
15-745 Lecture 2: background 1/18/2007

1

15-745 Lecture 2

Tim Callahan
CMU

- 2 -

My Background

• UC Berkeley PhD – compiler for reconfigurable computing
• one-person compiler team – not recommended

• IR: SUIF plus home-brew graph

• SRC Computers – compiler for Pentium + Xilinx FPGA
• IR: Commercial front end plus home-brew graph

• CMU (Phoenix) – compiler for spatial computing
• IR: SUIF plus home-brew graph: Pegasus

- 3 -

Outline

• IRs

• Graphs

• Control flow
• Dominators

• Local data flow

• Global data flow
• Reaching Definitions

• Liveness

• Task 0

- 4 -

IRs (Intermediate 

Representations)

• Typically starts similar to source language, and eventually gets
``lowered'' to something close to assembly.

• Contains all semantic information necessary to execute the 
program

• Even hello_world() is messier than you think…

• Always remember what is your essential IR, versus what are
the auxilliary / side data structures…



15-745 Lecture 2: background 1/18/2007

2

- 5 -

IRs (Intermediate 

Representations)

• Starting point: AST (abstract syntax tree)
• typically retains artifacts from source language

• see SUIF hierarchy for example

- 6 -

IRs (Intermediate 

Representations)

• Dismantle high-level control structures to get control flow graph
• are we losing something by throwing away this information?

• Basic blocks contain lists of statements:
• LHS is a variable

• RHS is an expression tree

A = (B+C)-(D<<2);

D = A*3;

-

<<

+
varB

varC

varD

2

varA =

varD = * varB

3

- 7 -

IRs (Intermediate 

Representations)

• Even lower: tuples: one operation

• Introduce “compiler temporaries”, or 
“pseudoregisters”

A = (B+C)-(D<<2);

D = A*3;

T1 = B+C;

T2 = D<<2;

A = T1 – T2;

D = A * 3; 

- 8 -

IRs (Intermediate 

Representations)

• But you can go in the other direction too –
build up the DAG for each basic block:

A = (B+C)-(D<<2);

D = A*3;

T1 = B+C;

T2 = D<<2;

A = T1 – T2;

D = A * 3; 

B C D 2

-

<<+

*

A D

3



15-745 Lecture 2: background 1/18/2007

3

- 9 -

IRs (Intermediate 

Representations)

• But you can go in the other direction too –
build up the DAG for each basic block:

A = (B+C)-(D<<2);

D = A*3;

E = B + C;

T1 = B+C;

T2 = D<<2;

A = T1 – T2;

D = A * 3; 

E =B + C;

B C D 2

-

<<+

*

A D

3

E

- 10 -

Control Flow Graph (CFG)

• One per procedure

• Special Entry and Exit nodes

• Dominators:
x dom y if every possible execution path from the entry 
to y includes x.

• Reflexive: x dom x

- 11 -

Computing Dominators

• One per procedure

• Special Entry and Exit nodes

• Dominators:
x dom y if every possible execution path from the entry 
to y includes x.

• Reflexive: x dom x

- 12 -

Computing dominators

0

5

2

3

4

1

{0} •Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…



15-745 Lecture 2: background 1/18/2007

4

- 13 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{*}

{*}

{*}

{*}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{*}

{*}

{*}

{*}

{*}

- 14 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{*}

{*}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{*}

{*}

{*}

{*}

{*}

- 15 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{0,1}

{*}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

•What if we had initialized to 

empty sets?{*}

{*}

{*}

{*}

{*}

- 16 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{0,1}

{0,1,2}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{0,1,2,3}

{0,1,2}

{*}

{*}

{*}



15-745 Lecture 2: background 1/18/2007

5

- 17 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{0,1}

{0,1,2}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{0,1,2,3}

{0,1,2}

{0,1,2}

{*}

{*}

- 18 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{0,1}

{0,1,2}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{0,1,2,3}

{0,1,2}

{0,1,2}

{0,1,2,4}

{0}

- 19 -

Computing dominators

0

5

2

3

4

1

{0}{0}

{0}

{0,1}

{0,1}

{0,1,2}

•Initialize:

•0{0}, rest {*}

•Meet function: intersect

•Transfer function: add self

•Iterate until no change…

{0,1,2,3}

{0,1,2}

{0,1,2}

{0,1,2,4}

{0}


