15-745 Lecture 4 1/25/2007

What the .. is a Lattice?
15-745 Lecture 4 0T
* Represents values:
for one item, or vector of all| “ 2 CR)
Review (often boolean to powerset) | (aiazy (d1ds (d2.d3)
. Big Picture * Has a defined top and bot i
egasus Semantics . . . {d1,d2,d3} =
Pegasus Internals/Code Accor'd'mg to A.SU'
Assignment 1 - Top is least info:
C6X? Demo? topAX = X undef =T
- Bot is end:
bot A X = bot -inf..-2-1012 .. inf
)) - Init in[b] with top, W
Copyright © Tim Callahan 2007 out[b] with Fy(top). nonconst = L
Knowledge Constructing Gen & Kill
** All T know is that I don't know ...
all T know is that I don't know nothin” Stmt s gen[s] kill[s]
- Operation Ivy t<-xopy {x op y}-kill[s] |{exprs containing t}
- as quoted by Green Day 1 <- M[a] {M[al}-kill[s] |{exprs containing t}
M[a]<- b 0 {for all x, M[x1}
That is, knowing that you know nothing is f(a, ..) 0 {for all x, M[x]}
more knOWI@ng ’rhan not knOWlng 1< f(a,.) 0 {exprs containing t
that you know nothing for all x, M[x]}

15-745 Lecture 4

Constructing Gen & Kill

Constructing Gen & Kill

Stmt s gen[s] kill[s]

t<-xopy |{xopy}-kill[s] |{exprs containing t}
t <- M[a] {M[a]}-kill[s] {exprs containing 1}
M[a]l<- b {M[a]} {for all x, M[x1}
f(a, ..) { {for all x, M[x]}

t <- f(a,..) O {exprs containing t

for all x, M[x]}

But..what if b gets overwritten?

1/25/2007

Stmt s gen[s] kill[s]

t<«-xopy |{xopy}-kill[s] |{exprs containingt}

t <- M[a] {M[a]}-kill[s] {exprs containing 1}

M[a]<«- b {M[a]} {for all x, M[x]}

f(a, ..) O {for all x, M[x]}

t <- f(a,..)] {exprs containing t
for all x, M[x]}

Constructing Gen & Kill

Stmt s gen[s] kill[s]

t<xopy |{xopy}-kills] |{exprs containing t}

t<- M[a] {M[a]}-kill[s] {exprs containing 1}

M[a]<- b {M[a]} {for all x, M[x1}

f(a, ..) 0 {for all x, M[x1}

t<fla.) |0 {exprs containing t
for all x, M[x]}

But, how is a store an available expression?

Big Picture

15-745 Lecture 4

.C

\

Big Picture

SUIF
*front end
copts

-many passes

/;SUIF

-

Build Pegasus

&

Optimize Pegasus

Assignment 1

cadil

Schedule
Pegasus

|

Allocate
Registers

|

Emit C6X
Assembly cod

15-745 © TIC 2007

Schedule Pegasus

Big Picture

15-745 © TIC 2007

Big Picture

Schedule Pegasus

‘users must come
after producers

+only independent ops can
be scheduled in the same
instruction

VANSERVANSRVAN

Q v

\/]

N

[
\
2

v

A\
VARG

15-745 © TIC 2007

Schedule Pegasus

‘users must come
after producers

+only independent ops can
be scheduled in the same
instruction

Big Picture

JAN

VANERVAN

Qv

/
T

X

AN
Jvy

15-745 © TIC 2007

1/25/2007

15-745 Lecture 4

Big Picture

Schedule Pegasus

‘ops must
execute ina

specific slot - on &g

a specific
function unit

*resource
conflicts might

require ops fo be

A

g
i{\ :
Y
Y

Big Picture

Do register L}

allocation
RI R4
(P R3 R5
*If two spans R2| |RI

overlap, they &g Rl /

N>

can't use the /
ister ke
same register...) ~1
*End result: AN
label each R&
wire/edge with a Vv v
register

Lecture. 4 15-745 © TIC 2007 14

Lecture. 4 15745 © TJIC 2007

delayed
Blg Picture one wire w/
mul(iple dests
Do register \
allocation ZF é&
R RS
q) b/ R3 R4

-If two spans R2[|RL

overlap, they R2 /

can't use the 5 /

ister R

same register...) Rl

*End result: \¢ \Q

label each Re

wire/edge with a Vv v

register

More Pegasus!

-etas/mus

*token edges
‘multiplexors

-crt: current point

-other weird stuff

Lecture. 4 15745 © TJIC 2007 16

1/25/2007

15-745 Lecture 4

Pegasus: Etas (gateways)

eeeeeeee

=

V2
N

Pegasus: Etas (gateways)

data .
condition

7)
A~ I

LLLLLLLL

Pegasus etas and mus

c, « 12

a; <3

if (i)
Y

a; « dP(a;,ay)
c; « P(cy,cy)
a, « c; + a,

Pegasus etas and mus

|V = eta = gate | R (]

|A =mu=merge|

1/25/2007

15-745 Lecture 4

|W = eta = gate |

|A =mu=merge|

Pegasus etas and mus

~y
Y

Pegasus etas and mus

|W = eta = gate |

|A =mu=merge|

~y
Y

bl

|V = eta = gate |

|A =mu=merge|

LLLLLLLL

Pegasus etas and mus

Pegasus etas and mus

|V = eta = gate |

|A =mu=merge|

i

e

1/25/2007

15-745 Lecture 4

|W = eta = gate |

|A =mu=merge|

Pegasus etas and mus

i
Y

Pegasus etas and mus

|W = eta = gate | YO B)d

(& =muzmerge] .
= mu = merge \‘\\E’\

7Y
=

|V = eta = gate |

|A =mu=merge|

LLLLLLLL

Pegasus etas and mus

Pegasus etas and mus

|V = eta = gate | NDED G)(

|A =mu=merge|

1/25/2007

15-745 Lecture 4

Pegasus token edges

* No data; they just enforce ordering between
operations

*they are also
'roken\\da'fa addr *°ke!‘\\ dafe oddr | wires, and go
-~ B through etas
and mus...
-warning:
.~ addr inputs not shown
‘@' in correct order
» data
token

Lecture. 4 15-745 © TIC 2007 29

Pegasus token edges

* No data; they just enforce ordering between
operations

1/25/2007

token

data 44 TokeQ\ data addr

15-745 © TIC 2007

*they are also
wires, and go
through etas
and mus...

*warning:
inputs not shown
in correct order

*“token and" -
a.k.a tkand

+and..predicates

30

Pegasus multiplexors/predication

gggggg 4 15-745 © TIC 2007 31

Pegasus multiplexors/predication

If we go ahead
and execute

if (i) both paths,
X4+ can we get rid
else of some
X--; overhead?
x += 100;

15-745 © TIC 2007

15-745 Lecture 4

Pegasus multiplexors/predication

if (i)
X++;
else

X += iOO;

® hyperblock

eeeeeeee

Assignment 1

Dataflow : Edges

* Our framework supports differentiated
information on the outgoing edges.

* Task 1A: add data information resulting from
analysis of the conditionals to our existing
conditional constant propagation pass

Aggressive DCE

* Task 1B: implement ADCE: assume everything

dead unless proven live

N,

g

1/25/2007

15-745 Lecture 4

Task 1B Alternatives

+ Extend CCP+1A to range analysis:

a value might not be constant, but is discovered to be
bounded by a range

+ This is a somewhat open-ended problem, so talk to us before you go
down this route

+ Perform/fduction variable based strength reduction

in Pegasus

15-745 © TIC 2007

- TJC will have office hours tomorrow 10am-noon.
+ Until I figure out 4-up landscape pdf handouts,

======

Admin

you can look at the lectures from 15745-s05...

15-745 © TIC 2007

1/25/2007

10

