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Instruction-level Parallelism
• Most modern processors have the ability to 

execute several adjacent instructions 
simultaneously.
– Pipelined machines.
– Very-long-instruction-word machines (VLIW).
– Superscalar machines.
– Dynamic scheduling/out-of-order machines.

• ILP is limited by several kinds of execution
constraints:
– Data dependence constraints.
– Resource constraints (“hazards”)
– Control hazards
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Execution Constraints
• Data-dependence constraints:

– If instruction A computes a value that is 
read by instruction B, then B cannot execute 
before A is completed.

• Resource hazards:
– Limited # of functional units.

• If there are n functional units of a particular kind (e.g., n 
multipliers), then only n instructions that require that kind 
of unit can execute at once.

– Limited instruction issue.
• If the instruction-issue unit can issue only n instructions at 

a time, then this limits ILP.
– Limited register set.

• Any schedule of instructions must have a valid register 
allocation.

For example: 
ld [%fp-28], %o1

add %o1, %l2, %l3
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Instruction Scheduling
• The purpose of instruction scheduling (IS) is to 

order the instructions for maximum ILP.
– Keep all resources busy every cycle.
– If necessary, eliminate data dependences and 

resource hazards to accomplish this.
• The IS problem is NP-complete (and bad in 

practice).
– So heuristic methods are necessary.

How can you tell this is an old slide?



15-745 © Seth Copen Goldstein 2000-5 5

Instruction Scheduling
• There are many different techniques for IS.

– Still an open area of research.
• Most optimizing compilers perform good local 

IS, and only simple global IS.
• The biggest opportunities are in scheduling the 

code for loops.
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Should the Compiler Do IS?
• Many modern machines perform dynamic reordering of 

instructions.
– Also called “out-of-order execution” (OOOE).
– Not yet clear whether this is a good idea.
– Pro:

• OOOE can use additional registers and register renaming to 
eliminate data dependences that no amount of static IS can 
accomplish.

• No need to recompile programs when hardware changes.

– Con:
• OOOE means more complex hardware (and thus longer cycle times 

and more wattage).
• And can’t be optimal since IS is NP-complete.
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What we will cover
• Scheduling basic blocks

– List scheduling
– Long-latency operations
– Delay slots

• Scheduling for clusters architectures
• Software Pipelining (next week)

• What we need to know
– pipeline structure
– data dependencies
– register renaming
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• In the von Neumann model of execution an instruction starts 
only after its predecessor completes.

• This is not a very efficient model of execution.
– von Neumann bottleneck or the memory wall.

time

instr 1 instr 2

Instruction Scheduling
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Instruction Pipelines

• Almost all processors today use instructions pipelines to allow 
overlap of instructions (Pentium 4 has a 20 stage pipeline!!!).

• The execution of an instruction is divided into stages; each stage is 
performed by a separate part of the processor.

• Each of these stages completes its operation in one cycle (shorter 
the the cycle in the von Neumann model).

• An instruction still takes the same time to execute.

F D E M W

F: Fetch instruction from cache or memory.
D: Decode instruction.
E: Execute. ALU operation or address calculation.
M: Memory access.
W: Write back result into register.

time
instr
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Instruction Pipelines
• However, we overlap these stages in time to complete an 

instruction every cycle.

F D E M W

time

instr 1

F D E M W

F D E M W

F D E M W

F D E M W

instr 2

instr 3

instr 4

instr 5

F D E M W

F D E M W

instr 6

instr 7

Filling the
pipeline

Draining the
pipeline

Steady state

4
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Pipeline Hazards
• Structural Hazards

– two instructions need the same resource at the same time
– memory or functional units in a superscalar.

• Data Hazards
– an instructions needs the results of a previous instruction

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

– solved by forwarding and/or stalling
– cache miss?

• Control Hazards
– jump & branch address not known until later in pipeline
– solved by delay slot and/or prediction
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Jump/Branch Delay Slot(s)

• Control hazards, i.e. jump/branch instructions.

F D E M W

F D E M W

F D E M W

F D E M W

jump/branch

instr 2

instr 3

instr 4

unconditional jump address available only after Decode.
conditional branch address available only after Execute.
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Jump/Branch Delay Slot(s)
• One option is to stall the pipeline (hardware solution). 

• Another option is to insert a no-op instructions (software).

• Both degrade performance!

F D E M W

F D E M W

jump

instr 2

F D E M W

F D E M W

F D E M W

jump

instr 2

nop
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Jump/Branch Delay Slot(s)
• another option is for the branch take effect after

the delay slots.
• I.e., some instructions always get executed after the 

branch but before the branching takes effect.

F D E M W

F D E M W

F D E M W

F D E M W

bra

instr 2

F D E M Winstr 3

instr x

instr y
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Jump/Branch Delay Slots
• In other words, the instruction(s) in the delay slots of the 

jump/branch instruction always get(s) executed when the 
branch is executed (regardless of the branch result).

• Fetching from the branch target begins only after these 
instructions complete.

• What instruction(s) to use?

bgt r3, L1

:
:

L1:
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Branch Prediction

• Current processors will speculatively execute at 
conditional branches
– if a branch direction is correctly guessed, great!
– if not, the pipeline is flushed before instructions 

commit (WB).
• Why not just let compiler schedule?

– The average number of instructions per basic block 
in typical C code is about 5 instructions.

– branches are not statically predictable
– What happens if you have a 20 stage pipeline?
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Data Hazards

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

F D E M W

F D E M W

r2 + r3 available here

[r2] available here
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Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

• Output Dependence W W δo

• Input Dependence R R δi

true

false

S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

Not generally 
defined
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Example Dependencies
S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e; S1 δf S2 due to a

S1 δf S3 due to a
S2 δf S4 due to b
S3 δa S4 due to d
S4 δa S5 due to b
S2 δo S5 due to b
S3 δi S5 due to a

1

2

3

4

5
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Renaming of Variables
• Sometimes constraints are not “real,” in the 

sense that a simple renaming of 
variables/registers can eliminate them.
– Output dependence (WW): 

A and B write to the same variable.
– Anti dependence (RW): 

A reads from a variable to which B writes.
• In such cases, the order of A and B cannot be 

changed unless variables are renamed.
– Can sometimes be done by the hardware, to a 

limited extent.
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Register Renaming Example
r1 ← r2 + 1

[fp+8] ← r1

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

[fp+8] ← r7

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

r1 ← r3 + 2

[fp+8] ← r7

[fp+12] ← r1

• Can perform register renaming after register 
allocation
• Constrained by available registers
• Constrained by live on entry/exit

• Instead, do scheduling before register allocation

Phase ordering problem
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Scheduling a BB
• x  ← w * 2 * x * y * z
r1 ← [fp+w]
r2 ← 2
r1 ← r1 * r2
r2 ← [fp+x]
r1 ← r1 * r2
r2 ← [fp+y]
r1 ← r1 * r2
r2 ← [fp+z]
r1 ← r1 * r2
[fp+w] ← r1

• What do we need to know?
• Latency of operations
• # of registers

• Assume:
• load 5
• store 5
• mult 2
• others 1

• Also assume,
• operations are non-blocking
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Scheduling a BB
• x  ← w * 2 * x * y * z
1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+x] ← r1
33 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations 

are non-
blocking
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We can do better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations 

are non-
blocking

We can do even 
better if we 

assume what?
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Defining Better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+w] ← r1
33 r1 can be used again
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The Scheduler
• Given:

– Code to schedule
– Resources available (FU and # of Reg)
– Latencies of instructions

• Goal:
– Correct code
– Better code [fewer cycles, less power, 

fewer registers, …]
– Do it quickly
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More Abstractly
• Given a graph G = (V,E) where

– nodes are operations
• Each operation has an associated delay and type

– edges between nodes represent dependencies
– The number of resources of type t, R(t)

• A schedule assigns to each node a cycle number:
– S(n) ≥ 0
– If (n,m) ∈ G, S(m) ≥ S(n) + delay(n)
– |{ n | S(n) = x and type(n) = t}| <= R(t)

• Goal is shortest length schedule, where length
– L(S) = max over n, S(n)+delay(n)
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List Scheduling
• Keep a list of available instructions, I.e.,

– If we are at cycle k, then all predecessors, p, 
in graph have all been scheduled so that 
S(p)+delay(p) ≤ k

• Pick some instruction, n, from queue such that 
there are resources for type(n)

• Update available instructions and continue

• It is all in how we pick instructions
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Lots of Heuristics 
• forward or backward
• choose instructions on critical path
• ASAP or ALAP
• Balanced paths
• depth in schedule graph
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DLS (1995)
• Aim: avoid pipeline hazards in load/store unit

– load followed by use of target reg
– store followed by load

• Simplifies in two ways
– 1 cycle latency for load/store
– includes all dependencies (WaW included)
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The algorithm
• Construct Scheduling dag
• Make srcs of dag candidates
• Pick a candidate

– Choose an instruction with an interlock
– Choose an instruction with a large number of 

successors
– Choose with longest path to root

• Add newly available instruction to candidate list
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1) ld r1 ← [a]
2) ld r2 ← [b]
3) add r1 ← r1 + r2
4) ld r2 ← [c]
5) ld r3 ← [d]
6) mul r4 ← r2 * r3
7) add r1 ← r1 + r4
8) add r2 ← r2 + r3
9) mul r2 ← r2 * r3
10) add r1 ← r1 + r2
11) st [a] ← r1
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Trace Scheduling
• Basic blocks typically contain a small number of instrs.
• With many FUs, we may not be able to keep all the units 

busy with just the instructions of a BB.
• Trace scheduling allows block scheduling across BBs.
• The basic idea is to dynamically determine which blocks 

are executed more frequently. The set of such BBs is 
called a trace.

The trace is then scheduled as a single BB. 
• Blocks that are not part of the trace must be modified 

to restore program semantics if/when execution goes 
off-trace. 

B C

A
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Trace Scheduling

A

B C

D

E

F G

H

A

B

E

G

H

J

S

J

S

C

F

D
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Trace Scheduling

x>10?

a=b+c

d=a-3 a=b+c
f=a+3

a=b+c

x>10?

d=a-3 f=a+3

a=e*f

d=a-3

a=b+c
x=x+1 a=e*f

d=a-3

……

a=b+c
x=x+1
d=a-3
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VLIW
• Very Long Instruction Word
• Multiple Function Units
• Statically scheduled
• Examples

– Itanium
– TI C6x

• Scalability Issues?

Memory ALU FPU Branch ALU …
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Why Clusters?
• Reduce number of register ports
• Reduce length of buses
• Example: C6x

register file A register file B

L1 S1 M1 D1 D2 M2 S2 L2 

Data bus

Address bus

Data path A Data path B
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src1
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8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

ÁÁ

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Register
File A

(A0–A15)

long src
long dst

long dst
long src

Data Path B

Data Path A

Register
File B

(B0–B15)

Control
Register

File

Figure 1. TMS320C62x CPU Data Paths

Some more details
• Not all FUs the same

–some overlap
–Add on L,S,D
–delay 1 mostly
– load, 4. mult, 2

• Not all srcs the same
–both srcs from same RF
–L,S,M: 1 from other RF
–Only L&S used for copy
–S &M: only right from other RF

• Not all dests the same
– if 2 D ops, srcs and dests
must be to different RFs
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Phase-Ordering
• Valid assembly must

– be properly partioned
– be properly scheduled
– be properly register allocated

• What order to perform?

register
allocation

partitioning

Scheduling

false
dependencies

unnecc spillling/
reschedule?

unnecc comm/
reduce ILP
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Partitioning/Scheduling Basics

• Objectives: 
– Balance workload per cluster
– Minimize critical intercluster communication

Register
File

I MEM MEMI

Register
File

Cluster 1 Cluster 2

Interconnection Network
+

>>

*

&

LW

+ Intercluster move
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Bottom-Up Greedy (BUG) 1985
• Assigns operations to cluster, then schedules
• recurses down DFG

– assigns ops to cluster based on estimates of 
resource usage

– assigns ops on critical path first
– tries to schedule as early as possible

1

2

6

3

7

4

8

5
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1

2

6
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7

4

8

5

9
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10
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Integrated Approaches
• Leupers, 2000

– combine partitioning & scheduling
– iterative approach

• B-init/B-iter, 2002
– Initial binding/scheduling
– Iterative improvement

• RHOP, 2003
– region-based graph partitioning
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Leupers Approach
• Integrate partitioning and scheduling

• Use Simulated Annealing to determine partition
• The eval step in the SA loop is the scheduler!

• Deals with details of architecture
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Example Result
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Approach: SA
Generate random 

partitioning & schedule

Pick one node to swap

schedule

Newcost < oldcost*eT

Undo swap

Reduce T

yes

no
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algorithm Partition
input DFG G with nodes;
output: DP: array [1..N] of 0,1 ;
var int i, r, cost, mincost;
float T;
begin
T=10;
P:=Randompartitioning;
mincost := LISTSCHEDULING(G,P);
WHILE_LOOP;
return DP;

end.

WHILE_LOOP: 
while T>0.01 do
for i=1 to 50 do
r:= RANDOM(1,n);
P[r] := 1-P[r];
cost:=LISTSCHEDULING(G,P);
delta:=cost-mincost;
if delta <0 or
RANDOM(0,1)<exp(-delta/T)
then mincost:=cost
else P[r]:=1-P[r]
end if;
end for;
T:= 0.9 * T;

end while;

Basic Algorthm
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Scheduling
• Use a List Scheduler
• Tie breaker for next ready node is min ALAP
• Heart of routine is ScheduleNode

algorithm ListScheduling(G,P)
input DFG G; parition P;
output: length of schedule
var m: DFG node; S: schedule
begin

mark all nodes unscheduled
S = ∅
while (while not all scheduled) do

m = NextReadyNode(G);
S = ScheduleNode(S,m,P);
mark m as scheduled

end
return Length(S)
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ScheduleNode
• Goal: insert node m as early as possible

– don’t violate resource constraints
– don’t violate dependence constraints

• First try based on ASAP
• Until it is scheduled

– See if there is an FU that can execute m
– check source registers

• if both from same RF as FU, done
• if not: must decide what to do
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Dealing with x-RF transfers
• Two ways to XFER:

– Source can be Xfered this cycle
– Source can be copied in previous cycle

• If neither is true
– maybe commutative?
– try to schedule next cycle
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Basic Scheduling of a Node

algorithm ScheduleNode(S,m,P)
input Schedule S, node m, parition P;
output: new schedule with m
var cs: control step
begin

cs = EarliestControlStep(m)-1;
repeat

cs++;
f = GetNodeUnit(m, cs, P);
if (f == ∅) continue;
if (m needs arg from other RF) then

CheckArgTransfer();
if (no transfer possible) then continue;
else TryScheduleTransfers();

until (m is scheduled);
…

CheckArgTransfer:
• if CSE, reuse
• if room for move, do so
• if X-path avail and valid, use it

TryScheduleTransfers:
• reuse first
• move if possible
• use X-path if possible
• try commuting args

• Can fail
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Handling loads
• After scheduling an op to a cluster, see if it is a 

load.  Determine the partition of the result
• Scheduling of loads uses the RF of the address
• Scheduling the result

– check to see if both units are free
– if so, check to see where it is used most and 

schedule result in that RF
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Benefits/Drawbacks
• Does not predetermine the partitioning
• handles many real world details

• local decisions only
• Time consuming
• Very specific to C6x
• may not scale to multiple clusters?
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RHOP partitioning/scheduling
• 2003, Chu,Fan, Mahlke
• Global scheduling and partitioning
• Based on graph-partitioning

• Avoid local scheduling pitfalls
• Avoid “scheduling”

15-745 © Seth Copen Goldstein 2000-5 54

RHOP Approach
• Opposite approach to conventional clustering
• Global view 

– Graph partitioning strategy  [Aletà ‘01, ‘02]
– Identify tightly coupled operations - treat uniformly

• Non scheduler-centric mindset
– Prescheduling technique
– Doesn’t complicate scheduler
– Enable global view of code
– Estimate-based approach  [Lapinskii ‘01]
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Region-based Hierarchical 
Operation Partitioning (RHOP)

• Code is considered region at a time
• Weight calculation creates guides for good partitions
• Partitioning clusters based on given weights

Weight 
Calculation

Graph
Partitioning

1

1

10

10

10

10

1

8

8

8

8 8

8
1 1

1 1 1

1 1

1 1

1

int main {
int x;
printf(…);
.
.
.

}

Program Region
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Edge Weights

• Slack distribution allocates slack to certain edges
– Edge slack = lstartdest - latencyedge - estartsrc
– First come, first serve method used
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RHOP - Partitioning Phase

• Modified Multilevel-KL algorithm [Kernighan ‘69]
• Multilevel graph partitioning consists of two stages

1. Coarsening stage
2. Refinement stage Coasening: meld partitions to 

reduce weight, thus, will keep 
edges on CP together.
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Cluster Refinement

• 3 questions to answer:
1. Which cluster should operations move from?
2. How good is the current partition?
3. How profitable is it to move X from cluster A to 

B?
?
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Node Weights

  
op wgtc =

1
#ops that can execute on c in1 cycle
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I F M B

Register File

Dedicated Resources

shared wgtc =
resource limited sched length on c

# ops
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11
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I F M B

Register File

Accounts for buses, portsAccounts for FU’s

Shared Resources

• Create a metric to determine resource usage
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Where Should Operations Move 
From?

∑
∈∈ +

=
τat  oop slack

c

opgroupsot,c 1op
wgt_opmaxIwgt
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Where Should Operations Move 
From?

c
ave

t,c wgt_shared*
1slack

at  c in ops#Twgt
+

=
τ
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How Good is this Partition?

  
SL = max

i∈cluster
(Cwgti ,t −1)

t=0

max estart

∑
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How Good is This Proposed Move?

  
Egain =  edge_wgti

i ∈merged edges
∑ − edge_wgt j

j∈cut edges
∑   Lgain =  SL(before) −SL(after)

  Mgain = Egain + (Lgain * CRITICAL EDGE COST)
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Experimental Evaluation
• Trimaran toolset: a retargetable VLIW 

compiler
• Evaluated DSP kernels and SPECint2000

4 Heterogeneous clusters
IM, IF, IB and IMF clusters

4-H

4 Homogenous clusters
2 I, 1 F, 1 M, 1 B per cluster

4-2111

4 Homogenous clusters
1 I, 1 F, 1 M, 1 B per cluster

4-1111

2 Homogenous clusters
2 I, 1 F, 1 M, 1 B per cluster

2-2111

2 Homogenous clusters
1 I, 1 F, 1 M, 1 B per cluster

2-1111

ConfigurationName • 64 registers per cluster

• Latencies similar to Itanium

• Perfect caches

• For more detailed results, 
see paper
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2 Cluster Results vs 1 Cluster
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4 Cluster Results vs 1 Cluster
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Conclusions
• A new, region-scoped 

method for clustering 
operations
– Prescheduling technique
– Estimates on schedule length 

used instead of scheduler
– Combines slack distribution 

with multilevel-KL partitioning
• Performs better as number 

of resources increases

RHOP vs BUGMachine

8.0%4-H

15.3%4-2111

14.3%4-1111

3.7%2-2111

-1.8%2-1111

Average Improvement
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