
15-745 © Seth Copen Goldstein 2000-5 1

15-745

Instruction Scheduling

Copyright © Seth Copen Goldstein 2000-5

(some slides borrowed from M. Voss) 15-745 © Seth Copen Goldstein 2000-5 2

Instruction-level Parallelism
• Most modern processors have the ability to

execute several adjacent instructions
simultaneously.
– Pipelined machines.
– Very-long-instruction-word machines (VLIW).
– Superscalar machines.
– Dynamic scheduling/out-of-order machines.

• ILP is limited by several kinds of execution
constraints:
– Data dependence constraints.
– Resource constraints (“hazards”)
– Control hazards

15-745 © Seth Copen Goldstein 2000-5 3

Execution Constraints
• Data-dependence constraints:

– If instruction A computes a value that is
read by instruction B, then B cannot execute
before A is completed.

• Resource hazards:
– Limited # of functional units.

• If there are n functional units of a particular kind (e.g., n
multipliers), then only n instructions that require that kind
of unit can execute at once.

– Limited instruction issue.
• If the instruction-issue unit can issue only n instructions at

a time, then this limits ILP.
– Limited register set.

• Any schedule of instructions must have a valid register
allocation.

For example:
ld [%fp-28], %o1

add %o1, %l2, %l3

15-745 © Seth Copen Goldstein 2000-5 4

Instruction Scheduling
• The purpose of instruction scheduling (IS) is to

order the instructions for maximum ILP.
– Keep all resources busy every cycle.
– If necessary, eliminate data dependences and

resource hazards to accomplish this.
• The IS problem is NP-complete (and bad in

practice).
– So heuristic methods are necessary.

How can you tell this is an old slide?

15-745 © Seth Copen Goldstein 2000-5 5

Instruction Scheduling
• There are many different techniques for IS.

– Still an open area of research.
• Most optimizing compilers perform good local

IS, and only simple global IS.
• The biggest opportunities are in scheduling the

code for loops.

15-745 © Seth Copen Goldstein 2000-5 6

Should the Compiler Do IS?
• Many modern machines perform dynamic reordering of

instructions.
– Also called “out-of-order execution” (OOOE).
– Not yet clear whether this is a good idea.
– Pro:

• OOOE can use additional registers and register renaming to
eliminate data dependences that no amount of static IS can
accomplish.

• No need to recompile programs when hardware changes.

– Con:
• OOOE means more complex hardware (and thus longer cycle times

and more wattage).
• And can’t be optimal since IS is NP-complete.

15-745 © Seth Copen Goldstein 2000-5 7

What we will cover
• Scheduling basic blocks

– List scheduling
– Long-latency operations
– Delay slots

• Scheduling for clusters architectures
• Software Pipelining (next week)

• What we need to know
– pipeline structure
– data dependencies
– register renaming

15-745 © Seth Copen Goldstein 2000-5 8

• In the von Neumann model of execution an instruction starts
only after its predecessor completes.

• This is not a very efficient model of execution.
– von Neumann bottleneck or the memory wall.

time

instr 1 instr 2

Instruction Scheduling

15-745 © Seth Copen Goldstein 2000-5 9

Instruction Pipelines

• Almost all processors today use instructions pipelines to allow
overlap of instructions (Pentium 4 has a 20 stage pipeline!!!).

• The execution of an instruction is divided into stages; each stage is
performed by a separate part of the processor.

• Each of these stages completes its operation in one cycle (shorter
the the cycle in the von Neumann model).

• An instruction still takes the same time to execute.

F D E M W

F: Fetch instruction from cache or memory.
D: Decode instruction.
E: Execute. ALU operation or address calculation.
M: Memory access.
W: Write back result into register.

time
instr

15-745 © Seth Copen Goldstein 2000-5 10

Instruction Pipelines
• However, we overlap these stages in time to complete an

instruction every cycle.

F D E M W

time

instr 1

F D E M W

F D E M W

F D E M W

F D E M W

instr 2

instr 3

instr 4

instr 5

F D E M W

F D E M W

instr 6

instr 7

Filling the
pipeline

Draining the
pipeline

Steady state

4

15-745 © Seth Copen Goldstein 2000-5 11

Pipeline Hazards
• Structural Hazards

– two instructions need the same resource at the same time
– memory or functional units in a superscalar.

• Data Hazards
– an instructions needs the results of a previous instruction

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

– solved by forwarding and/or stalling
– cache miss?

• Control Hazards
– jump & branch address not known until later in pipeline
– solved by delay slot and/or prediction

15-745 © Seth Copen Goldstein 2000-5 12

Jump/Branch Delay Slot(s)

• Control hazards, i.e. jump/branch instructions.

F D E M W

F D E M W

F D E M W

F D E M W

jump/branch

instr 2

instr 3

instr 4

unconditional jump address available only after Decode.
conditional branch address available only after Execute.

15-745 © Seth Copen Goldstein 2000-5 13

Jump/Branch Delay Slot(s)
• One option is to stall the pipeline (hardware solution).

• Another option is to insert a no-op instructions (software).

• Both degrade performance!

F D E M W

F D E M W

jump

instr 2

F D E M W

F D E M W

F D E M W

jump

instr 2

nop

15-745 © Seth Copen Goldstein 2000-5 14

Jump/Branch Delay Slot(s)
• another option is for the branch take effect after

the delay slots.
• I.e., some instructions always get executed after the

branch but before the branching takes effect.

F D E M W

F D E M W

F D E M W

F D E M W

bra

instr 2

F D E M Winstr 3

instr x

instr y

15-745 © Seth Copen Goldstein 2000-5 15

Jump/Branch Delay Slots
• In other words, the instruction(s) in the delay slots of the

jump/branch instruction always get(s) executed when the
branch is executed (regardless of the branch result).

• Fetching from the branch target begins only after these
instructions complete.

• What instruction(s) to use?

bgt r3, L1

:
:

L1:

15-745 © Seth Copen Goldstein 2000-5 16

Branch Prediction

• Current processors will speculatively execute at
conditional branches
– if a branch direction is correctly guessed, great!
– if not, the pipeline is flushed before instructions

commit (WB).
• Why not just let compiler schedule?

– The average number of instructions per basic block
in typical C code is about 5 instructions.

– branches are not statically predictable
– What happens if you have a 20 stage pipeline?

15-745 © Seth Copen Goldstein 2000-5 17

Data Hazards

r1 = r2 + r3
r4 = r1 + r1

r1 = [r2]
r4 = r1 + r1

F D E M W

F D E M W

r2 + r3 available here

[r2] available here

15-745 © Seth Copen Goldstein 2000-5 18

Defining Dependencies
• Flow Dependence W R δf

• Anti-Dependence R W δa

• Output Dependence W W δo

• Input Dependence R R δi

true

false

S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;

Not generally
defined

15-745 © Seth Copen Goldstein 2000-5 19

Example Dependencies
S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e; S1 δf S2 due to a

S1 δf S3 due to a
S2 δf S4 due to b
S3 δa S4 due to d
S4 δa S5 due to b
S2 δo S5 due to b
S3 δi S5 due to a

1

2

3

4

5

15-745 © Seth Copen Goldstein 2000-5 20

Renaming of Variables
• Sometimes constraints are not “real,” in the

sense that a simple renaming of
variables/registers can eliminate them.
– Output dependence (WW):

A and B write to the same variable.
– Anti dependence (RW):

A reads from a variable to which B writes.
• In such cases, the order of A and B cannot be

changed unless variables are renamed.
– Can sometimes be done by the hardware, to a

limited extent.

15-745 © Seth Copen Goldstein 2000-5 21

Register Renaming Example
r1 ← r2 + 1

[fp+8] ← r1

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

[fp+8] ← r7

r1 ← r3 + 2

[fp+12] ← r1

r7 ← r2 + 1

r1 ← r3 + 2

[fp+8] ← r7

[fp+12] ← r1

• Can perform register renaming after register
allocation
• Constrained by available registers
• Constrained by live on entry/exit

• Instead, do scheduling before register allocation

Phase ordering problem

15-745 © Seth Copen Goldstein 2000-5 22

Scheduling a BB
• x ← w * 2 * x * y * z
r1 ← [fp+w]
r2 ← 2
r1 ← r1 * r2
r2 ← [fp+x]
r1 ← r1 * r2
r2 ← [fp+y]
r1 ← r1 * r2
r2 ← [fp+z]
r1 ← r1 * r2
[fp+w] ← r1

• What do we need to know?
• Latency of operations
• # of registers

• Assume:
• load 5
• store 5
• mult 2
• others 1

• Also assume,
• operations are non-blocking

15-745 © Seth Copen Goldstein 2000-5 23

Scheduling a BB
• x ← w * 2 * x * y * z
1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+x] ← r1
33 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations

are non-
blocking

15-745 © Seth Copen Goldstein 2000-5 24

We can do better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

• Assume:
• load 5
• store 5
• mult 2
• others 1
• operations

are non-
blocking

We can do even
better if we

assume what?

15-745 © Seth Copen Goldstein 2000-5 25

Defining Better
1 r1 ← [fp+w]
2 r2 ← [fp+x]
3 r3 ← [fp+y]
4 r4 ← [fp+z]
5 r5 ← 2
6 r1 ← r1 * r5
8 r1 ← r1 * r2
10 r1 ← r1 * r3
12 r1 ← r1 * r4
14 [fp+w] ← r1
19 r1 can be used again

1 r1 ← [fp+w]
2 r2 ← 2
6 r1 ← r1 * r2
7 r2 ← [fp+x]
12 r1 ← r1 * r2
13 r2 ← [fp+y]
18 r1 ← r1 * r2
19 r2 ← [fp+z]
24 r1 ← r1 * r2
26 [fp+w] ← r1
33 r1 can be used again

15-745 © Seth Copen Goldstein 2000-5 26

The Scheduler
• Given:

– Code to schedule
– Resources available (FU and # of Reg)
– Latencies of instructions

• Goal:
– Correct code
– Better code [fewer cycles, less power,

fewer registers, …]
– Do it quickly

15-745 © Seth Copen Goldstein 2000-5 27

More Abstractly
• Given a graph G = (V,E) where

– nodes are operations
• Each operation has an associated delay and type

– edges between nodes represent dependencies
– The number of resources of type t, R(t)

• A schedule assigns to each node a cycle number:
– S(n) ≥ 0
– If (n,m) ∈ G, S(m) ≥ S(n) + delay(n)
– |{ n | S(n) = x and type(n) = t}| <= R(t)

• Goal is shortest length schedule, where length
– L(S) = max over n, S(n)+delay(n)

15-745 © Seth Copen Goldstein 2000-5 28

List Scheduling
• Keep a list of available instructions, I.e.,

– If we are at cycle k, then all predecessors, p,
in graph have all been scheduled so that
S(p)+delay(p) ≤ k

• Pick some instruction, n, from queue such that
there are resources for type(n)

• Update available instructions and continue

• It is all in how we pick instructions

15-745 © Seth Copen Goldstein 2000-5 29

Lots of Heuristics
• forward or backward
• choose instructions on critical path
• ASAP or ALAP
• Balanced paths
• depth in schedule graph

15-745 © Seth Copen Goldstein 2000-5 30

DLS (1995)
• Aim: avoid pipeline hazards in load/store unit

– load followed by use of target reg
– store followed by load

• Simplifies in two ways
– 1 cycle latency for load/store
– includes all dependencies (WaW included)

15-745 © Seth Copen Goldstein 2000-5 31

The algorithm
• Construct Scheduling dag
• Make srcs of dag candidates
• Pick a candidate

– Choose an instruction with an interlock
– Choose an instruction with a large number of

successors
– Choose with longest path to root

• Add newly available instruction to candidate list

15-745 © Seth Copen Goldstein 2000-5 32

1) ld r1 ← [a]
2) ld r2 ← [b]
3) add r1 ← r1 + r2
4) ld r2 ← [c]
5) ld r3 ← [d]
6) mul r4 ← r2 * r3
7) add r1 ← r1 + r4
8) add r2 ← r2 + r3
9) mul r2 ← r2 * r3
10) add r1 ← r1 + r2
11) st [a] ← r1

15-745 © Seth Copen Goldstein 2000-5 33

Trace Scheduling
• Basic blocks typically contain a small number of instrs.
• With many FUs, we may not be able to keep all the units

busy with just the instructions of a BB.
• Trace scheduling allows block scheduling across BBs.
• The basic idea is to dynamically determine which blocks

are executed more frequently. The set of such BBs is
called a trace.

The trace is then scheduled as a single BB.
• Blocks that are not part of the trace must be modified

to restore program semantics if/when execution goes
off-trace.

B C

A

15-745 © Seth Copen Goldstein 2000-5 34

Trace Scheduling

A

B C

D

E

F G

H

A

B

E

G

H

J

S

J

S

C

F

D

15-745 © Seth Copen Goldstein 2000-5 35

Trace Scheduling

x>10?

a=b+c

d=a-3 a=b+c
f=a+3

a=b+c

x>10?

d=a-3 f=a+3

a=e*f

d=a-3

a=b+c
x=x+1 a=e*f

d=a-3

……

a=b+c
x=x+1
d=a-3

15-745 © Seth Copen Goldstein 2000-5 36

VLIW
• Very Long Instruction Word
• Multiple Function Units
• Statically scheduled
• Examples

– Itanium
– TI C6x

• Scalability Issues?

Memory ALU FPU Branch ALU …

15-745 © Seth Copen Goldstein 2000-5 37

Why Clusters?
• Reduce number of register ports
• Reduce length of buses
• Example: C6x

register file A register file B

L1 S1 M1 D1 D2 M2 S2 L2

Data bus

Address bus

Data path A Data path B

15-745 © Seth Copen Goldstein 2000-5 38

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

Á
Á
Á
Á
ÁÁ
Á
Á
Á

Á

Á
Á
Á
Á
Á
Á

Á

Á
Á
Á
Á
Á

ÁÁ
Á

Á
Á

Á

.D1

.M1
Á
Á
Á

ÁÁ
ÁÁ

ÁÁ
Á

Á

ÁÁ
ÁÁÁ

.S1

Á
Á
Á
Á

Á
Á

ÁÁ

.L1

long src

dst

src2

src1

Á Á
Á

Á

ÁÁ
ÁÁ

ÁÁ

ÁÁ
Á
Á

Á

src1

src1

src1

src1

src1

src1

src1

8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

ÁÁ

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Register
File A

(A0–A15)

long src
long dst

long dst
long src

Data Path B

Data Path A

Register
File B

(B0–B15)

Control
Register

File

Figure 1. TMS320C62x CPU Data Paths

Some more details
• Not all FUs the same

–some overlap
–Add on L,S,D
–delay 1 mostly
– load, 4. mult, 2

• Not all srcs the same
–both srcs from same RF
–L,S,M: 1 from other RF
–Only L&S used for copy
–S &M: only right from other RF

• Not all dests the same
– if 2 D ops, srcs and dests
must be to different RFs

15-745 © Seth Copen Goldstein 2000-5 39

Phase-Ordering
• Valid assembly must

– be properly partioned
– be properly scheduled
– be properly register allocated

• What order to perform?

register
allocation

partitioning

Scheduling

false
dependencies

unnecc spillling/
reschedule?

unnecc comm/
reduce ILP

15-745 © Seth Copen Goldstein 2000-5 40

Partitioning/Scheduling Basics

• Objectives:
– Balance workload per cluster
– Minimize critical intercluster communication

Register
File

I MEM MEMI

Register
File

Cluster 1 Cluster 2

Interconnection Network
+

>>

*

&

LW

+ Intercluster move

15-745 © Seth Copen Goldstein 2000-5 41

Bottom-Up Greedy (BUG) 1985
• Assigns operations to cluster, then schedules
• recurses down DFG

– assigns ops to cluster based on estimates of
resource usage

– assigns ops on critical path first
– tries to schedule as early as possible

1

2

6

3

7

4

8

5

9

11

12

10

1

2

6

3

7

4

8

5

9

11

12

10

1

2

6

3

7

4

8

5

9

11

12

10

1

2

6

3

7

4

8

5

9

11

12

10

15-745 © Seth Copen Goldstein 2000-5 42

Integrated Approaches
• Leupers, 2000

– combine partitioning & scheduling
– iterative approach

• B-init/B-iter, 2002
– Initial binding/scheduling
– Iterative improvement

• RHOP, 2003
– region-based graph partitioning

15-745 © Seth Copen Goldstein 2000-5 43

Leupers Approach
• Integrate partitioning and scheduling

• Use Simulated Annealing to determine partition
• The eval step in the SA loop is the scheduler!

• Deals with details of architecture

15-745 © Seth Copen Goldstein 2000-5 44

Example Result

15-745 © Seth Copen Goldstein 2000-5 45

Approach: SA
Generate random

partitioning & schedule

Pick one node to swap

schedule

Newcost < oldcost*eT

Undo swap

Reduce T

yes

no

15-745 © Seth Copen Goldstein 2000-5 46

algorithm Partition
input DFG G with nodes;
output: DP: array [1..N] of 0,1 ;
var int i, r, cost, mincost;
float T;
begin
T=10;
P:=Randompartitioning;
mincost := LISTSCHEDULING(G,P);
WHILE_LOOP;
return DP;

end.

WHILE_LOOP:
while T>0.01 do
for i=1 to 50 do
r:= RANDOM(1,n);
P[r] := 1-P[r];
cost:=LISTSCHEDULING(G,P);
delta:=cost-mincost;
if delta <0 or
RANDOM(0,1)<exp(-delta/T)
then mincost:=cost
else P[r]:=1-P[r]
end if;
end for;
T:= 0.9 * T;

end while;

Basic Algorthm

15-745 © Seth Copen Goldstein 2000-5 47

Scheduling
• Use a List Scheduler
• Tie breaker for next ready node is min ALAP
• Heart of routine is ScheduleNode

algorithm ListScheduling(G,P)
input DFG G; parition P;
output: length of schedule
var m: DFG node; S: schedule
begin

mark all nodes unscheduled
S = ∅
while (while not all scheduled) do

m = NextReadyNode(G);
S = ScheduleNode(S,m,P);
mark m as scheduled

end
return Length(S)

end 15-745 © Seth Copen Goldstein 2000-5 48

ScheduleNode
• Goal: insert node m as early as possible

– don’t violate resource constraints
– don’t violate dependence constraints

• First try based on ASAP
• Until it is scheduled

– See if there is an FU that can execute m
– check source registers

• if both from same RF as FU, done
• if not: must decide what to do

15-745 © Seth Copen Goldstein 2000-5 49

Dealing with x-RF transfers
• Two ways to XFER:

– Source can be Xfered this cycle
– Source can be copied in previous cycle

• If neither is true
– maybe commutative?
– try to schedule next cycle

15-745 © Seth Copen Goldstein 2000-5 50

Basic Scheduling of a Node

algorithm ScheduleNode(S,m,P)
input Schedule S, node m, parition P;
output: new schedule with m
var cs: control step
begin

cs = EarliestControlStep(m)-1;
repeat

cs++;
f = GetNodeUnit(m, cs, P);
if (f == ∅) continue;
if (m needs arg from other RF) then

CheckArgTransfer();
if (no transfer possible) then continue;
else TryScheduleTransfers();

until (m is scheduled);
…

CheckArgTransfer:
• if CSE, reuse
• if room for move, do so
• if X-path avail and valid, use it

TryScheduleTransfers:
• reuse first
• move if possible
• use X-path if possible
• try commuting args

• Can fail

15-745 © Seth Copen Goldstein 2000-5 51

Handling loads
• After scheduling an op to a cluster, see if it is a

load. Determine the partition of the result
• Scheduling of loads uses the RF of the address
• Scheduling the result

– check to see if both units are free
– if so, check to see where it is used most and

schedule result in that RF

15-745 © Seth Copen Goldstein 2000-5 52

Benefits/Drawbacks
• Does not predetermine the partitioning
• handles many real world details

• local decisions only
• Time consuming
• Very specific to C6x
• may not scale to multiple clusters?

15-745 © Seth Copen Goldstein 2000-5 53

RHOP partitioning/scheduling
• 2003, Chu,Fan, Mahlke
• Global scheduling and partitioning
• Based on graph-partitioning

• Avoid local scheduling pitfalls
• Avoid “scheduling”

15-745 © Seth Copen Goldstein 2000-5 54

RHOP Approach
• Opposite approach to conventional clustering
• Global view

– Graph partitioning strategy [Aletà ‘01, ‘02]
– Identify tightly coupled operations - treat uniformly

• Non scheduler-centric mindset
– Prescheduling technique
– Doesn’t complicate scheduler
– Enable global view of code
– Estimate-based approach [Lapinskii ‘01]

15-745 © Seth Copen Goldstein 2000-5 55

Region-based Hierarchical
Operation Partitioning (RHOP)

• Code is considered region at a time
• Weight calculation creates guides for good partitions
• Partitioning clusters based on given weights

Weight
Calculation

Graph
Partitioning

1

1

10

10

10

10

1

8

8

8

8 8

8
1 1

1 1 1

1 1

1 1

1

int main {
int x;
printf(…);
.
.
.

}

Program Region

15-745 © Seth Copen Goldstein 2000-5 56

Edge Weights

• Slack distribution allocates slack to certain edges
– Edge slack = lstartdest - latencyedge - estartsrc
– First come, first serve method used

(0,0) (0,0)1 2

3 5 6

10

7

11

14

1312

4(1,1)

(2,2)

(0,1) (0,1) (0,1) (0,1)

8 9(1,2) (1,2)(0,2)

(3,3) (2,3)

(4,4)

0

0

0

0

0

1

1 1 1 1

2 1

1

10 10

10

10

10 1

1

0 0 0

01

08 8 8 8

81

(estart, lstart)

1 – slack
8 – no slack after dist
10 - critical

15-745 © Seth Copen Goldstein 2000-5 57

RHOP - Partitioning Phase

• Modified Multilevel-KL algorithm [Kernighan ‘69]
• Multilevel graph partitioning consists of two stages

1. Coarsening stage
2. Refinement stage Coasening: meld partitions to

reduce weight, thus, will keep
edges on CP together.

15-745 © Seth Copen Goldstein 2000-5 58

Cluster Refinement

• 3 questions to answer:
1. Which cluster should operations move from?
2. How good is the current partition?
3. How profitable is it to move X from cluster A to

B?
?

15-745 © Seth Copen Goldstein 2000-5 59

Node Weights

op wgtc =

1
#ops that can execute on c in1 cycle

1

3

2

I F M B

Register File

Dedicated Resources

shared wgtc =
resource limited sched length on c

ops

3

8

5

9

6

10

7

11

13

14

12

1 2

4

I F M B

Register File

Accounts for buses, portsAccounts for FU’s

Shared Resources

• Create a metric to determine resource usage

15-745 © Seth Copen Goldstein 2000-5 60

Where Should Operations Move
From?

∑
∈∈ +

=
τat oop slack

c

opgroupsot,c 1op
wgt_opmaxIwgt

15-745 © Seth Copen Goldstein 2000-5 61

Where Should Operations Move
From?

c
ave

t,c wgt_shared*
1slack

at c in ops#Twgt
+

=
τ

cluster _wgtc = (max(Iwgtc,t ,Twgtc,t) −1

t=0

max estart

∑)

4

3

2

1

0

8
12
14

1
4 6

9
5

2
Cluster 1

Cluster 2

cy
cl

e
cy

cl
e

3

4

3

2

1

0
7

11
13

10

2.5
2.0
0.5
0.0
0.0

0 1 2

Cluster_wgt1= 5.0

0.0
0.33
0.33
0.0
0.0

0 1 2

Cluster_wgt2= 0.67

∑
∈∈ +

=
τat oop slack

c

opgroupsot,c 1op
wgt_opmaxIwgt

15-745 © Seth Copen Goldstein 2000-5 62

How Good is this Partition?

SL = max

i∈cluster
(Cwgti ,t −1)

t=0

max estart

∑

2.5
2.0
0.5
0.0
0.0

0.0
0.33
0.33
0.0
0.0

0 1 2 0 1 2

Cluster 1

Cluster_wgt1= 5.0

Cluster 2

Cluster_wgt1= 0.67

2.5
2.0
0.5
0.0
0.0

Max

SL= 5.0

15-745 © Seth Copen Goldstein 2000-5 63

How Good is This Proposed Move?

Egain = edge_wgti

i ∈merged edges
∑ − edge_wgt j

j∈cut edges
∑ Lgain = SL(before) −SL(after)

 Mgain = Egain + (Lgain * CRITICAL EDGE COST)

4

3

2

1

0

8
12
14

1 2 1.0
0.0
0.0
0.0
0.0

1.33
2.33
0.83
0.0
0.0

Cluster 1

Cluster 2

cy
cl

e
cy

cl
e

3

4

3

2

1

0
4 6

9
5

SL(before)= 5.0

SL(after)= 4.5

Lgain= 0.5

Egain= -1.0

Mgain= 4.0

7
11

13

10

15-745 © Seth Copen Goldstein 2000-5 64

Experimental Evaluation
• Trimaran toolset: a retargetable VLIW

compiler
• Evaluated DSP kernels and SPECint2000

4 Heterogeneous clusters
IM, IF, IB and IMF clusters

4-H

4 Homogenous clusters
2 I, 1 F, 1 M, 1 B per cluster

4-2111

4 Homogenous clusters
1 I, 1 F, 1 M, 1 B per cluster

4-1111

2 Homogenous clusters
2 I, 1 F, 1 M, 1 B per cluster

2-2111

2 Homogenous clusters
1 I, 1 F, 1 M, 1 B per cluster

2-1111

ConfigurationName • 64 registers per cluster

• Latencies similar to Itanium

• Perfect caches

• For more detailed results,
see paper

15-745 © Seth Copen Goldstein 2000-5 65

2 Cluster Results vs 1 Cluster

0.4

0.5

0.6

0.7

0.8

0.9

1

a
tm

ce
ll

ch
a

n
n

e
l

d
ct fi
r

fs
e

d

h
a

lf
to

n
e

h
e

a
t

h
u

ff
m

a
n

LU

ly
a

p
u

n
o

v

rl
s

so
b

e
l

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
8

1
.m

cf

1
9

7
.p

a
rs

e
r

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

zi
p

3
0

0
.t

w
o

lf

A
v

e
ra

g
e

Benchmarks

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

BUG
RHOP

15-745 © Seth Copen Goldstein 2000-5 66

4 Cluster Results vs 1 Cluster

0.4

0.5

0.6

0.7

0.8

0.9

1

a
tm

ce
ll

ch
a

n
n

e
l

d
ct fi
r

fs
e

d

h
a

lf
to

n
e

h
e

a
t

h
u

ff
m

a
n

LU

ly
a

p
u

n
o

v

rl
s

so
b

e
l

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
8

1
.m

cf

1
9

7
.p

a
rs

e
r

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

zi
p

3
0

0
.t

w
o

lf

A
v

e
ra

g
e

Benchmarks

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

BUG
RHOP

15-745 © Seth Copen Goldstein 2000-5 67

Conclusions
• A new, region-scoped

method for clustering
operations
– Prescheduling technique
– Estimates on schedule length

used instead of scheduler
– Combines slack distribution

with multilevel-KL partitioning
• Performs better as number

of resources increases

RHOP vs BUGMachine

8.0%4-H

15.3%4-2111

14.3%4-1111

3.7%2-2111

-1.8%2-1111

Average Improvement

15-745 © Seth Copen Goldstein 2000-5 68

Previous Work

BUG

RHOP

B-ITER

GP(B)

Capitanio

Leupers

Convergent

CARS

UAS

Algorithm

X

X

X

Before

X

X

X

Iterativ
e

X

X

X

During

When (rel. to sched)

X

X

X

X

X

X

Region

X

X

X

Local

Scope

X

X

Count

X

X

X

X

Est

X

Pseudo

X

X

Sched

Desirability Metric

X

X

X

X

X

X

X

Flat

X

X

Hier.

Grouping

