15-745 Lecture 2

15-745 Lecture 2

Dataflow Analysis

Basic Blocks

Related Optimizations

Copyright © Seth Copen Goldstein 2005

cture 2 15745 © Seth Copen Goldstein 2005

Dataflow Analysis

+ Last time we looked at code transformations

- Constant propagation

- Copy propagation

- Common sub-expression elimination

* Today, dataflow analysis:
- How to determine if it is legal to perform

such an optimization

- (Not doing analysis to determine if it is

beneficial)

cture 2 15745 © Seth Copen Goldstein 2005

}

A sample program

int £ib10 (void) {

int n = 10;
int older = O;
int old = 1;

ir What are those humbers?
int i;

if (n <= 1) return n;

for (i = 2; i<n;) {
result = old + older;
older = old;
old = result;

}

return result;

A Comment about the IR

S oo WK

8:
9:

10:
11:
12:
13:
14:

cture 2 15-745 © Seth Copen Goldstein 2005

n <- 10

older <- 0

old <- 1

result <- 0

if n <= 1 goto 14
i<-2

if i > n goto 13

result <- old + older
older <- old
old <- result

JUMP 7
return result

return n

Simple Constant Propagation

Can we do SCP?
How do we recognize it?

What aren't we doing?
Metanote:

- keep opts simple!
- Use combined power

S oo WK

9:

10:
11:
12:
13:
14:

ecture 2 15-745 © Seth Copen Goldstein 2005

n <- 10

older <- 0

old <- 1

result <- 0

if n <= 1 goto 14
i<-2

if i > n goto 13

result <- old + older
older <- old
old <- result

JUMP 7
return result

return n

1/18/2007

15-745 Lecture 2

Reaching Definitions

* A definition of variable v at program point d
reaches program point u if there exists a path
of control flow edges from d o u that does not
contain a definition of v.

1: n <- 10
e 2: older <- 0
3: old <- 1
@ 4: result <- 0
5: if n <= 1 goto 14
‘;, 6: i<-2
e 7: if i > n goto 13
@ 8: result <- old + older
@ 9: older <- old
@ 10: old <- result
‘E’ 11:
@ @ 12: JUMP 7
13: return result
@ 14: return n

Lecture 2 15745 © Seth Copen Goldstein 2005

Reaching Definitions (ex)

- 1reaches 5,7, and 14

14, Really?

Meta-notes:

* (almost) always conservative

- only know what we know
* Keep it simple:

+ What opt(s), if run before

this would help

+ What about:

1: x <=0

2: if (false) =x<-1
3: .. x ..

 Does 1 reach 3?

+ What opt changes this?

odoUdWN K

n <- 10

older <- 0

old <- 1

result <- 0

if n <= 1 goto 14
i<-2

if i > n goto 13
result <- old + older
older <- old

old <- result

JUMP 7
return result
return n

15-745_© Seth Copen Goldstein 2005

Calculating Reaching Definitions

* A definition of variable v at program point d
reaches program point u if there exists a path
of control flow edges from d to u that does not
contain a definition of v.

* Build up RD stmt by stmt

+ Stmt s, "d: v<- x op y", generates d

- Stmt s, "d: v<- x op ¥", kills all other defs(v)
Or,

- Gen[s]={d}

+ Kill[s] = defs(v)-{d}

Lecture 2 15-745 © Seth Copen Goldstein 2005

Lec

ture

2

Gen and kill for each stmt

n <- 10

older <- 0

old <- 1

result <- 0

if n <= 1 goto 14
i<=-2

if i > n goto 13
result <- old + older
9: older <- old

10: old <- result

0 JdoUes WNhKE

12: Jump 7
13: return result
14: return n

Gen kil
1

2 9
3 10
4 8
6 11
8 4
9 2
10 3

How can we determine the defs that reach a node?

We can use:

- control flow information

¢ gen Gnd k'” 'nfo 15-745 © Seth Copen Goldstein 2005

1/18/2007

15-745 Lecture 2

« In[n]:

*+ Out[n]:

Computing in[n] and out[n]

the set of defs that reach the
beginning of node n

the set of defs that reach the
end of node n

inN[n]= Y outlp]

pe pred[n]

out[n] = gen[n]Y (in[n]—kill[n])

« Initialize in[n]=out[n]={} for all n
+ Solve iteratively

15-745 © Seth Copen Goldstein 2005

What is pred[n]?

* Pred[n] are all nodes that can reach n in the

control flow graph.

- Eg. pred[7]={6,12}

What order to eval nodes?

* Does it matter?
+ Letsdo:1,2,3,45,14,6,7,13,89,10,11,12

1: n <- 10

2: older <- 0

3: old <- 1

4: result <- 0

5: if n <= 1 goto 14
6: i<-2

7: if i > n goto 13
8: result <- old + older
9: older <- old

10: old <- result

11:

12: JUMP 7

13: return result

return n

15745 © Seth Copen Goldstein 2005

* Order:12,3,45,14,6,7,13,89,10,11,12

in[n]=

gggggg

Y ouwlp]

pe pred[n]

n <- 10

older <- 0

old <- 1

result <- 0

if n <= 1 goto 14
i<-2

if i > n goto 13
result <- old + older
older <- old

10: old <- result

12: Jump 7
13: return result
14: return n

Gen

o B W

o

15745 © Seth Copen Goldstein 2005

out[n] = gen[n]Y (in[n]—kill[n])

kill in out

1: n <- 10
e 2: older <- 0
3: old <- 1
@ 4: result <- 0
5: if n <= 1 goto 14
‘;, 6: i<-2
e 7: if i > n goto 13
@ 8: result <- old + older
@ 9: older <- old
@ 10: old <- result
‘E’ 11:
@ @ 12: JUMP 7
13: return result
@ 14: return n
Lecture. 2 15745 © Seth Copen Goldstein 2005 10
Example:

1/18/2007

15-745 Lecture 2 1/18/2007

Example (pass 1) Example (pass 2)
+ Order:1,2,3,4,5,14,6,7,13,89,10,11,12 + Order:1,2,3,4,5,14,6,7,13,89,10,11,12
in[n]= Y outlpl out|n]= gen[n]Y (in[n]—kill[n]) in[n]= Y outlpl out|n]= gen[n]Y (in[n]—kill[n])
pe pred[n] pe pred[n]
Gen kill in out Gen kill in out
1: n <= 10 1 1 1: n <= 10 1 1
2: older <- 0 2 9 1 1,2 2: older <- 0 2 9 1 1,2
3: old <=1 3 10 1,2 1,2,3 3: old <-1 3 10 1,2 1,2,3
4: result <- 0 4 8 1-3 1-4 4: result <- 0 4 8 1-3 1-4
5: if n <= 1 goto 14 1-4 1-4 5: if n <= 1 goto 14 1-4 1-4
6: i <- 2 6 11 1-4 1-4,6 6: i <- 2 6 11 1-4 1-4,6
7: if i > n goto 13 1-4,6 1-4,6 7: if i > n goto 13 1-4,6,8-11/1-4,6,8-11
8: result <- old + older 8 4 1-4,6 1-3,6,8 8: result <- old + older 8 4 1-4,6,8-11|1-3,6,8-11
9: older <- old 9 2 1-3,6,8 1,3,6,8,9 9: older <- old 9 2 1-3,6,8-11|1,3,6,8-11
10: old <- result 10 3 1,3,6,8,9 1,6,8-10 10: old <- result 10 3 1,3,6,8-11|1,6,8-11
11: 11:
12: Jump 7 1,8-11 1,8-11 12: Jump 7 1,8-11 1,8-11
13: return result 1-4,6 1-4,6 13: return result 1-4,6 1-4,6
14: return n 1-4 1-4 14: return n 1-4 1-4
An Improvement: Basic Blocks BB sets
. . Gen Kkill
* No need to compute this one stmt at a time
1: n <= 10 1
* For straight line code: 2: older <- 0 2 9
. . 1 3. ola<1 3 10
- In[S]" 52] - 'n[SI] 4: result <- 0 4 8
- Out[sl; s2] = out[s2] g —orifnsciaen 1234 890
1 <-
+ Can we combine the gen and kill sets into one 477 if i > n goto 13
Se-‘. per. BB‘) 8: result <- old + older 8 4
) Gen Kkill 9: older <- old 9 2
105 <1 1 6 4 6 10: old <- result 10 3
i <=
- ’ 11
*+ Gen[BB]={2,3,4,5} z i :' z . 2 u 12: JuMp 7 8-11 2-4,6
- 1
- Kill[BB]={1,8,11} PR i 18 2 D13 return result
. Gen[SI,SZ]: 5: m<- i + k 5
- Kill[s1;s2]=

15-745 Lecture 2

BB sets

Gen=(1,2,3,4}
Kill={8,9,10}

Gen={6}
Kill={11}

Gen={8,9,10,11}
Kill={2,3,4,6}

Lecture 2 15745 © Seth Copen Goldstein 2005

BB sets
In out
Gen=(1,2,3,4}
Kill=(8,9,10} 1234
Gen={6}
Kill={11} 1234 12346

1-4,6,8-11 1,8-11

Gen={8,9,10,11}
Kill={2,3,4,6}

2 15745 © Seth Copen Goldstein 2005

1-4,6,8-11 1-46,8-11

the node
+ Defined by:
- Basic attributes: (gen and kill)

- Initial values for each node b
- Solve for fixed point solution

Lecture 2 15-745 © Seth Copen Goldstein 2005

Forward Dataflow

- Transfer function: out[b]=F..(in[b])
- Meet operator: in[b]=M(out[p]) for all pepred(b)
- Set Of values (Cl IG'H'iCC, in this case powerset of program poinfs)

+ Reaching definitions is a forward dataflow problem:
It propgates information from preds of a node to

How to implement?

+ Values?

+ Gen?

- Kill?

* Fpp?

+ Order to visit nodes?
* When are we done?

- In fact, do we know we terminate?

2 15-745 © Seth Copen Goldstein 2005

1/18/2007

15-745 Lecture 2

Implementing RD

+ Values: bits in a bit vector

* Gen: 1 in each position generated, otherwise O
+ Kill: O in each position killed, otherwise 1

* Fppi out[b] = (in[b] | gen[b]) & kill[b]

+ Init in[b]=out[b]=0

« When are we done?
+ What order to visit nodes? Does it matter?

RD Worklist algorithm

Initialize: in[B] = out[b] = &
Initialize: in[entry] = &
Work queue, W = all Blocks in topological order
while (W[1= 0) {

remove b from W

old = out[b]

in[b] = {over all pred(p) € b} U out[p]

out[b] = gen[b] U (in[b] - kill[b])

if (old = out[b]) W = W U succ(b)

Storing Rd information

+ Use-def chains: for each use of var x in s, a list
of definitions of x that reach s

1l: n <= 10 1
2: older <- 0 1 1,2
3: old <-1 1,2 1,2,3
4: refult <- 0 1-3 1-4
5: if <= 1 goto 14 1-4 1-4
6: i‘:— 2 1-4 1-4,6
7: if i > n goto 13 1-4,6,8-11 1-4,6,8-11
8: result <- old + older 1-4,6,8-11 1-3,6,8-11
9: older <- old Q 1-3,6,8-11 1,3,6,8-11
10: old <- result 1,3,6,8-11 1,6,8-11
11:
12: Jump 7 1,8-11 1,8-11
13: return result 1-4,6 1-4,6

: return n 1-4 1-4

Def-use chains are valuable too

- Def-use chain: for each definition of var x, a
list of all uses of that definition

+ Computed from liveness analysis, a backward
dataflow problem

+ Def-use is NOT symmetric to use-def

x <1

Z>y

1/18/2007

15-745 Lecture 2

Better Constant Propagation

+ What about:
x<-1

if (y>2z)
x<-1
a<- x

Lecture 2 15745 © Seth Copen Goldstein 2005

* Meet: a
bot
c
bot

+ Init all vars

« Use a better lattice

-inf ..-2-1012 ..inf

<-anA top 1

<- a A bot
<-CAC
<-cad(ifc=d)

to: bot or top?

15745 © Seth Copen Goldstein 2005

Using RD for Simple Const. Prop.
1: n <- 10 1
2: older <- 0 1 1,2
3: old <- 1 1,2 1,2,3
4: refult <- 0 1-3 1-4
5: if <= 1 goto 14 1-4 1-4
6: i_<- 2 1-4 1-4,6
-

7: if i > n goto 13 1-4,6,8-11 1-4,6,8-11
8: result <— old + older 1-4,6,8-11 1-3,6,8-11
9: older <- old \3 1-3,6,8-11 1,3,6,8-11
10: old <- result 1,3,6,8-11 1,6,8-11
11:
12: Jump 7 1,8-11 1,8-11
13: return result 1-4,6 1-4,6

: return n 1-4 1-4

Lecture. 2 15745 © Seth Copen Goldstein 2005 25
Better Constant Propagation
* What about: x<-1
if (y>2z)
x<1
T
ac<-Xx

Loop Invariant Code Motion

* When can expression be
moved out of a loop?

Lecture 2 15-745 © Seth Copen Goldstein 2005

1/18/2007

15-745 Lecture 2

Loop Invariant Code Motion

* When can expression be

moved out of a loop?
* When all reaching definitions \/\

of operands are outside of
loop, expression is loop Xeyrz
invariant |
* Use ud-chains to detect a< x
+ Can du-chains be helpful? -
—

Liveness (def-use chains)

- A variable x is live-out of a stmt s if x can

be used along some path startingas,
otherwise x is dead.

* Why is this important?

- How can we frame this as a dataflow

problem?

Liveness as a dataflow problem

+ This is a backwards analysis
- A variable is live out if used by a successor
- Gen: For a use: indicate it is live coming into s

- Kill: Defining a variable v in s makes it dead
before s (unless s uses v to define v)

- Lattice is just live (top) and dead (bottom)

+ Values are variables

+ In[n] = variables live before n
= out[n]—kill[n] L gen[n]
+ Out[n] = variables live after n
= Yinls]

se succ(n)

Dead Code Elimination

+ Code is dead if it has no effect on the outcome

of the program.

* When is code dead?

1/18/2007

15-745 Lecture 2

Dead Code Elimination

+ Code is dead if it has no effect on the outcome
of the program.

+ When is code dead?
- When the definition is dead, and
- When the instruction has no side effects

+ So:

- run liveness
- Construct def-use chains

- Any instruction which has no users and has no
side effects can be eliminated

When can we do CSE?

a<-4+i

b<«-4+i

Available Expressions

« X+Y is "available" at statement S if

- x+y is computed along every path from the
start fo S AND

- neither x nor y is modified after the last
evaluation of x+y

a<- b+c
b <- a-d
c<- b+c
d<-a-d

Computing Available Expressions

+ Forward or backward?
+ Values?

+ Lattice?

+ gen[b] =

- kill[b] =

+ in[b] =

+ out[b] =

« initialization?

1/18/2007

15-745 Lecture 2

Computing Available Expressions

- Forward

* Values: all expressions

+ Lattice: available, not-avail

+ gen[b] = if b evals expr e and doesn't
define variables used in e

+ kill[b] = if b assigns to x,

then all exprs using x are killed.
+ out[b] = in[b] - kill[b] U gen[b]

* in[b] = what to do at a join point?

* initialization?

Computing Available Expressions

* Forward

* Values: all expressions

+ Lattice: available, not-avail

* gen[b] = if b evals expr e and doesn't

define variables used in e

+ kill[b] = if b assigns to x, exprs(x) are killed

out[b] = in[b] - kill[b] U gen[b]

- in[b] = An expr is avail only if avail on ALL

edges, so: in[b] = m over all pe pred(b), out[p]

+ Initialization

- All nodes, but entry are set to ALL avail

... = Entry is set to NONE.avail

1/18/2007

10

