N3L1 
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f

N4L4 
g

N5L5 

N6L6 

h

N7L6 

i

i sees visited 

successor h;

L[i] = min(L[i],N[h]) 
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e
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g

h i

j

visiting:  j

stack:

N0L0

a
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b

N2L2 

c
e

N3L1 
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f

N4L4 
g

N5L5 

N6L6 
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j
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Finding SCCs: Tarjan's Algorithm
a

b

d c
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leaving:  j

stack:

N0L0
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b

N2L2 

c
e

N3L1 
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f

N4L4 
g

N5L5 

N6L6 

h

N7L6 

i

N8L8 

j
j sees N=L;

pops stack to create

SCC {j}
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving:  i

stack:

N0L0

a

N1L1

b

N2L2 

c
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f

N4L4 
g

N5L5 

N6L6 

h

N7L6 

i

N8L8 

i sees N != L;

does nothing
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving:  h

stack:

N0L0

a

N1L1

b

N2L2 

c
e

N3L1 
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f

N4L4 
g

N5L5 

N6L6 

h

N7L6 

i

N8L8 

h sees N = L;

pops stack to form

SCC {i,h}
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i
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leaving:  g

stack:

N0L0
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N1L1

b
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c
e

N3L1 
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f

N4L4 
g

N5L5 

N6L6 N7L6 

N8L8 

g sees N = L;

pops stack to form

SCC {g}
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Finding SCCs: Tarjan's Algorithm
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f

N4L4 

N5L5 

N6L6 N7L6 

N8L8 

f sees N = L;

pops stack to form

SCC {f}
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Finding SCCs: Tarjan's Algorithm
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

e sees N != L;

does nothing
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Finding SCCs: Tarjan's Algorithm
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leaving: c

stack:
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a

N1L1

b
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c
e

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

c updates

L[c]=min(L[c],L[e]);

sees L != N;

does nothing



15-745 Lecture 17 3/20/2007

8

15-745 © Tim Callahan 29

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

visiting: d

stack:

N0L0

a

N1L1

b

N2L1 

c
e

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L9

dd

stack contents:

interesting...
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Finding SCCs: Tarjan's Algorithm
a
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visiting: d

stack:

N0L0
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N1L1

b

N2L1 

c
e

N3L1 
Copyright Tim Callahan

N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L3
d sees visited 

successor e;

L[d] = min(L[d],N[e]) 

d

15-745 © Tim Callahan 31

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: d

stack:

N0L0

a

N1L1

b

N2L1 

c
e

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L3
d sees N != L;

does nothing 

d
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: b

stack:

N0L0

a

N1L1

b

N2L1 

c
e

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L3
b updates

L[b]=min(L[b],L[d]);

sees N = L;

pops stack down to b

SCC = {d,e,c,b}d
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Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

leaving: a

stack:

N0L0

a

N1L1

N2L1 

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L3
a sees visited succ g;

L[a]=min(L[a],N[g])

a sees N = L, forms

SCC {a}

15-745 © Tim Callahan 34

Finding SCCs: Tarjan's Algorithm
a

b

d c

e

f

g

h i

j

N0L0

N1L1

N2L1 

N3L1 
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N4L4 

N5L5 

N6L6 N7L6 

N8L8 

N9L3
One description: this algorithm
interleaves two tree traversals:

one is the DFS, the other is 

encoded in the stack popping...
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But what if you want more detail?

• Structural and Interval 
analysis: recognize and 
categorize both cyclic and 
acyclic control patterns.

• Form nested regions, each 
of which has a pattern type

• While forming regions, 
collapse each region to a 
supernode

• Hopefully irreducible 
regions can be quarantined 
to a small area 
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But what if you want more detail?
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Some Patterns

if-then if-then-else block

do-while
while improper
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Some Patterns

general proper acyclic

...can't have a template for

every example, so have some

general categories to catch the

misfits...
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Some Patterns

general proper acyclic general improper cyclic



15-745 Lecture 17 3/20/2007

13

15-745 © Tim Callahan 49

Control tree

• Can build a tree of the nested regions:

– each node is a region

– leaves are basic blocks

– the root is the entire procedure

– a region's parent is the immediately enclosing region

a

b c

d

a b c d

loop

if-then-else

seq

loop
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T1-T2 Reduction

• Oldest and simplest

• Can reduce all well-
structured graphs!

T1: self loop

T2: two-block sequenceonly requirement for T2:

second block has

single predecessor
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T1-T2 Reduction

• Oldest and simplest

• Can reduce all well-
structured graphs!

• But...cannot reduce  
irreducible graphs!
--end up w/ “limit flow graph”

T1: self loop

T2: two-block sequence
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T1-T2 Example

• Hierarchy can seem 
strange....
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T1-T2 Example

• Hierarchy can seem 
strange....

T2

(out edges  from new region
get merged – not shown)
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T1-T2 Example

• Hierarchy can seem 
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T1-T2 Example

• Hierarchy can seem 
strange....

T1
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T1-T2 Example

• Hierarchy can seem 
strange....

T2
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But why????

• Makes IR -> source conversion prettier....
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But why...really????

• An alternate approach to  dataflow analysis
– before, we iterated on basic blocks

• Now, each time we form a region ->
form a composite transfer function that
summarizes the effect of that region

• Simple example:

A

BfB( )

fA( )

x

fA(x)

fB(fA(x))

A

B[fB•fA]( )

fB(fA(x)) =

[fB•fA](x)

x
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Dataflow Analysis on the Control 

Tree
• After all regions are formed -
when there is just one region for the whole proc -
when you've reached the root of the control tree -
you get one transfer function for the whole proc

• But what good is it to have dataflow info at the exit 
node?

• The rest of the story: you also build functions for 
distributing the results back down the control tree to 
each region, eventually to the leaves (basic blocks)
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• How to calculate fB•fA?

• Well, we have already done this when computing the 
transfer function of a block that is a sequence of 
instructions...but to spell it out:

fA(x) = GenA U  (x-KillA)

fB(fA(x)) 
= GenB U (fA(x) – KillB)
= GenB U ((GenA U (x-KillA)) – KillB)
= GenB U (GenA – KillB) U (x – (KillA U KillB))

Details...

A

BfB( )

fA( )

x

fA(x)

fB(fA(x))
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More Sample Calculations

fA

fB

fR(x) = fB(fA(x)) ^ fA(x)

= [ (fB•fA) ^ fA](x)

= [ (fB ^ I) • fA ](x)

^  is the meet operator

• gets just slightly more complicated

for flow-sensitive transfer functions

where fA
then

is different than fA
else

• distribution caluclation (coming down

the control tree) is obvious

x

y

R
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More Sample Calculations

fA

fB

y = fR(x) = fA(x) ^ [fA•fB•fA](x) ^ ....

= [fA•(fB•fA)*] (x)

*  is  Kleene (“clay-nee”) closure:

f* = I ^ f ^ f•f ^ f•f•f ^ ....

top-down calculations:

• in(fA) = [(fB•fA)*](x)

• in(fB) = fA(in(fA))

x

y

R
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Review

• Structural, Interval, or T1-T2: find nested 
regions and build the control tree

• Summarize transfer function for each region as 
you go up the control tree

• Evaluate

• Distribute results going back down the control 
tree

• Analogies:

– solving system of equations by elimination
– parallel prefix
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But still ... why????

• Is this better than an iterative data flow solution?

– Well, can be useful with incremental changes: could confine 
re-analysis to a small subtree of the control tree

– Might be better than iterative for deeply nested graphs (if 
loop closures can be computed efficiently)

– Historically, at the time this approach was developed,
it was not recognized that iterative  dataflow can be solved 
quickly IF you visit the basic blocks in the correct order 
(fwd or bkwd topological)

• But....

– doesn't handle irreducible areas well

– backward dataflow problems – difficult!

• iterative dataflow symmetric; dom/postdom symmetric;
BUT, many CFGs are not reducible when reversed... why?
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Another use for profiling: loop count

• A large class of loop optimizations improve the time per 
iteration but add a fixed overhead

• Characteristic break-even point

iterations

total

loop

time
break

even

optimized

unoptimized

o
v

er
h

ea
d
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Another use for profiling: loop count

• Obvious approach: if average loop count (from profiling) 
is less than the break-even point, then use the un-
optimized version

• But what if loop count varies greatly?   ...and the average 
is near the break-even point?    

• From vectorization: compile two versions of the loop

if (N > breakeven)

[vector_loop];

else

[non-vector_loop];

15-745 © Tim Callahan 68

Another use for profiling: loop count

• But...how do you know beforehand if the loop count 
varies?   No profiling we've described summarizes 
variance of loop counts.

• And if there is no variance, the added code for two loop 
versions is useless code expansion, and the loop count 
check at the loop entry is useless overhead.

• So you want 2 versions ONLY when there's variance

• Possible approaches:

– special record of loop counts
– whole program path
– simple predictors (works even with WHILE loops)
– dynamic optimization
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When is run-time check worth the 

overhead?
• See also: Calpa – in reading list

– Uses compile-time analysis to decide where it is 
beneficial to add dynamic (run-time) checks for run-
time re-optimization
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Big Profiling Issue: Robustness

• Can your profile-driven optimization hurt if the actual 
data set differs much from the training data set?

• How much?

• Are you hosed?

• Can you buy insurance?
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Profile-based gcc optimization
• -fprofile-arcs 

– Instrument arcs during compilation to generate coverage data or for 
profile-directed block ordering. During execution the program records 
how many times each branch is executed and how many times it is 
taken. When the compiled program exits it saves this data to a file 
called sourcename.da for each source file. 

• -fbranch-probabilities 

– After running a program compiled with -fprofile-arcs (see Options for 
Debugging Your Program or gcc), you can compile it a second time using 
-fbranch-probabilities, to improve optimizations based on the number 
of times each branch was taken. 

• -fno-guess-branch-probability 

– Do not guess branch probabilities using a randomized model. 

– Sometimes gcc will opt to use a randomized model to guess branch
probabilities, when none are available
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done.



15-745 Lecture 17 3/20/2007

19

15-745 © Tim Callahan 73

Outline I
• motivating example, other motivation (test coverage)
• can we exploit “probably” rather than “always”?
• common case fast – what is the common case?
• gprof, node, edge – brief how-to
• big pic – branch prediction is just hw profiling..trace..

• profile usage for standard optimizations

– tail dup, superblock – cost is code expansion

– just xform, then use existing opts

– extended by ammons – actual benefit from 
duplication?

• hyperblock formation heuristic
• will add paths as long as doesn't impact main path

• my case – loops – kernel – excluding – prune points
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Outline II
• probability quiz ---aka lies, damn lies, statistics
• edge profiles alone cannot predict common path
• path profiling use: branch correlation

• san diego vs. pittsburgh
• also important for test coverage

• efficient path profiling

– built on earlier work to improve edge profiling

• common situation – per iteration savings, fixed overhead
• runtime test – worth the overhead?
• similar situation – calpa
• Data profiling?
• more general issue – robustness in the face of different 
datasets – or even different phases in the same dataset


