
15745 Lecture 20 3/29/2007

1

Dependence Analysis &

Memory Hierarchy Optimizations

Todd C. Mowry/Seth Goldstein/Tim Callahan

CS745: Optimizing Compilers

Spring 2007

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -2-

An Example Memory Hierarchy

Registers

Cache

TLB

Main Memory

DISK

32 registers x 8 Bytes
real reg:

512 lines x 128 bytes (64kB)

32K pages x 4k bytes

1M pages x 8k bytes

128 entries L2 – up to
4MB

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -3-

Caches: A Quick Review

• How do they work? *

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that will
affect performance?

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -4-

Optimizing Cache Performance

• Things to enhance:

• temporal locality

• spatial locality

• Things to minimize:

• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

15745 Lecture 20 3/29/2007

2

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -5-

Two Things We Can Manipulate

• Time:

• When is a object accessed?

• Space:

• Where does an object exist in the address space?

How do we exploit these two levers?

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -6-

Time: Reordering Computation

• What makes it difficult to know when an object is
accessed?

• How can we predict a better time to access it?

• What information is needed?

• How do we know that this would be safe?

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -7-

Space: Changing Data Layout

• What do we know about an object’s location?

• scalars, structures, pointer-based data structures,
arrays, code, etc.

• How can we tell what a better layout would be?

• how many can we create?

• To what extent can we safely alter the layout?

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -8-

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

15745 Lecture 20 3/29/2007

3

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -9-

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a
concern here?

• If so, what can be done?

int x;

double y;

foo(int a){

int i;

…

x = a*i;

…

}

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -10-

Structures and Pointers

• What can we do here?

• within a node

• across nodes

• considering cache?

struct {

int count;

double velocity;

double inertia;

struct node *neighbors[N];

} node;

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -11-

Arrays

• usually accessed within loop nests

• makes it easy to understand “time”

• what we know about array element addresses:

• start of array?

• relative position within array

double A[N][N], B[N][N];

…

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -12-

Data Dependence in Loops

• Dependence can flow across iterations of the loop.

• Dependence information is annotated with iteration
information.

• If dependence is across iterations it is loop carried
otherwise loop independent.

for (i=0; i<n; i++) {

A[i] = B[i];

B[i+1] = A[i];

}

15745 Lecture 20 3/29/2007

4

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -13-

Data Dependence in Loops

• Dependence can flow across iterations of the loop.

• Dependence information is annotated with iteration
information.

• If dependence is across iterations it is loop carried
otherwise loop independent.

for (i=0; i<n; i++) {

A[i] = B[i];

B[i+1] = A[i];

}
δf loop independent

δf loop carried

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -14-

Unroll Loop to Find

Dependencies
for (i=0; i<n; i++) {

A[i] = B[i];

B[i+1] = A[i];

}
δf loop independent

δf loop carried

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance/Direction of
the dependence is

also important.

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -15-

Iteration Space
Every iteration generates a point in an n-dimensional
space, where n is the depth of the loop nest.

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)

for (j=0; j<4; j++) {

}

3
2

4

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -16-

Distance Vector
for (i=0; i<n; i++) {

A[i] = B[i];

B[i+1] = A[i];

}

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance vector is the
difference between the target

and source iterations.

d = It-Is

Exactly the distance of the
dependence, i.e.,

Is + d = It

15745 Lecture 20 3/29/2007

5

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -17-

Example of Distance Vectors

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

i

j

for (i=0; i<n; i++)

for (j=0; j<m; j++){

A[i,j] = ;

= A[i,j];

B[i,j+1] = ;

= B[i,j];

C[i+1,j] = ;

= C[i,j+1] ;

}

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -18-

Example of Distance Vectors

for (i=0; i<n; i++)

for (j=0; j<m; j++){

A[i,j] = ;

= A[i,j];

B[i,j+1] = ;

= B[i,j];

C[i+1,j] = ;

= C[i,j+1] ;

}

j

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

A yields:
0
0

B yields:
0
1

C yields:
1
-1

i

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -19-

Direction Vectors
Less exact than distance vectors

• can't analyze exactly, or

• summary of multiple distance vectors

[0,0] [1,inf] [-inf,-1] [-inf,inf]

= + - +/-

= < > *

Example:

• {<1,-1>, <1,0>, <1,1>} => <1,*>

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -20-

Handy Representation:

“Iteration Space”

• each position represents an iteration

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

15745 Lecture 20 3/29/2007

6

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -21-

Visitation Order in Iteration

Space

• Note: iteration space is not data space

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -22-

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

i

j

A B

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -23-

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

i

j

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -24-

Optimizing the Cache Behavior

of Array Accesses

• We need to answer the following questions:

• when do cache misses occur?
• use “locality analysis”

• can we change the order of the iterations (or
possibly data layout) to produce better behavior?
• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct
results?
• use “dependence analysis”

15745 Lecture 20 3/29/2007

7

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -25-

Examples of Loop

Transformations

• Loop Interchange

• Cache Blocking

• Skewing

• Loop Reversal

• …

(we will briefly discuss the first two)

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -26-

Loop Interchange

• (assuming N is large relative to cache size)

for i = 0 to N-1

for j = 0 to N-1

A[j][i] = i*j;

i

j

for j = 0 to N-1

for i = 0 to N-1

A[j][i] = i*j;

j

i

Hit

Miss

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -27-

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B

for i = 0 to N-1

for j = JJ to max(N-1,JJ+B-1)

f(A[i],A[j]);

i

j

i

j

A[i] A[j]

i

j

i

j

A[i] A[j]

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -28-

Impact on Visitation Order

in Iteration Space

i

j

for i = 0 to N-1

for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by B

for i = 0 to N-1

for j = JJ to max(N-1,JJ+B-1)

f(A[i],A[j]);

i

j

15745 Lecture 20 3/29/2007

8

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -29-

Cache Blocking in Two

Dimensions

• brings square sub-blocks of matrix “b” into the cache

• completely uses them up before moving on

for i = 0 to N-1

for j = 0 to N-1

for k = 0 to N-1

c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B

for KK = 0 to N-1 by B

for i = 0 to N-1

for j = JJ to max(N-1,JJ+B-1)

for k = KK to max(N-1,KK+B-1)

c[i,k] += a[i,j]*b[j,k];

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -30-

Predicting Cache Behavior

through “Locality Analysis”

• Definitions:

• Reuse:
• accessing a location that has been accessed in the past

• Locality:
• accessing a location that is now found in the cache

• Key Insights

• Locality only occurs when there is reuse!

• BUT, reuse does not necessarily result in locality.
• why not?

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -31-

Steps in Locality Analysis

1. Find data reuse

• if caches were infinitely large, we would be
finished

2. Determine “localized iteration space”

• set of inner loops where the data accessed by an
iteration is expected to fit within the cache

3. Find data locality:

• reuse � localized iteration space �� locality

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -32-

Types of Data Reuse/Locality

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

i

j

B[j][0]

i

j

B[j+1][0]

Spatial Temporal Group
(spatial)

15745 Lecture 20 3/29/2007

9

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -33-

But...is the transform legal?

• Distance/direction vectors give a
partial order among points in the
iteration space

• A loop transform changes the order
in which 'points' are visited

• The new visit order must respect the
dependence partial order!

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -34-

But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

for j = 0 to N-1

A[i+1][j] += A[i][j];

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -35-

But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

for j = 0 to N-1

A[i+1][j+1] += A[i][j];

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -36-

But...is the transform legal?

i

j

for i = 0 to TS

for j = 0 to N-2

A[j+1] =

(A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

15745 Lecture 20 3/29/2007

10

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -37-

But...is the transform legal?

i

j

for i = 0 to TS

for j = 0 to N-2

A[j+1] =

(A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

j

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -38-

But...is the transform legal?

• Skewing...

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -39-

But...is the transform legal?

• Skewing...now we can block

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -40-

But...is the transform legal?

• Skewing...now we can loop interchange

15745 Lecture 20 3/29/2007

11

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -41-

Unimodular transformations

• Express loop transformation as a matrix multiplication

• Check if any dependence is violated by multiplying the
distance vector by the matrix – if the resulting vector
is still lexicographically positive, then the involved
iterations are visited in an order that respects the
dependence.

Reversal

1 0

0 -1

Interchange

0 1

1 0

1 1

0 1

Skew

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam
Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -42-

Other uses?

• Of course – many!

• Removing intra- and inter-loop dependence edges

• i.e. token edges in Pegasus

• Expose more instruction level parallelism

• Enable streaming, vectorization, ……

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -43-

Garpcc demo

• Dependence analysis uses:
• more scheduling flexibility

• determine when it's legal to use memory queues

• SUIF's dependence library
• many tests; if any can prove independence, then the
accesses are independent

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -44-

Garpcc demo

• What I would want:

• Loop interchange & reversal to enable queue use in
the inner loop

15745 Lecture 20 3/29/2007

12

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -45- Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -46-

Scalar Replacement

• Replaces subscripted array references with scalars.

• AKA: register pipelining

• Benefits:

• Improved D$ performance

• Register allocation made possible

• Easier to software pipeline

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -47-

Example: MM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] = C[i][j] +

A[i][k]*B[k][j];

for (i=0; i<N; i++)

for (j=0; j<N; j++) {

sum = c[i][j];

for (k=0; k<N; k++)

sum = sum +

A[i][k]*B[k][j];

c[i][j] = sum;

}

• replace C[][] with
scalar in inner
loop.

• Reduces memory
references by
2(N3-N2)

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -48-

Scalar Replacement data structures

• Lets consider loops without conditionals
• Define the period of a loop carried dependence for
edge e, p(e), as the CONSTANT number of iterations
between the references at tail and head.
(If not constant we can't do it).

• Build a partial dependence graph including
• flow (R after W) and
• input dependencies (R after R)
And the dependencies
• have a constant period
• are:

• loop independent or
• carried by innermost loop

15745 Lecture 20 3/29/2007

13

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -49-

Scalar Replacement Alg

• For a period of p(e) cycles, use p(e)+1 temporaries
t0 to tp(e)

• In body of loop:

• Replace A[i] with t0
• Replace A[i+j] with tj

• At end of innermost loop body add assignments
tp(e) = tp(e)-1; ... ; t1 <- t0

• Init temps by peeling off p(e) iterations

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -50-

Example: MM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] = C[i][j] +

A[i][k]*B[k][j];

for (i=0; i<N; i++)

for (j=0; j<N; j++) {

sum = c[i][j];

for (k=0; k<N; k++)

sum = sum +

A[i][k]*B[k][j];

c[i][j] = sum;

}

• replace C[][] with
scalar in inner
loop.

• Reduces memory
references by
2(N3-N2)

p=<0,1>

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -51-

Scalar Replacement: Loop Body

for (i=0; i<n; i++) {

b[i+1] = b[i] + f

a[i] = 2 * b[i] + c[i]

}

p=<0,1>

p=<1,0>

• We need two temporaries: t0, t1
• Replace b[i] with t0 and b[i+1] with t1
• Insert copies at bottom of loop

for (i=0; i<n; i++) {
t1 = t0 + f

b[i+1] = t1

a[i] = 2 * t0 + c[i]

t0 = t1

}

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -52-

Scalar Replacement: Init
for (i=0; i<n; i++) {

t1 = t0 + f

b[i+1] = t1

a[i] = 2 * t0 +

c[i]

t0 = t1

}

b[1] = b[0] + f

a[0] = 2 * b[0] + c[0]

1) Peel of p(e) iterations of loop

2) after replacement

3) If we aren't sure of trip count

if (n>=0) {

t0 = b[0]

t1 = t0 + f

b[1] = t1

a[0] = 2 * t0 +

c[0]

}

t0 = b[0]

t1 = t0 + f

b[1] = t1

a[0] = 2 * t0 + c[0]

15745 Lecture 20 3/29/2007

14

Mowry/Goldstein/CallahanCS745: Depence, Memory Hierarchy Opts -53-

Finished

if (n>=0) {

t0 = b[0]

t1 = t0 + f

b[1] = t1

a[0] = 2 * t0 +

c[0]

}

for (i=1; i<n; i++) {

t1 = t0 + f

b[i+1] = t1

a[i] = 2 * t0 +

c[i]

t0 = t1

}

for (i=0; i<n; i++) {

b[i+1] = b[i] + f

a[i] = 2 * b[i] + c[i]

}

