
15-745 Lecture 4b 1/28/2007

1

Lecture 4b 15-745  © TJC 2007 1

15-745 Lecture 4b

Classical Loop Optimizations

Based on slides by Peter Lee

Copyright © Tim Callahan 2007

Lecture 4b 15-745  © TJC 2007 2

Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to reduce number of control transfers

• Loop permutation

– to improve cache memory performance

• Elimination of null and array-bounds checks

– use laws of arithmetic to prove integer range

Lecture 4b 15-745  © TJC 2007 3

Finding Loops

• To optimize loops, we need to find them!

• Could use source language loop information in 
the abstract syntax tree…

• BUT:
– There are multiple source loop constructs: for, while, 
do-while, even goto in C

– Want IR to support different languages

– Ideally, we want a single concept of a loop so  all have 
same analysis, same optimizations

– Solution: dismantle source-level constructs, then 
re-find loops from fundamentals

Lecture 4b 15-745  © TJC 2007 4

Finding Loops

• To optimize loops, we need to find them!

• Specifically:

– loop-header node(s)
• nodes in a loop that have immediate predecessors not in the 
loop

– back edge(s)
• control-flow edges to 
previously executed nodes

– all nodes in the loop body



15-745 Lecture 4b 1/28/2007

2

Lecture 4b 15-745  © TJC 2007 5

• Many languages have goto and other complex 
control, so loops can be hard to find in general

• Determining the control structure of a program 
is called control-flow analysis

• Based on the notion of dominators

Control-flow analysis

Lecture 4b 15-745  © TJC 2007 6

Dominators

• a dom b
– node a dominates b if every possible 
execution path from entry to b includes a

• a sdom b
– a strictly dominates b if a dom b and a != b

• a idom b
– a immediately dominates b if a sdom b, AND 
there is no c such that a sdom c and c sdom b

Lecture 4b 15-745  © TJC 2007 7

• idom(n) is unique

• The dom relation is a partial ordering

– reflexive, antisymmetric, and transitive

Some properties

Lecture 4b 15-745  © TJC 2007 8

• A control-flow 
edge from node 
B3 to B2 is a 
back edge if B2 
dom B3

• Furthermore, in 
that case node 
B2 is a loop 
header

Back edges and loop headers

Entry

k = false

i = 1

j = 2

i <= n

j = j*2

k = true

i = i+1

..k..

print j i = i+1

exit

B1

B2

B4
B3

B6B5



15-745 Lecture 4b 1/28/2007

3

Lecture 4b 15-745  © TJC 2007 9

Natural loop

• Consider a back edge from node n to node h

• The natural loop of n→h is the set of nodes L 
such that for all x∈∈∈∈L:

– h dom x and

– there is a path from x to n not containing h

Lecture 4b 15-745  © TJC 2007 10

Examples

Simple example:

(often it’s more 
complicated, since
a source code
FOR loop might 
need an if/then
guard)

Lecture 4b 15-745  © TJC 2007 11

Examples

Try this: a

b

d

c

e

f

Lecture 4b 15-745  © TJC 2007 12

Examples

for (..) {

if {

…

} else {

…

if (x) {

e;

break;

)

}

}

e



15-745 Lecture 4b 1/28/2007

4

Lecture 4b 15-745  © TJC 2007 13

Examples

for (..) {

if {

…

} else {

…

if (x) {

e;

break;

)

}

}

e

lexically, in loop, 
but not in 
natural loop

Lecture 4b 15-745  © TJC 2007 14

Examples

for (..) {

if {

…

} else {

…

if (x) {

e;

break;

)

}

}

e

lexically, in loop, 
but not in 
natural loop

and another 
reason why CFG 
analysis is 
preferred over   
source/AST 
loops  

Lecture 4b 15-745  © TJC 2007 15

• Yes it can happen in C

Examples

Lecture 4b 15-745  © TJC 2007 16

• We’ve already covered the straightforward 
dataflow computation of the dom relation.

• We’ll have more to say about dominators, 
including how to compute them efficiently, in 
the future

– Hint: they are part of computing SSA 
efficiently..

More later...



15-745 Lecture 4b 1/28/2007

5

Lecture 4b 15-745  © TJC 2007 17

Loop optimizations:
Hoisting of loop-invariant

computations

Lecture 4b 15-745  © TJC 2007 18

Loop-invariant computations

• A definition

t = x op y

in a loop is (conservatively) loop-invariant if

– x and y are constants, or

– all reaching definitions of x and y are 
outside the loop, or

– only one definition reaches x (or y), and
that definition is loop-invariant
• so keep marking iteratively

Lecture 4b 15-745  © TJC 2007 19

Loop-invariant computations

• Be careful:

t = expr;

for () {

s = t * 2;

t = loop_invariant_expr;

x = t + 2;

…

}

• Even though t’s two reaching expressions are 
each invariant, s is not invariant…

Lecture 4b 15-745  © TJC 2007 20

Loop-invariant computations

• In Pegasus!  What does a basic loop-invariant 
variable look like?

a

a

a

<



15-745 Lecture 4b 1/28/2007

6

Lecture 4b 15-745  © TJC 2007 21

Loop-invariant computations

• In Pegasus!  What does a basic loop-invariant 
variable look like?

a

<

hold a

Lecture 4b 15-745  © TJC 2007 22

• In order to “hoist” a loop-invariant computation 
out of a loop, we need a place to put it

• We could copy it to all immediate predecessors 
(except along the back-edge) of the loop 
header...

• ...But we can avoid code duplication by inserting 
a new block, called the pre-header

Hoisting

Lecture 4b 15-745  © TJC 2007 23

Hoisting

A

B

Lecture 4b 15-745  © TJC 2007 24

Hoisting

A

B

A

B

A’

B’

preheaders



15-745 Lecture 4b 1/28/2007

7

Lecture 4b 15-745  © TJC 2007 25

Hoisting conditions

• For a loop-invariant definition

d: t = x op y

• we can hoist d into the loop’s pre-header only if
1. d’s block dominates all loop exits at which t is live-
out, and

2. d is only the only definition of t in the loop, and

3. t is not live-out of the pre-header

Lecture 4b 15-745  © TJC 2007 26

• All hoisting conditions must be satisfied!

We need to be careful...

L0:

t = 0

L1:

i = i + 1

t = a * b

M[i] = t

if i<N goto L1

L2:

x = t

L0:

t = 0

L1:

if i>=N goto L2

i = i + 1

t = a * b

M[i] = t

goto L1

L2:

x = t

L0:

t = 0

L1:

i = i + 1

t = a * b

M[i] = t

t = 0

M[j] = t

if i<N goto L1

L2:

OK violates 1,3 violates 2

Lecture 4b 15-745  © TJC 2007 27

• All hoisting conditions must be satisfied!

We need to be careful...

L0:

t = 0

L1:

i = i + 1

t = a * b

M[i] = t

if i<N goto L1

L2:

x = t

L0:

t = 0

L1:

if i>=N goto L2

i = i + 1

t = a * b

M[i] = t

goto L1

L2:

x = t

L0:

t = 0

L1:

i = i + 1

t = a * b

M[i] = t

t = 0

M[j] = t

if i<N goto L1

L2:

OK violates 1,3 violates 2

this def

reaches 

this def

reaches 

Lecture 4b 15-745  © TJC 2007 28

Announcements

• Tuesday’s lecture is about efficient creation of 
minimal SSA form.  There is a paper to read on 
the schedule page.

• If you get an error with CVS update….



15-745 Lecture 4b 1/28/2007

8

Lecture 4b 15-745  © TJC 2007 29

Loop optimizations:
Induction-variable
Strength reduction

Lecture 4b 15-745  © TJC 2007 30

• Suppose we have a loop variable

– i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:

x = i * c1 + c2

• In such cases, we can try to

– initialize x = io * c1 + c2   (execute once)

– increment x by c1 each iteration

The basic idea of IVE

Lecture 4b 15-745  © TJC 2007 31

Is it faster?

• On some hardware, adds are much faster than 
multiplies

• Furthermore, one fewer value is computed,

– thus potentially saving a register

– and decreasing the possibility of spilling

Lecture 4b 15-745  © TJC 2007 32

An example

void p() 

{

int *a;

int i;

a = alloc(100,int);

for (i=0; i<100; i=i+1)

a[i] = 202 - 2 * i;

}



15-745 Lecture 4b 1/28/2007

9

Lecture 4b 15-745  © TJC 2007 33

An example

Lpreheader:

i = 0

L1:

t1 = i*4 + a

t2 = 202 – i * 2

store *t1 = t2

i = i+1

if (100<=i)

L2:

exit

Lecture 4b 15-745  © TJC 2007 34

An example

Lpreheader:

i = 0

suiftmp0 = 0 * 4

suiftmp1 = 2 * 0

L1:

t1 = suiftmp0 + a

t2 = 202 – suiftmp1

store *t1 = t2

i = i+1

suiftmp0 += 4

suiftmp1 += 2

if (100<=i)

L2:

exit

Lecture 4b 15-745  © TJC 2007 35

• Before attempting IVE, it is best to perform 
first:

– constant propagation & constant folding

– copy propagation

– loop-invariant hoisting

Loop preparation

Lecture 4b 15-745  © TJC 2007 36

How to do it, step 1

• First, find the basic IVs

– scan loop body for defs of the form

x = x + c, where c is loop-invariant

– record these basic IVs as

x = (x, 1, c)

– this represents the IV: x = x * 1 + c



15-745 Lecture 4b 1/28/2007

10

Lecture 4b 15-745  © TJC 2007 37

• Scan for derived IVs of the form

k = i * c1 + c2

– where i is a basic IV and this is the only def 
of k in the loop

• We say k is in the family of i

• Record as k = (i, c1, c2)

How to do it, step 2

Lecture 4b 15-745  © TJC 2007 38

How to do it, step 3

• Iterate, looking for derived IVs of the form

k = j * c1 + c2

– where IV j =(i, a, b), and

– this is the only def of k in the loop, and

– there is no def of i between the def of j and 
the def of k

• Record as k = (i, a*c1, b*c1+c2)

Lecture 4b 15-745  © TJC 2007 39

• For an induction variable k = (i, c1, c2)

– initialize k = i * c1 + c2 in the preheader

– replace k’s def in the loop by
k = k + c1

– make sure to do this after i’s def

How to do it, step 4

Lecture 4b 15-745  © TJC 2007 40

• Are the c1, c2 constant, or just invariant?

– if constant, then you can keep folding them: 
they’re always a costant even for derived IVs

– otherwise,they can be expressions of loop-
invariant variables

• But if constant, can find IVs of the type

x = i/b

and know that it’s legal, if b evenly divides the 
stride…

Notes



15-745 Lecture 4b 1/28/2007

11

Lecture 4b 15-745  © TJC 2007 41

Is it faster? (2)

• On some hardware, adds are much faster than 
multiplies

• But…not always a win!

– Constant multiplies might otherwise be 
reduced to shifts/adds that result in even 
better code than IVE

– Scaling of addresses (i*4) might come for 
free on your processor’s address modes

• So maybe: only convert i*c1+c2 when c1 is 
loop invariant but not a constant


