
1

School of Computer Science

Register Allocation

15-745 Optimizing Compilers
Spring 2007

School of Computer Science

Peas tell me allPeas tell me all
about registerabout register

allocation!allocation!

School of Computer Science

Back end structure

IR

TempMap

instruction
selector

register
allocator

Assem

Assem
instruction
scheduler

School of Computer Science

.text
.align 4

.globl _main
_main:

enter
pushl %edi
pushl %ebx
pushl %esi
movl $2, t7
movl t7, t11
imull t7, t11
movl t11, t10
imull $37, t10
movl t10, t8
movl t7, t17
addl $1, t17
movl $33, %eax
cltd
idivl t17

movl %eax, t15
movl t7, t14
addl t15, t14
movl t8, t13
imull t14, t13
movl t13, t8
movl $78, t20
negl t20
movl t8, t19
subl t20, t19
movl t19, %eax
popl %esi
popl %ebx
popl %edi
leave
ret

standard
prelude

standard
postlude

result value
in %eax

After Instruction Selection

2

School of Computer Science

.text
.align 4

.globl _main
_main:

pushl %ebp
movl %esp, %ebp
movl %edi, t2
movl %ebx, t3
movl %esi, t4
movl $2, t7
movl t7, t11
imull t7, t11
movl t11, t10
imull $37, t10
movl t10, t8
movl t7, t17
addl $1, t17
movl $33, %eax
cltd
idivl t17

movl %eax, t15
movl t7, t14
addl t15, t14
movl t8, t13
imull t14, t13
movl t13, t8
movl $78, t20
negl t20
movl t8, t19
subl t20, t19
movl t19, %eax
movl t4, %esi
movl t3, %ebx
movl t2, %edi
movl %ebp, %esp
popl %ebp
ret

better
prelude

better
postlude

result value
in %eax

After Instruction Selection

School of Computer Science

Abstract View
…
movl $2, t7
movl t7, t11
imull t7, t11
movl t11, t10
imull $37, t10
movl t10, t8
movl t7, t17
addl $1, t17
movl $33, %eax
cltd
idivl t17
…

…
t7 <- ()
t11 <- (t7)
t11 <- (t7, t11)
t10 <- (t11)
t10 <- (t10)
t8 <- (t10)
t17 <- (t7)
t17 <- (t17)
%eax <- ()
%edx,%eax <- (%eax)
%eax,%edx <- (t17,%eax,%edx)
…

Abstract view, for register allocation purposes

ReadWritten

School of Computer Science

Register allocator’s job

The register allocator’s
job is to assign each
temp to a machine
register.

If that fails, the register
allocator must rewrite
the code so that it can
succeed.

…
t7 : %ebx
t8 : %ecx
t10 : %eax
t11 : %eax
t17 : %esi
…

The

TempMap

…
t7 <- 2
t11 <- t7
t11 <- (t7, t11)
t10 <- t11
t10 <- t10
t8 <- t10
t17 <- t7
t17 <- t17
%eax <-
%edx <- (%eax,%edx)
%eax,%edx <- t17
…

School of Computer Science

Some terminology
Two temps interfere if at some point in the
program they cannot both occupy the same
register.

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Which temps interfere?

3

School of Computer Science

A graph-coloring problem

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Interference graph: an undirected graph where

•nodes = temps

•there is an edge between two nodes if their
corresponding temps interfere

School of Computer Science

A graph-coloring problem

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

A graph is k-colorable if every node in the graph can
be colored with one of k colors such that two adjacent
nodes do not have the same color

Assigning k registers = Coloring with k colors

eax
edx
ecx

School of Computer Science

History
For early architectures, register allocation was not very
important
Early work by Cocke (in 1971) proposed the idea that
register allocation can be viewed as a graph coloring
problem
Chaitin was the first to implement this idea for the IBM
370 PL/1 compiler, in 1981
In 1982, at IBM, Chaitin’s allocator was used for the
PL.8 compiler for the IBM 801 RISC system
Today, register allocation is the most essential of code
optimizations

School of Computer Science

History, cont’d
Motivated by the first MIPS architecture,
Chow and Hennessy developed priority-based
graph coloring in 1984

Another popular algorithm for register
allocation based on graph coloring is due to
Briggs in 1992

“top down” coloring

“bottom up” coloring

4

School of Computer Science

Steps in register allocation

Build

Color

Spill

School of Computer Science

Building the interference graph
Given liveness information, we can build the
interference graph (IG)

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- x
 <- w
 <- t
 <- u

{}
{v}
{w,v}
{w,x,v}
{w,u,x}
{x,w,u,t}
{w,u,t}
{u,t}
{u}

v

x w

u

t

How?

School of Computer Science

Edges of Interference Graph
Intuitively:

Two variables interfere if they overlap at some point in the program.
Algorithm:

At each point in program,
enter an edge for every pair of variables at that point

An optimized definition & algorithm for edges:
For each defining inst i

Let x be definition at inst i
For each variable y live at end of inst i

insert an edge between x and y

Faster?
Better quality?

A = 2 (A2)
{D}
{A,D} Edge between A and D

School of Computer Science

Building the interference graph
for each defining inst i
 let x be temp defined at inst i
 for all y in LIVE-IN of succ(i)
 insert an edge between x and y

v

x w

u

t

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- x
 <- w
 <- t
 <- u

{}
{v}
{w,v}
{w,x,v}
{w,u,x}
{x,w,u,t}
{w,u,t}
{u,t}
{u}

5

School of Computer Science

A Better Interference Graph

x = 0;
for(i = 0; i < 10; i++)
{
 x += i;
}

y = global;
y *= x;

for(i = 0; i < 10; i++)
{
 y += i;
}

What does the interference
graph look like?

What’s the minimum
number of registers
needed?

School of Computer Science

Live Ranges & Merged Live Ranges

A live range consists of a definition and all
the points in a program (e.g. end of an
instruction) in which that definition is live.
– How to compute a live range?

Two overlapping live ranges for the same
variable must be merged

a = … a = …

… = a

School of Computer Science

Example
A = ... (A1)
IF A goto L1

L1:
C = ... (C1)
 = A
D = ... (D1)

B = ... (B1)
 = A
D = B (D2)

A = 2 (A2)

 = A
ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{D} {A1,B1,D2}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Merge

A live range consists of a definition and all the
points in a program in which that definition is live.

School of Computer Science

Merging Live Ranges
Merging definitions into equivalence classes:

– Start by putting each definition in a different equivalence class
– For each point in a program

• if variable is live,
and there are multiple reaching definitions for the variable

• merge the equivalence classes of all such definitions into a one
equivalence class

Merged live ranges are also known as “webs”

6

School of Computer Science

Example: Merged Live Ranges
A = ... (A1)
IF A goto L1

L1:
C = ... (C1)
 = A
D = ... (D1)

B = ... (B1)
 = A
D = B (D2)

A = 2 (A2)

 = A
ret D

{}
{A1}
{A1}

{A1}
{A1,B1}
{B1}
{D1,2}

{A1}
{A1,C1}
{C1}
{D1,2}

{D1,2}
{A2,D1,2}

{A2,D1,2}
{D1,2}

A has two “webs”
makes register allocation easier

School of Computer Science

Steps in register allocation

Build

Color

Spill

““top downtop down””
priority coloringpriority coloring

School of Computer Science

Steps in register allocation

Build

Color

Spill

Prioritize

Select

““top downtop down””
priority coloringpriority coloring

School of Computer Science

Priority Coloring
Heuristic priority function computes
priority for each variable

– highest priority allocated first v

x w

u

t

k = 3

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

Priorities:
v: 4
w: 3
x: 2
u: 3
t: 2

Order:
v, w, u, x, t

Ideas for priority functions?

7

School of Computer Science

Priority Coloring
Allocate in priority order
Another heuristic selects which
register to assign to variable

– rotating registers
– lowest numbered register

v

x w

u

t

k = 3

Order:
v, w, u, x, t

eax
edx
ecx

School of Computer Science

Steps in register allocation

Build

Color

Spill

Simplify

Potential Spill

Select

Coalesce
““bottom upbottom up””
Briggs-ChaitinBriggs-Chaitin

School of Computer Science

Graph coloring

Once we have the interference graph, we can attempt
register allocation by searching for a K-coloring
This is an NP-complete problem (K≥3)*
But a linear-time simplification algorithm by Kempe (in 1879)
tends to work well in practice

[1] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of
the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics,
1998.
[2] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.
[3] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp.
159–181, 1998.

*

School of Computer Science

Kempe’s algorithm

Basic observation:
– given a graph that contains a node with

degree less than K, the graph is K-colorable
iff the graph without that node is K-colorable

– this is called the “degree<K” rule
So, step #1 of Kempe’s algorithm:

– iteratively remove nodes with degree<K

8

School of Computer Science

Kempe’s algorithm, cont’d

If all nodes are removed by step #1, then
the graph is K-colorable
However, the degree<K rule does not
always work, for example:

t1

t2 t3

t4

t5
This graph is 3-colorable,
but the degree<3 rule
doesn’t work

t1

t2 t3

t4

t5

School of Computer Science

Kempe’s algorithm, cont’d

In step #1, each removed node should be pushed onto a
stack

– when all are removed, we pop each node and put it back into
the graph, assigning a suitable color as we go

In case we get stuck (i.e., there are no nodes with
degree<K), we apply step #2:

– choose a node with degree≥K and optimistically remove it, and
then continue

School of Computer Science

Example

v

x w

u

t

k = 3

t

x

w

Stack

u

v

School of Computer Science

v

u

wx

t

Example

v

x w

u

t

k = 3

t

x

w

Stack

u

v

eax
edx
ecx

9

School of Computer Science

Another Example

x

u

t

w

v

k = 3

v

Now what?
Be optimistic:

- Put a node with degree ≥ k on stack

- Lose guarantee that anything we
put on stack is colorable

- If we’re lucky this node will still be
colorable when popped from stack

Be realistic:

- If unlucky, this node will have to be
spilled (allocated to memory)

- Mark as potential spill to avoid
recomputation later

w

t

School of Computer Science

Select

w

t

v

u

wx

t

k = 3

v

u

x

Pop a node from the stack

Assign it a color that does not
conflict with neighbors in
interference graph

This will always be possible,
unless the node is a potential spill

If it is not possible, mark as
actual spill

School of Computer Science

Steps in register allocation

Build

Color

Spill

School of Computer Science

Spilling to Memory
RISC Architectures

– Only load and store can access memory
• every use requires load
• every def requires store
• create new temporary for each location

CISC Architectures
– can operate on data in memory directly

• makes writing compiler easier(?), but isn’t necessarily faster

– pseudo-registers inside memory operands still have to be handled

10

School of Computer Science

Spilling a use
For an instruction like

– t <- (u,v)
If u is marked as an actual spill, transform to

– u’ := u (i.e., a load instruction)
– t <- (u’,v)

where u’ is a new temp
u and u’ are special:

– u is spilled and thus unallocatable
– u’ is marked as unspillable

School of Computer Science

Spilling a def
For an instruction like

– t <- (u,v)
If t is marked as an actual spill, transform to

– t’ <- (u,v)
– t := t’ (i.e., a store instruction)

where t’ is a new temp
t and t’ are special:

– t is spilled and thus unallocatable
– t’ is marked as unspillable

School of Computer Science

Spilled (unallocable) temps
Question: Where do the spilled temps get stored?

Answer: On the stack, in stack slots

To “mark” an actual spill, give it a slot number

old ebpebp

…

slot n

slot 1
slot 0esp

…

return addr

Each spilled temp
should be allocated
into a stack slot

The compiler can
maintain a counter for
the “next” slot number

School of Computer Science

Stack slots
In order to create the stack slots at run time,
the prelude code needs to modify %esp

_main:
pushl %ebp
movl %esp, %ebp
movl %edi, t2
movl %ebx, t3
movl %esi, t4

_main:
pushl %ebp
movl %esp, %ebp
movl %edi, t2
movl %ebx, t3
movl %esi, t4
subl $(n×4), %esp

Note that the subl can be generated only after
register allocation is finished

11

School of Computer Science

Spill code generation
The effect of spill code generation is to turn
long live ranges into a bunch of tiny live
ranges
This introduces new temps
Hence, register allocation must start over from
scratch whenever spill code is generated

School of Computer Science

Spilling
v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

 <- x

w3 <- Mw[]

 <- w3

 <- t

 <- u

Allocate w to memory
location Mw

v

w1

x

u

t

w2

w3

Now Start Over...

...compute live ranges...

Spilled variables are allocated to
the stack in an area completely
controlled by the compiler.
These memory locations are
special in that they can be
optimized without concern for
memory aliasing issues.

School of Computer Science

What to Spill?
When choosing potential spill node want:

– A node that makes graph easier to color
• Fewer spills later

– A node that isn’t “expensive” to spill
• An expensive node would slow down the program if spilled

– We can apply heuristics both when choosing potential
spill nodes and when choosing actual spill nodes

• not required to spill node that we popped off stack and can’t
color

School of Computer Science

A Spill Heuristic
Pick node (live range) n that minimizes:

This heuristic prefers nodes that:
– Are used infrequently
– Aren’t used inside of loops
– Have a large degree

Could use any one of several other heuristics as well…
!

10depth(def)

def "n

+ 10depth(use)

use"n

#

degree(n)

12

School of Computer Science

Rematerialization
An alternative to spilling

– Recompute value of variable instead of
store/load to memory

– Example:
v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
 <- w
 <- t
 <- u

v <- 1
w <- v + 3
x <- w + v
u <- v
t <- u + x
w <- 4
 <- w
 <- t
 <- u

School of Computer Science

Build Take Two

v

x

u

t

w1 w2 w3

Recalculate interference graph

k = 3
v <- 1

w1 <- v + 3

Mw[]<- w1

w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

 <- x

w3 <- Mw[]

 <- w3

 <- t

 <- u

School of Computer Science

Simplify->Select

v

x

u

t

w1 w2 w3

k = 3

School of Computer Science

Another Example

t1 <- ()
t2 <- ()
t3 <- (t1,t2)
t4 <- (t1,t3)
t5 <- (t1,t2)
t6 <- (t4,t5)

Assume 2 machine registers, {r1,r2}.

Assume t4 may not be in r1.

Then we have the interference graph

t3 t1

t2 t4

t5

r1 r2t6

13

School of Computer Science

Simplification steps…

t3 t1

t2 t4

t5

r1 r2t6

k = 2
School of Computer Science

t6
t5
r2
r1

t3 t1

t2 t4

t5

r1 r2t6

k = 2

After some simplification steps…

School of Computer Science

Choosing potential spills…

t6
t5
r2
r1
t3 ps
t4 ps

t3 t1

t2 t4

t5

r1 r2t6

k = 2
School of Computer Science

Completing simplification

t6
t5
r2
r1
t3 ps
t4 ps
t1
t2

t3 t1

t2 t4

t5

r1 r2t6

k = 2

14

School of Computer Science

Selecting colors…

t6
t5
r2
r1
t3 ps
t4 ps

t3 t1

t2 t4

t5

r1 r2t6

k = 2
School of Computer Science

Actual spills…

t6
t5
r2
r1

t3 t1

t2 t4

t5

r1 r2t6

School of Computer Science

Select complete!

t3 t1

t2 t4

t5

r1 r2t6

School of Computer Science

Spill code generation…

t3 t1

t2 t4

t5

r1 r2t6

t1 <- ⊗()
t2 <- ⊗()
t3 <- ⊗(t1,t2)
t4 <- ⊗(t1,t3)
t5 <- ⊗(t1,t2)
t6 <- ⊗(t4,t5)

t1 <- ()
t2 <- ()
t7 <- (t1,t2)
t3 := t7
t8 := t3
t9 <- (t1,t8)
t4 := t9
t5 <- (t1,t2)
t10 := t4
t6 <- (t10,t5)Notice: Live ranges for t3 and

t4 have been chopped up into
lots of small live ranges

15

School of Computer Science

t1 <- ()
t2 <- ()
t7 <- (t1,t2)
t3 := t7
t8 := t3
t9 <- (t1,t8)
t4 := t9
t5 <- (t1,t2)
t10 := t4
t6 <- (t10,t5)

r2 <- ()
r1 <- ()
r1 <- (r2,r1)
slot0 := r1
r1 := slot0
r1 <- (r2,r1)
slot1 := r1
r1 <- (r2,r1)
r2 := slot1
r1 <- (r2,r1)

…and start over!

t1

t2

t5

r1 r2t6t7

t8

t9

t10

School of Computer Science

Steps in register allocation

Build

Color

Spill

Simplify

Potential Spill

Select

Coalesce
““bottom upbottom up””
Briggs-ChaitinBriggs-Chaitin

School of Computer Science

Move Coalescing
Eliminate moves by assigning the src and
dest to the same register

How can we modify our interference graph
to do this?

movl t1,t2
addl t3,t2

When can we coalesce t1 and t2?

movl %eax,%eax
addl %edx,%eax addl %edx,%eax

School of Computer Science

Example
v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

 <- w

 <- t

 <- u

v

w
x

u
t

First compute live ranges...

v

x w

u

t

...then construct interference graph

16

School of Computer Science

Example
v

x w

u

t

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

 <- w

 <- t

 <- u

u and v are special:
A move whose source is not live-out of the
move is a candidate for coalescing

Want u and v to be
assigned same color...

uv

...merge u and v
to form a single
node

That is, if the src and dest
don’t interfere

School of Computer Science

Is Coalescing Always Good?
y

u x

b

av

uv

y

u x

b

av

move edge vs.

And the winner is?
3 colorable2 colorable

School of Computer Science

When should we coalesce?
Always

– If we run into trouble start un-coalescing
• no nodes with degree < k, see if breaking up coalesced nodes fixes

– yuck
Only if we can prove it won’t cause problems

– Briggs: Conservative Coalescing
– George: Iterated Coalescing

y u x

b

av

When we simplify the graph,
we remove nodes of degree <
k...

want to make sure we will
still be able to simplify
coalesced node, uv

School of Computer Science

Briggs: Conservative Coalescing

y u x

b

av

•Can coalesce u and v if:
–(# of neighbors of uv with degree ≥ k) < k

•Why?
–Simplify pass removes all nodes with degree < k
–# of remaining nodes < k
–Thus, uv can be simplified

What does Briggs
say about

k = 3?

k = 2?

17

School of Computer Science

George: Iterated Coalescing
Can coalesce u and v if
 foreach neighbor t of u

• t interferes with v, or,
• degree of t < k

Why?
– let S be set of neighbors of u with degree < k
– If no coalescing, simplify removes all nodes in S, call

that graph G1

– If we coalesce we can still remove all nodes in S, call
that graph G2

– G2 is a subgraph of G1

doesn’t change degree
removed by simplification

Resulting node uv will
(after simplification)
have degree equal to
degree of v

School of Computer Science

George: Iterated Coalescing

u

v

S1

S2 S3

S4

x1

x2

u

v
x1

x2

No coalescing,
after

simplification

uv
x1

x2

After coalescing and
simplificationk = 4

G1

G2

School of Computer Science

Why Two Methods?
•Why not?
•With Briggs, one needs to look at all neighbors of a & b
•With George, only need to look at neighbors of a.

So:
– Use George if one of a & b has very large degree
– Use Briggs otherwise

School of Computer Science

Optimistic Coalescing
Aggressively coalesce
If coalesced node spills, uncoalesce

y

u x

b

av

uv

y

u x

b

av

u

v

Will this always work?

18

School of Computer Science

Steps in register allocation

Simplify

Potential Spill

Select

Coalesce

Prioritize

Select

top-down bottom-upvs.

Which one is better?

School of Computer Science

Alternative Allocators
Graph allocator, as described, has issues

– What are they?
Alternative: Single pass graph coloring

– Build, Simplify, Coalesce as before
– In select, if can’t color with register, color with stack location

• Keep going
– Requires second, reload phase

• “fixes” spilled variables
• Might require that we reserve a register
• Can get messy

Claim: Does a pretty good job
– Why?

• Key is order nodes are colored (top-down)

Advantages? Disadvantages?

School of Computer Science

Alternative Allocators
Local/Global Allocation

– Allocate “local” pseudo-registers
• Lifetime contained within basic block
• Register sufficiency no longer NP-Complete!

– Allocate global pseudo-registers
• Single pass global coloring
• Coloring heuristic may reverse local allocation

– Reload pass to fix spills (allocator does not generate
spill code)

– Can also do global then local
– Advantages? Disadvantages?

gcc’s approach,
unless -fnew-ra

School of Computer Science

In Chaitin’s words
“…since I was a mathematician, the register allocation kept
getting simpler and faster as I understood better what was
required. I preferred to base algorithms on a simple, clean idea
that was intellectually understandable rather than write
complicated ad hoc computer code…

So I regard the success of this approach, which has been the basis
for much future work, as a triumph of the power of a simple
mathematical idea over ad hoc hacking. Yes, the real world is
messy and complicated, but one should try to base algorithms
on clean, comprehensible mathematical ideas and only
complicate them when absolutely necessary. In fact, certain
instructions were omitted from the 801 architecture because they
would have unduly complicated register allocation…”

— G. Chaitin, 2004

19

School of Computer Science

Avoiding Spills

1.8 Ghz Pentium 4; -O3 -funroll-loops -fnew-ra; gcc version 3.2.2
School of Computer Science

Bottom-up vs Top-down: Speed

1.8 Ghz Pentium 4; -O3 -funroll-loops; gcc version 3.2.2

School of Computer Science

Bottom-up vs Top-down: Size

 x86; -Os; gcc version 3.2.2

Complexity of Register Allocation

20

School of Computer Science

Complexity of Register Allocation
Graph color is NP-complete

– what does this tell us about register allocation?
Given arbitrary graph can construct program
with matching interference graph1

– simply determining if spilling is necessary is
therefore NP-complete… or is it?

Can exploit structure of reducible program2,3,4

[1] G.J. Chaitin, M. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P. Markstein. Register allocation via coloring. Computer
Languages, 6:47-57, 1981.
[2] H. Bodlaender, J. Gustedt, and J. A. Telle, “Linear-time register allocation for a fixed number of registers,” in Proceedings of the
ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 574–583, Society for Industrial and Applied Mathematics, 1998.
[3] S. Kannan and T. Proebsting, “Register allocation in structured programs,” in Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pp. 360–368, Society for Industrial and Applied Mathematics, 1995.
[4] M. Thorup, “All structured programs have small tree width and good register allocation,” Inf. Comput., vol. 142, no. 2, pp.
159–181, 1998.

School of Computer Science

Complexity of Register Allocation
Complexity of local register allocation?

– linear algorithm for register sufficiency
SSA Form?

– interference graph is turns out to be both perfect1
and chordal2
• can color in linear time

– BUT all bets are off after SSA elimination3

[1] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial time graph coloring register allocation. In 14th
International Workshop on Logic and Synthesis. ACM Press, 2005.
[2] Sebastian Hack. Interference graphs of programs in SSA-form. Technical Report ISSN 1432-7864, Universitat Karlsruhe, 2005.
[3] Jens Palsberg and Fernando Magno Quintao Pereira Register allocation after classical SSA elimination is NP-complete, In
Proceedings of FOSSACS'06, Foundations of Software Science and Computation Structures. Springer-Verlag (LNCS), Vienna,
Austria, March 2006.

School of Computer Science

Complexity of Register Allocation
Complexity of optimizing spill code?

– NP-complete even without control flow1

Complexity of optimal coalescing?
– NP-complete2

[1] Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th ACMSIAM symposium on Discrete Algorithms,
pages 564 { 573. ACM Press, 1998.
[2] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and implementation, pages 243–253. ACM Press, 2001.

