15745 Lecture 20

Dependence Analysis &
Memory Hierarchy Optimizations

Todd C. Mowry/Seth Goldstein/Tim Callahan
CS5745: Optimizing Compilers
Spring 2007

An Example Memory Hierarchy

- 32 registers x 8 Bytes
real reg:
- 512 lines x 128 bytes (64kB)

128 entries -

- 32K pages x 4k bytes
- e

CS745: Depence, Memory Hierarchy Opts -2- Mowry/Goldstein/Callahan

Caches: A Quick Review

How do they work? *
Why do we care about them?
What are typical configurations today?

What are some important cache parameters that will
affect performance?

CS745: Depence, Memory Hierarchy Opts -3- Mowry/Goldstein/Callahan

Optimizing Cache Performance
Things to enhance:
temporal locality

spatial locality

Things to minimize:
conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

CS745: Depence, Memory Hierarchy Opts -4- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

Two Things We Can Manipulate

Time:
When is a object accessed?

Space:

Where does an object exist in the address space?

How do we exploit these two levers?

CS745: Depence, Memory Hierarchy Opts -5- Mowry/Goldstein/Callahan

Time: Reordering Computation

What makes it difficult o know when an object is
accessed?

How can we predict a better time o access it?
What information is needed?

How do we know that this would be safe?

CS745: Depence, Memory Hierarchy Opts -6- Mowry/Goldstein/Callahan

Space: Changing Data Layout

What do we know about an object’s location?

scalars, structures, pointer-based data structures,
arrays, code, etc.

How can we tell what a better layout would be?
how many can we create?

To what extent can we safely alter the layout?

CS745: Depence, Memory Hierarchy Opts -7- Mowry/Goldstein/Callahan

Types of Objects to Consider

Scalars
Structures & Pointers
Arrays

CS745: Depence, Memory Hierarchy Opts -8- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

Scalars
Locals
int x;
double y;
Globals foo (int =) {
int i;
Procedure arguments
X = a¥*i;
Is cache performance a }
concern here?
If so, what can be done?
CS745: Depence, Memory Hierarchy Opts -9- Mowry/Goldstein/Callahan

Structures and Pointers

What can we do here?

within a node struct {
across hodes int count;

d . h 5 double velocity;
consi ering cache: double inertia;

struct node *neighbors|[N];

} node;

CS745: Depence, Memory Hierarchy Opts -10- Mowry/Goldstein/Callahan

Arrays

double A[N][N], B[N][N];

for i = 0 to N-1
for j = 0 to N-1
A[il[3j] = BIL31I[il;

usually accessed within loop nests
makes it easy to understand “time"

what we know about array element addresses:
start of array?
relative position within array

CS745: Depence, Memory Hierarchy Opts -11- Mowry/Goldstein/Callahan

Data Dependence in Loops

Dependence can flow across iterations of the loop.

Dependence information is annotated with iteration
information.

If dependence is across iterations it is loop carried
otherwise loop independent.

for (i=0; i<n; i++) {

A[i] = B[i];
B[i+l] = A[i];

CS745: Depence, Memory Hierarchy Opts -12- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

Data Dependence in Loops

Dependence can flow across iterations of the loop.
Dependence information is annotated with iteration
information.

If dependence is across iterations it is loop carried
otherwise loop independent.

for (i=0; i<n; i++) {

& loop carried A[i] = BI[il;
< B[i+l] = A[P

& loop independent
}

CS745: Depence, Memory Hierarchy Opts -13- Mowry/Goldstein/Callahan

U111Vl l_JUUtI U 1
Dependencies
for (i=0;

pUBLV Y

i<n; i++) {

& loop carried A[i] = BI[i];
<::::::::: B[i+1l] = A[;;;::::::>

}

A[0]

B[O];} .
i=0
B[1] = A[O];

= B[1];) .
B[2] = ;=

& loop independent

Distance/Direction of
the dependence is
also important.

aA[2] = BM];}
=2

B[3] = A[2];

CS745: Depence, Memory Hierarchy Opts

-14- Mowry/Goldstein/Callahan

Iteration Space

Every iteration generates a point in an n-dimensional
space, where n is the depth of the loop nest.

for (i=0; i<n; i++) {

}
for (i=0; i<n; i++)

for (3=0; j<4; j++) {

}

CS745: Depence, Memory Hierarchy Opts -15- Mowry/Goldstein/Callahan

Distance Vector

for (i=0; i<n; i++) {

A[i] = B[i];
B[i+l] = A[i];

A[O]
B[1]

A[2]
B[3]

Br21;)
ar21; [

CS745: Depence, Memory Hierarchy Opts

B[0];) .
aro1; | 7

=B
B[2] "

Distance vector is the
difference between the target
and source iterations.

d =1l

0 Exactly the distance of the

dependence, i.e.,

IL+d=1

=2

-16- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

Example of Distance Vectors

Example of Distance Vectors
for (i=0; i<n; i++)
for (3=0; j<m; Jj++){ Avo= =Agz [Arz= =Aqp | Ag= =Ry
Ali,]j] = ; Bo,3= =Bo,2 B1,3= =B1,2 Bz,3= =Bz,z
= A[i,jl; C1,2= =Co,3 Cz,z= =C1,3 Cs,z= =Cz,3
Bli, j+].'] .= i Avi= =Agq | A= =Ag | Ag= =Agy
= B[i,31; Boo= =Bgs | Bio= =B, 22= =By
Cli+l,3] = ; Cip= =Gz [Cor= =Gy [Cgs= =Cpp
= C[i,j+1] ;
} ’ . Ao,0: :Ao,o A1,o: :A1,o A2,0= =A2,o
J | Bos= =Boo | Bii= =Bio | Boy= =By,
C1,o= =Co,1 Cz,o= =C1,1 Cs,o= =Cz,1
i
CS745: Depence, Memory Hierarchy Opts -17- Mowry/Goldstein/Callahan

for (i=0; i<n; i++) Aga= =Aga [Arg= =Aip [Agp= =Asp
£ 0: S<ms 4 Bos= =Bo2 | Big= =Bi2 | Bog= =Bp,
or (3=0; j<mi JH){ Cipo= /écos Coo= =Ci5| Cso= =Cas
Afli, 31 = _/
= A[i, j]; J 20,1_ =Ag1 21,1: =Aq 22,1: =A; 4
B[4, §+1] = ; 02= =Do,1 1,25 =Pq4 22= =Dz
J .. C11— =v0,2 =Vi2 C3,1— 2022
= B[i,Jl;
C[i+1,3]1 = A= =Poo [Aro= =Aio [Aeo= =Agp
= C[i, j+1] ; Bo,1= =Bo,o B1,1= =B1,o Bz,1: :Bz,o
} 1,05 =Vo1 20= =Ciy [Cgo=
[
1o . lo o
A yields: 0 B yields: 1 C yields:
CS745: Depence, Memory Hierarchy Opts -18- Mowry/Goldstein/Callahan

Direction Vectors
Less exact than distance vectors
+ can't analyze exactly, or
+ summary of multiple distance vectors

o {<1-1>,<1,05, <1, 15} = «<1*

CS745: Depence, Memory Hierarchy Opts -19-

[0,0] [Linf] [-inf,-1] [-inf,inf]

= + - +/-

= < > *
Example:

Mowry/Goldstein/Callahan

Handy Representation:
“Iteration Space”

for i = 0 to N-1
for j = 0 to N-1
A[il[3j] = BIL31I[il;
O0O0O000O0
O0O0O0000O0

O0O0O0O0O00O0O0
0000000000

O0O0O0O0O0OO0O0O0
0O0OO0OO0OO0OO0O0OO0OO

o
o
o
o
o
O0000O0O0
o
o
o
O

each position represents an iteration

CS745: Depence, Memory Hierarchy Opts -20- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20 3/29/2007

VYV IO01IUAULIVIILI UiULVl 111 1ItvidAduaduvil
Space When Do Cache Misses Occur?
for i = 0 to N-1
for j = 0 to N-1
i 1151 = mraTriqs
G-6-0-0-6-0-6-0-0-6-0-0 A[i][3]1 = B[31I[il;
G-6£2-60-6060-60-6-5T6-O
for i = 0 to N-1 G-6=0-60-60-0-0-60--6-9 A B
for j = 0 to N-1 ”"-””’:"‘*f’ ioooo00000 iooo000000
ALLI[5] = BISI[E]; o o 22 9 O O 00000000 00000000
P-6=6-0-0-0-6-6-075"0~0 00000000 00000000
06000666569 00000000 00000000
G-6-0-0-0-6-6-6T50T 69O 00000000 00000000
0-6-0-0-0-0- 0669 00000000 00000000
0-6-6-0-0-6-6-6-069O 00000000 00000000
J 00000000 00000000
J J
Note: iteration space is not data space
CS745: Depence, Memory Hierarchy Opts -21- Mowry/Goldstein/Callahan CS745: Depence, Memory Hierarchy Opts -22- Mowry/Goldstein/Callahan
Uptimizing the Lache behavior
1)
When Do Cache Misses Occur’ of Array Accesses
We need to answer the following questions:
when do cache misses occur?
io0000000 use “locality analysis - .
for i = 0 to N-1 00000000 can we change the order of the iterations (or
- 00000000 possibly data layout) to produce better behavior?
for j = 0 to N-1 00000000]]
A[i+31[0] = i*3; 00000000 evaluate the cost of various alternatives
00000000 does the new ordering/layout still produce correct
00000000 results?
00000000 > .
i use “dependence analysis
CS745: Depence, Memory Hierarchy Opts -23- Mowry/Goldstein/Callahan CS745: Depence, Memory Hierarchy Opts -24- Mowry/Goldstein/Callahan

15745 Lecture 20

j_Jl\ullltll\/D UL J_JUUtI

Transformations

Loop Interchange
Cache Blocking
Skewing

Loop Reversal

CS745: Depence, Memory Hierarchy Opts -25- Mowry/Goldstein/Callahan

Loop Interchange

for i = 0 to N-1 for j = 0 to N-1
forj=0toN—1X for i = 0 to N-1
A[FI1[i] = i*j; A[J1[i] = i*);

i

0000000
0000000
00000000
0000000
0000000
0000000
0000000
0000000
o000 0000
00000000
0000000
00000000
0000000
00000000
0000000
00000000

j i
(assuming N is large relative to cache size)

CS745: Depence, Memory Hierarchy Opts -26-

O Hit
@ Miss

Mowry/Goldstein/Callahan

Cache Blocking (aka “Tiling”)

for i = 0 to N-1 for JJ = 0 to N-1 by B

for j = 0 to N-1 — for i = 0 to N-1
£(A[i],A[3]); for j = JJ to max(N-1,JJ+B-1)
£(A[i]l,A[]]);
Al[i] Alj] Ali] Alj]
ioooo00000 i000000OO0OO ioooo0oo0o000 iocooooo0o0o0
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
j J J
now we can exploit temporal locality
CS745: Depence, Memory Hierarchy Opts -27- Mowry/Goldstein/Callahan

Impact on Visitation Order
in Iteration Space

for i = 0 to N-1 for JJ = 0 to N-1 by B
. —
for j = 0 to N-1 for i = 0 to N-1

£(A[i],A[3]); for j = JJ to max(N-1,JJ+B-1)
£(A[i],A[3]);

CS745: Depence, Memory Hierarchy Opts -28-

b

Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

S~ AVI1IVv JJLU\/L\LLL& 111 1 Vv\J

. .
Dimensions
for JJ = 0 to N-1 by B
for i = 0 to N-1 for KK = 0 to N-1 by B
for j = 0 to N-1 for i = 0 to N-1
for k = 0 to N-1 for j = JJ to max(N-1,JJ+B-1)

cli, k] += a[i,j1*b[j,k]; for k = KK to max(N-1,KK+B-1)

cli, k] += a[i,j1*b[]j, k];

brings square sub-blocks of matrix "b" into the cache
completely uses them up before moving on

CS745: Depence, Memory Hierarchy Opts -29- Mowry/Goldstein/Callahan

Predicting Cache Behavior
through “Locality Analysis”

Definitions:
Reuse:
accessing a location that has been accessed in the past
Locality:
accessing a location that is now found in the cache
Key Insights
Locality only occurs when there is reusel

BUT, reuse does not necessarily result in locality.
why not?

CS745: Depence, Memory Hierarchy Opts -30- Mowry/Goldstein/Callahan

Steps in Locality Analysis

1. Find data reuse

if caches were infinitely large, we would be
finished

2. Determine “localized iteration space”

set of inner loops where the data accessed by an
iteration is expected to fit within the cache

3. Find data locality:
reuse Y localized iteration space H® locality

CS745: Depence, Memory Hierarchy Opts -31- Mowry/Goldstein/Callahan

Types of Data Reuse/Locality

for i = 0 to 2
for j = 0 to 100 O Hit
A[i][3] = B[J1[0] + B[j+1]1[0]; ® Miss
A[i][3] B[3110] B[j+1]1[0]
i‘0.0.0.0 J.'OOOOOOOO J.'OOOOOOOO
[NeX Nel NolX NeJ [oNeNeNeNeNoNoNo) 0O00000O0O0
@0 000eo0eo 00000000 @ 0000000
J J 3
Spatial Temporal Group
(spatial)
CS745: Depence, Memory Hierarchy Opts -32- Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

But...is the transform legal?

Distance/direction vectors give a
partial order among points in the
iteration space

A loop transform changes the order
in which 'points’ are visited

The new visit order must respect the
dependence partial order!

CS745: Depence, Memory Hierarchy Opts -33- Mowry/Goldstein/Callahan

But...is the transform legal?

Loop reversal ok?
Loop interchange ok?

i

for i = 0 to N-1
for j = 0 to N-1
A[i+1]1[3] += A[i]l[3];

b

CS745: Depence, Memory Hierarchy Opts -34- Mowry/Goldstein/Callahan

But...is the transform legal?

Loop reversal ok?
Loop interchange ok?

i

00,000,000

O
ILISILL

O
7
M

Mowry/Goldstein/Callahan

for i = 0 to N-1
for j = 0 to N-1
A[i+1][j+1] += A[i][]];

CS745: Depence, Memory Hierarchy Opts -35-

But...is the transform legal?

What other visit
order is legal here?

for i = 0 to TS
for j = 0 to N-2
A[j+1] =
(AL3] + A[J+1] + A[j+21)/3;

CS745: Depence, Memory Hierarchy Opts -36-

Mowry/Goldstein/Callahan

3/29/2007

15745 Lecture 20

But...is the transform legal?

What other visit
order is legal here?

i

for i = 0 to TS
for j = 0 to N-2
A[j+1] =
(A[3] + A[F+1] + A[J+21)/3;

CS745: Depence, Memory Hierarchy Opts -37- Mowry/Goldstein/Callahan

But...is the transform legal?

Skewing...

AARRAAR /?/?/?/
4955
LEYRY

T/' /

€5745: Depence, Memory Hierarchy Opts -38- Mowry/Goldstein/Callahan

But...is the transform legal?

Skewing...now we can block

CS745: Depence, Memory Hierarchy Opts -39- Mowry/Goldstein/Callahan

But...is the transform legal?

Skewing...now we can loop interchange

CS745: Depence, Memory Hierarchy Opts -40-

Mowry/Goldstein/Callahan

3/29/2007

10

15745 Lecture 20

Unimodular transformations

Express loop transformation as a matrix multiplication

Check if any dependence is violated by multiplying the
distance vector by the matrix - if the resulting vector
is still lexicographically positive, then the involved
iterations are visited in an order that respects the
dependence.

Reversal Interchange Skew
1 Oj 0 1 11
0 - 10 0 1

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam

CS745: Depence, Memory Hierarchy Opts -41- Mowry/Goldstein/Callahan

Other uses?

Of course - many!

Removing intra- and inter-loop dependence edges
i.e. foken edges in Pegasus

Expose more instruction level parallelism

Enable streaming, vectorization,

CS745: Depence, Memory Hierarchy Opts -42- Mowry/Goldstein/Callahan

Garpcc demo

Dependence analysis uses:
more scheduling flexibility
determine when it's legal to use memory queues

SUIF's dependence library

many tests; if any can prove independence, then the
accesses are independent

CS745: Depence, Memory Hierarchy Opts -43- Mowry/Goldstein/Callahan

Garpcc demo

What I would want:

Loop interchange & reversal to enable queue use in
the inner loop

CS745: Depence, Memory Hierarchy Opts -44- Mowry/Goldstein/Callahan

3/29/2007

11

15745 Lecture 20

CS745: Depence, Memory Hierarchy Opts -45- Mowry/Goldstein/Callahan

Scalar Replacement

Replaces subscripted array references with scalars.
AKA: register pipelining
Benefits:

Improved D$ performance

Register allocation made possible

Easier to software pipeline

CS745: Depence, Memory Hierarchy Opts -46- Mowry/Goldstein/Callahan

Example: MM

for (i=0; i<N; i++)
for (j=0; Jj<N; j++)
for (k=0; k<N; k++)
CI[i][3]1 = CI[ilI[3] +
A[i] [k]*B[k][]j];

for (i=0; i<N; i++)

* replace C[][]with for (520 3N: $44) {

scalar in inner

Ioop. sum = c[i] []j];

for (k=0; k<N; k++)

* Reduces memory sum = sum +

references by
2(N3-N2)

A[i] [k]*B[k][3];

c[i] [3j] = sum;

1
¥

CS745: Depence, Memory Hierarchy Opts -47- Mowry/Goldstein/Callahan

Scalar Replacement data structures

Lets consider loops without conditionals

Define the period of a loop carried dependence for
edge e, p(e), as the CONSTANT number of iterations
between the references at tail and head.

(If not constant we can't do it).

Build a partial dependence graph including
flow (R after W) and
input dependencies (R after R)
And the dependencies
have a constant period
are:
loop independent or
carried by innermost loop

CS745: Depence, Memory Hierarchy Opts -48- Mowry/Goldstein/Callahan

3/29/2007

12

15745 Lecture 20

Scalar Replacement Alg

For a period of p(e) cycles, use p(e)+1 temporaries

In body of loop:
Replace A[i] with 14
Replace A[i+j]with t;

At end of innermost loop body add assignments

Tp(e) = Tp(e)-l;

Init temps by peeling of f p(e) iterations

St

CS745: Depence, Memory Hierarchy Opts -49-

Mowry/Goldstein/Callahan

Example: MM

for (i=0; i<N; i++)

for (j=0; Jj<N; j++)
for (k=0; k<N; k++)
Clil[j]l = C[i1[3] +

A[4] [k]*B[k] [v

n=<0 1>
1 7

* replace C[][] with
scalar in inner
loop.

+ Reduces memory
references by
2(N3-N?)

for (i=0; i<N; i++)
for (3=0; j<N; J++) {

sum = c[i][]];
for (k=0; k<N; k++)
sum = sum +

A[i] [k]I*B[k][3]];

c[i] [j] = sum;

=

CS745: Depence, Memory Hierarchy Opts

-50- Mowry/Goldstein/Callahan

Scalar Replacement: Loop Body

for (i=0; i<n; i++) {]
bli+l] = b[i] + £

2 * b[i] + c[i]

* We need two temporaries: 10, t1
* Replace b[i] with 10 and b[i+1] with t1
* Insert copies at bottom of loop

for (i=0; i<n; i++) {
tl = t0 + £
b[i+l] = t1

t0 = tl1

afil = 2 * t0 + c[i]

CS745: Depence, Memory Hierarchy Opts -51-

Mowry/Goldstein/Callahan

Scalar Replacement: Init

for (i=0; i<n; i++) {
tl = t0 + £
b[i+l] = t1
af[i] = 2 * t0 +
c[i]
t0 = t1

1) Peel of p(e) iterations of loop

b[1l]
a[0]

b[0] + £
2 * b[0] + c[0]

CS745: Depence, Memory Hierarchy Opts

2) after replacement

t0 = b[0]
tl = t0 + £
b[1l] = t1

a[0] =2 * £t0 + c[0]

3) If we aren't sure of trip count

52-

if (n>=0) {

t0 = b[0]

tl = t0 + £

b[l] = t1

a[0] = 2 * t0 +
c[0]
¥ Mowry/Goldstein/Callahan

3/29/2007

13

15745 Lecture 20

Finished

for (i=0; i<n; i++) {

2 * b[i] + c[i]

CS745: Depence, Memory Hierarchy Opts

-53-

if (n>=0) {
t0 = b[0]
tl = t0 + £
b[1l] = t1
a[0] = 2 * t0 +
c[0]
}
for (i=1; i<n; i++) {
tl = t0 + £
b[i+l] = t1
a[i] = 2 * t0 +
cl[i]
t0 = t1
1 Mowry/Goldstein/Callahan

3/29/2007

14

