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Abstract
Programmers have traditionally used locks to synchronize concur-
rent access to shared data. Lock-based synchronization, however,
has well-known pitfalls: using locks for fine-grain synchroniza-
tion and composing code that already uses locks are both difficult
and prone to deadlock. Transactional memory provides an alter-
nate concurrency control mechanism that avoids these pitfalls and
significantly eases concurrent programming. Transactional mem-
ory language constructs have recently been proposed as extensions
to existing languages or included in new concurrent language spec-
ifications, opening the door for new compiler optimizations that
target the overheads of transactional memory.

This paper presents compiler and runtime optimizations for
transactional memory language constructs. We present a high-
performance software transactional memory system (STM) inte-
grated into a managed runtime environment. Our system efficiently
implements nested transactions that support both composition of
transactions and partial roll back. Our JIT compiler is the first to
optimize the overheads of STM, and we show novel techniques
for enabling JIT optimizations on STM operations. We measure
the performance of our optimizations on a 16-way SMP running
multi-threaded transactional workloads. Our results show that these
techniques enable transactional memory’s performance to compete
with that of well-tuned synchronization.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Run-time environ-
ments

General Terms Algorithms, Measurement, Performance, Design,
Experimentation, Languages

Keywords Transactional Memory, Synchronization, Locking,
Compiler Optimizations, Code Generation, Virtual Machines

1. Introduction
As single thread performance hits the power wall, hardware ar-
chitects have turned to chip level multiprocessing (CMP) for in-
creasing processor performance. Future processor generations will
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use the exponentially increasing transistor budget to provide in-
creasing amounts of thread-level parallelism, thus bringing parallel
programming into the mainstream. Today, programmers use lock-
based synchronization to control concurrent access to shared data.
Lock based synchronization is difficult to compose, and can lead to
problems such as deadlock. Transactional memory (TM) provides
an alternate concurrency control mechanism that eliminates or alle-
viates these pitfalls, and significantly eases parallel programming.

TM can be provided as either a library or a first-class language
construct. A library approach allows language designers to experi-
ment with different TM abstractions and implementations before
baking TM into a language or hardware. A first-class TM lan-
guage construct, on the other hand, enables compiler optimizations
to improve performance and enables static analyses that provide
compile-time safety guarantees. Although several researchers have
implemented TM language constructs [16, 33, 17] and language
designers have included TM constructs in new concurrent language
specifications[2, 11, 9], no prior work has addressed how to support
transactions in an optimizing compiler.

In this paper, we focus on compiler and runtime optimizations
for transactional memory language constructs. We present a high-
performance TM system integrated into a managed runtime envi-
ronment. We show that a highly tuned software TM application
stack performs comparably to well-tuned locking code. Our TM
system makes the following novel contributions:

• Our TM implementation is the first TM system to integrate
an optimizing JIT compiler with a runtime STM library. We
present a new runtime STM interface tailored for JIT-compiled
code in a managed environment. We present compiler optimiza-
tions to reduce the overhead of STM and show how the com-
piler intermediate representation can expose STM operations in
such a way that existing global optimizations can safely elim-
inate redundant STM operations. Our results show that these
optimizations substantially reduce STM overheads to less than
20% over synchronized code on a single thread.

• We are the first STM to provide language constructs for com-
posable memory transactions [17] in an imperative Java-like
language. We demonstrate how common transactional idioms
(e.g., conditional critical regions) map onto these constructs.
Moreover, we demonstrate how to map these constructs onto
Java’s built-in exception mechanisms in order to model trans-
actional control flow due to nested transactions, user-initiated
retry operations, and data conflicts.

• Our TM system is the first to implement and evaluate conflict
detection at both object and word granularity; the first to bal-
ance conflict detection overhead with conflict detection granu-
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larity by allowing object and word granularity conflict detection
to co-exist on a per-type basis; and the first to implement this
in a general way that supports a moving garbage collector. Our
results show that this strategy is crucial to lowering the over-
heads of STM while at the same time achieving good scalability
when multiple threads concurrently access disjoint elements of
a shared object.

• Our TM system efficiently implements nested transactions and
partial undos. Our runtime STM structures help implement
nesting efficiently by making it easy to merge or discard read
and write sets on nested transaction commits and aborts. We
show how to model nesting in the intermediate representation
so that the compiler can correctly optimize STM operations
across nesting depths.

We have implemented our STM in a managed runtime environ-
ment that supports multithreaded Java programs employing new
transactional language extensions. Our core platform consists of
StarJIT[1], a high-performance dynamic compiler for Java and C#,
the Open Runtime Platform virtual machine (ORP) [10], and the
McRT-STM [34].

We use the Polyglot compiler framework [30] to add transac-
tions to the Java language and to encode them into standard Java.
We have extended the StarJIT intermediate representation (STIR)
to include STM operations and modified existing optimizations to
transform these operations correctly. Additionally, we implemented
new optimizations that specifically target STM operations. The exe-
cutable code generated by StarJIT directly invokes the McRT-STM
library embedded in ORP. We have tailored and optimized this
STM for use in a managed runtime environment and for use as a
JIT compiler target.

We measure the performance and scalability of our system on
a 16 processor SMP system using a set of Java workloads rewrit-
ten to use transactions instead of lock-based synchronization. Our
results show that our techniques enable the performance of trans-
actional memory to compete with the performance of well-tuned
synchronization.

The rest of this paper is organized as follows. Section 2 de-
scribes our transactional extensions to Java. Section 3 describes
our software transactional memory implementation. Section 4 de-
scribes the transactional memory support and optimizations in Star-
JIT. Section 5 presents our experimental results, and Section 6 dis-
cusses related work.

2. Transactions in Java
To support program-level transactions, we defined several new con-
structs as extensions to the Java language. First, we added an atomic
construct of the form atomic{S} that executes the statement S as
a transaction (the same basic atomic construct as [16, 2, 9, 11]). If
a thread executes a statement S atomically, all memory effects in S
are serializable with respect to transactions in other threads. When
S completes (either normally or exceptionally), its effects become
globally visible.

Additionally, we added two operations that provide composable
memory transactions[17]: retry and orelse. A retry operation,
which may be invoked only inside a transaction, blocks a thread
and restarts its transaction when an alternate path is available. It in-
dicates that the transaction cannot complete with the current state
of shared memory and must instead wait for another thread’s trans-
action to alter the memory locations that it depends on. Similar to
Java’s wait operation, it provides a facility for condition synchro-
nization. In contrast, there is no corresponding notify operation;
notification is implicitly handled by our system.

An orelse operation composes two or more alternative trans-
actions. For example, the operation atomic{S1}orelse{S2} first

tryatomic {
S;

}
→

atomic {
S;

} orelse {
throw new TransactionFailed();

}

when(cond) {
S;

}
→

atomic {
if(!cond)

retry;
S;

}

Figure 1. Fortress-style tryatomic and X10-style when.

while(true) {
TxnHandle th = txnStart();
try { S; break; }
finally { if(!txnCommit(th)) continue;}

}

Figure 2. Java code generated for atomic{S}.

executes S1 as a nested transaction. If S1 completes, the opera-
tion is complete. If it blocks using retry, its side effects (includ-
ing those to local variables) are discarded, and S2 is executed. An
orelse operation requires support for nested transactions in order
to partially undo the effects of its clauses. Moreover, in our system,
atomic and atomic-orelse operations may be arbitrarily nested
and composed. To ensure the latter, we permit a retry operation
to block only an outer-level transaction.

These three constructs allow our system to support an inter-
esting subset of the transactional features discussed in the litera-
ture. To illustrate this, we also support two additional constructs
in terms of the first three. A tryatomic operation, similar to that
in Fortress [2], attempts to execute a statement atomically, but im-
mediately fails with an exception if it tries to block. A when op-
eration, similar to that in X10 [9] and a conditional critical region
(CCR) in [16], blocks until a condition holds and then atomically
executes the corresponding statement. As shown in Figure 1, both
tryatomic and when are syntactic sugar for the corresponding se-
quences on the right.

With these constructs, we do not seek to define a complete, for-
mal extension to the Java language. Instead, we intend to study
transactional constructs within the context of Java and similar lan-
guages. As such, certain issues that require robust solutions for
completeness are beyond the scope of this paper: (1) We disal-
low native method invocations within a transaction, unless they
are standard Java library methods that are known to be side-effect
free. Any other native method invocations cause a Java error to
be thrown. (2) We do not explore interactions between transac-
tions and Java’s built-in synchronization features such as wait and
notify operations. Other work has explored how such constructs
may interact with or be implemented in terms of transactions, but
we do not address this further here. (3) We assume that all poten-
tially concurrent accesses to shared memory are properly guarded
by atomic regions. Any accesses that violate this are not serialized
with respect to the atomic regions and may result in invalid and un-
expected values. This is consistent with the Java memory model’s
treatment [23] of synchronized regions. In the future, we plan to ex-
plore a strongly atomic [6] system in which every memory access
is implicitly atomic.

We implemented our Java extensions using the Polyglot com-
piler toolkit [30]. We use Polyglot to compile a transactional Java
program to a pure Java program that is in turn compiled to class
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while(true) {
TxnHandle th = txnStart();
try {

while(true) {
TxnHandle th1 = txnStartNested();
try { S1; break; }
catch(TransactionRetryException tex) {

txnAbortNested(th1);
}
S2; break;

}
break;

}
finally { if(!txnCommit(th)) continue; }

}

Figure 3. Java code generated for atomic{S1}orelse{S2}.

files. Polyglot translates the new constructs to Java library calls
that StarJIT recognizes and uses Java’s exception handling to im-
plement the control flow due to transaction aborts and retries.

Figure 2 shows the Java code Polyglot generates for atomic{S}.
This code invokes txnStart to begin the transaction and to define
a corresponding transaction handle th. The transaction handle
represents a particular transaction nesting scope. As we show in
Section 4, StarJIT uses the handles to qualify the scope of the STM
operations that it generates. Although it is not shown here, the
statement S is also recursively modified by Polyglot. Any atomic
operations within S are modified accordingly. Any retry opera-
tion is mapped directly to a txnUserRetry call, which will first
set the internal STM state to indicate an in-progress retry and then
throw a TransactionRetryException object. Finally, after S is
executed, it invokes txnCommit to end the transaction on any exit
path (normal, exceptional, or retry) from S. The txnCommit call
attempts to commit the transaction. If it succeeds, it returns true;
the transaction completes, and control flow exits the loop. If it fails,
it aborts the transaction and returns false; the loop continues, and
the transaction restarts.

In general, the nesting of transactions is ambiguous in the gen-
erated Java code; a txnStart or txnCommit may be nested within
another transaction at runtime. To support composable blocking,
the semantics of txnCommit depends on whether it is dynamically
nested. An outer-level txnCommit (one that is not dynamically
nested) will check the internal state for a retry, and if it occurred,
it will clear the state, discard side effects, block on the read set (as
discussed in Section 3), and return false, restarting the transaction.
On the other hand, a nested txnCommit will return true on a retry,
propagating it to an outer transaction.

Figure 3 shows the Java code Polyglot generates for atomic
{S1} orelse {S2}. Intuitively, an atomic-orelse signifies a
single transaction with two or more nested transactions — one for
each clause1. The code reflecting the outer transaction is identical to
that described above. The code for the nested transactions, S1 and
S2, appear within a second while loop. To begin a nested transac-
tion, the code invokes txnStartNested. If the nested transaction
completes normally, control exits the inner loop. No further nested
transactions are executed. If the transaction triggers an exception
(other than a retry), the exception also cascades beyond the inner
loop. On the other hand, if a retry is encountered, a Transaction-
RetryException will be caught, txnAbortNested will undo the
side effects of the nested transaction, and control will transfer to
the next nested transaction. If the final nested transaction triggers a
retry, we cascade the TransactionRetryException outside the

1 We allow an arbitrary number of clauses: atomic {S1} orelse {S2}
orelse ... orelse {Sn}.

loop to the next outer transaction (which may, in turn, have alterna-
tives). As shown in Figure 3, we flatten the last nested transaction
as an optimization because its effects are guaranteed to be undone
by an outer transaction on a retry.

We have elided a couple important details in Figures 2 and 3.
First, we restore local variables when a transaction aborts. On
an abort, Polyglot inserts code to restore the value of any local
variables that were modified by the transaction and are still live.
Second, we must ensure that user exception code does not inter-
fere with our STM exception classes. Logically, Transaction-
RetryException and other internal STM exception classes are
outside the standard java.lang.Throwable exception hierarchy.
We have modified StarJIT and ORP accordingly to ensure that
finally and catch clauses in user code do not execute for STM
exceptions. The finally and catch clauses generated by Polyglot
(e.g., in Figures 2 and 3) do execute for STM exceptions to support
transactional control flow, however.

After we run Polyglot, we use a standard Java compiler to gen-
erate bytecode with STM calls. At execution time, the ORP vir-
tual machine loads these class files and invokes StarJIT to compile
them. StarJIT converts the STM library calls into STIR operations
and inserts additional operations to support the underlying STM
implementation.

As in [16], the ORP VM creates (on demand) transactional
clones of methods called within a transaction. The original method
is guaranteed to be invoked only outside a transaction, while the
clone is guaranteed to be invoked only inside a transaction. During
compilation, StarJIT knows whether it is compiling the original or
the cloned version of a method. If a method call occurs within a
transaction, StarJIT will redirect it to invoke the transactional clone
instead.

StarJIT maps nested txnStart and txnCommit operations
to txnStartNested and txnCommitNested operations, respec-
tively. It optionally flattens such nested transactions (removing
them altogether) to eliminate their overhead. Nested transactions
limit optimization of undo logging operations across nesting depths
(which we explore in Section 4) so flattening exposes optimization
opportunities. Flattening, however, precludes partial rollback on
data conflicts.

3. STM implementation
Our STM [34] implements strict two-phase locking[14] for writes
and optimistic concurrency control using versioning[22] for reads.
In contrast to object-cloning and write buffering schemes, our STM
updates memory locations in place on writes, logging the location’s
original value in an undo log in case it needs to roll back side effects
on an abort.

Our scheme has a number of benefits. First, it allows fast mem-
ory access inside transactions: an access can go directly to memory
without the indirection imposed by a wrapper object and without a
check to see if the transaction has previously written the location
(i.e., handling read-after-write dependencies is trivial). Second, it
avoids the expense of cloning large objects (e.g., arrays). Finally, it
allows the programmer to use existing libraries inside transactions
because it does not need special wrapper types.

Figure 4 shows the interface that our STM provides to JIT
compiled native code. The first six functions correspond to the
same functions generated by Polyglot; StarJIT maps the Polyglot-
generated calls directly onto these functions. The rest of these
functions track transactional memory references and are introduced
into the code by StarJIT.

Every transaction maintains transaction-related metadata in a
thread-local structure called the transaction descriptor. The STM
maintains a pointer to the transaction descriptor in thread local
storage. On IA-32 platforms, the transaction descriptor can be
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void txnStart();
bool txnCommit();
void txnStartNested(TxnMemento*);
bool txnCommitNested(TxnMemento*);
void txnAbortNested(TxnMemento*);
void txnUserRetry()

throws TransactionRetryException;
void txnValidate()

throws TransactionException;
void txnOpenObjectForRead(Object*)

throws TransactionException;
void txnOpenObjectForWrite(Object*)

throws TransactionException;
void txnOpenClassForRead(ClassHandle*)

throws TransactionException;
void txnOpenClassForWrite(ClassHandle*)

throws TransactionException;
void txnOpenWordForRead(Object*,int offset)

throws TransactionException;
void txnOpenWordForWrite(Object*,int offset)

throws TransactionException;
void txnLogObjectRef(Object*,int offset);
void txnLogObjectInt(Object*,int offset);
void txnLogStaticRef(void* addr);
void txnLogStaticInt(void* addr);
void txnHandleContention(TxnRecord*)

throws TransactionException;
void* txnHandleBufOverflow(void* bufPtr);

Figure 4. Runtime STM interface for JIT-compiled code.

retrieved with a single load instruction using the fs register on
Windows or the gs register on Linux.

A pointer-sized transaction record (TxnRecord) tracks the state
of each object or memory word accessed inside a transaction.
The transaction record can be in one of two states: (1) shared,
which allows read-only access by any number of transactions, or
(2) exclusive, which allows read-write access by only the single
transaction that owns the record. In the shared state, the record
contains a version number, while in the exclusive state it contains a
pointer to the owning transaction’s descriptor. The least-significant
2 bits of the record encode its state: 00 indicates that the transaction
record points to a transaction descriptor, and 01 indicates that the
transaction record contains a version number (version numbers are
odd and descriptor pointers are 4-byte aligned).

Our STM keeps the mapping between memory locations and
transaction records flexible, allowing conflict detection at either the
object or word granularity. Object granularity signals a conflict be-
tween two transactions that access the same object O if at least one
of them writes a field of O, even if they access disjoint fields. Ob-
ject granularity conflict detection may therefore limit concurrency
on large objects — for example, a transaction that writes to an el-
ement of an array A will conflict with all other transactions that
access disjoint elements of A. Word granularity conflict detection
enables finer grain concurrency by allowing concurrent access to
different fields of the same object, but has a higher overhead be-
cause it requires a check at each memory access. Our STM allows
object and word granularity conflict detection to coexist on a per-
type basis — for example, arrays can use word-based conflict de-
tection while non-array objects use object-based conflict detection.

Each heap object has an extra slot that holds either a transaction
record or a hash value initialized at object allocation time. For
object-level conflict detection, the STM uses the slot as the object’s
transaction record. For word-based conflict detection, the STM uses
the slot as a hash value and combines it with the offset of an
accessed field or element to form a hashed index into a global table

of transaction records. This table keeps each transaction record
in a separate cache line to avoid false sharing across multiple
processors. Each class structure has a similar slot for detecting
conflicts on static field accesses.2

3.1 Tracking transactional memory accesses

To track transactional memory accesses, the STM maintains for
each transaction a read set, a write set, and an undo log. The read
and write sets each consist of a vector of tuples 〈Ti, Ni〉, where Ti

points to a transaction record and Ni is the version number Ti held
when the tuple was created. The undo log consists of a vector of
tuples 〈Ai, Oi, Vi, Ki〉, where Ai points to a field or element the
transaction updated, Oi refers to the object that contains Ai (null
if Ai is a static field), Vi is the value Ai held at the time the tuple
was created, and Ki is a tag indicating whether Vi is a reference
type. Our current implementation runs on 32-bit machines, so Vi is
a 32-bit value, and the JIT breaks up 64-bit values into two undo
log entries.

A transaction must open an object or memory word (depending
on the conflict detection granularity) for reading or writing before
accessing it. The JIT inserts the open for read and write operations
automatically — selecting between word- and object-level conflict
detection granularity based on the accessed object’s type — and
optimizes these operations as described in Section 4. The JIT also
inserts and optimizes undo logging operations before field and ar-
ray element stores. Note that in our STM, the granularities of con-
flict detection and undo logging are independent: conflict detection
occurs at either the object or word level, while undo logging always
occurs on 32-bit values.

The open for read functions, txnOpenObjectForRead, txn-
OpenWordForRead, and txnOpenClassForRead, first load the
transaction record address of the opened object, word, or class, and
then call the internal STM function txnOpenTxnRecordForRead.
The corresponding open for write functions do the same but call
txnOpenTxnRecordForWrite.

Figure 5 shows the algorithms for txnOpenTxnRecordForRead
and txnOpenTxnRecordForWrite, which open a transaction
record for reading and writing, respectively. If the transaction al-
ready owns the transaction record, then these functions simply
return. In the case of a read, the transaction checks whether the
transaction record contains a version number, logs it into the read
set, and returns. In the case of a write, the transaction takes own-
ership of the record before logging into the write set. In either
case, if a different transaction owns the transaction record, then
txnHandleContention is called, which invokes the contention
manager.

The contention manager uses randomized exponential backoff,
and can use the size of the aborted transaction’s read or write set
to parameterize the backoff. The contention manager can also im-
plement a host of different contention policies [20]. The contention
manager avoids deadlock by using timeouts: it aborts the transac-
tion if the thread owning a transaction record R takes longer than
a threshold to release ownerships of R. To abort, the contention
manager sets the internal transaction descriptor state and throws
a TransactionException. This exception eventually unwinds to
the outermost txnCommit operation, which rolls back the transac-
tion and backs off.

There are four functions that log the original value of a memory
location before it is overwritten by a store. The txnLogObjectRef
function logs the value of a field or array element that holds an ob-
ject reference, and txnLogObjectInt logs a 32-bit heap location

2 Alternatively, an implementation could easily provide one transaction
record slot per static field, allowing concurrent write access to disjoint static
fields of the same class.
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void txnOpenTxnRecordForRead(TxnRecord* rec) {
void* recValue = *rec;
void* txnDesc = getTxnDesc();
if (recValue == txnDesc) return;
do {

if (isVersion(recValue)) {
logReadSet(rec, recValue);
return;

}
txnHandleContention(rec);
recValue = *rec;

} while (1);
}

void txnOpenTxnRecordForWrite(TxnRecord* rec) {
void* recValue = *rec;
void* txnDesc = getTxnDesc();
if (recValue == txnDesc) return;
do {
if (isVersion(recValue)) {

if (CAS(rec, recValue, txnDesc)) {
logWriteSet(rec, recValue);
return;

}
}
txnHandleContention(rec);
recValue = *rec;

} while (1);
}

Figure 5. Open for read and write algorithms. The function CAS
performs an atomic compare-and-swap instruction and returns
True if the compare and swap succeeds.

that does not hold an object reference. The txnLogStaticRef and
txnLogStaticInt functions do the same but for static fields.

The runtime organization of the read set, write set, and undo
log is highly tuned to support frequent STM operations efficiently.
These sets are organized as sequential buffers similar to the sequen-
tial store buffers used by some generational garbage collectors to
hold updates to reference fields [5]. The transaction descriptor con-
tains pointers to the beginning and frontier of these buffers. Ap-
pending an entry to a buffer involves an overflow check followed
by an increment of the frontier pointer. To make the overflow check
fast, each buffer is 2N bytes and aligned on a 2N byte address.
When a frontier pointer overflows, a new buffer is allocated and
linked to the existing buffer.

The sequential buffers make commit and garbage collection root
set enumeration very fast because they allow quick iteration over
the read and write sets, as well as the undo log.

3.2 Garbage collection support

Because the read set, write set, and undo log may contain refer-
ences to heap locations, the STM enumerates their contents to the
garbage collector (GC) as part of the root set, and the GC updates
the contents when it moves objects. To reduce coupling within our
system, the STM uses a GC callback API to enumerate potential
heap references inside the sequential buffers; the GC is mostly un-
aware of the STM. The ORP GC filters out references to non-heap
transaction records in the read and write sets during enumeration.
Because undo log entries may point to the interior of heap objects,
the undo log maintains pointers to the base of heap objects. The
STM avoids enumerating non-reference values using the undo log
entry tags.

Our scheme for mapping memory locations and objects to trans-
action records allows the garbage collector to move objects without

affecting the mapping — it does not preclude a moving GC and it
does not require the GC to abort transactions when it moves ob-
jects. In contrast, the hashing scheme in [16] uses object addresses,
which change and thus invalidate the mapping when the garbage
collector moves objects.

3.3 Transaction start and commit

On start, txnStart simply sets the transaction state to active and
resets the sequential buffers. On commit, txnCommit executes the
steps shown in Figure 6. First, it validates the read set: it checks
that, for each pair 〈Ti, Ni〉 in the read set, either the current value
held in Ti equals Ni, or there exists a tuple 〈Tj , Nj〉 in the write
set such that Ti = Tj and Ni = Nj (i.e., the current transaction
owns Ti and the version of Ti at the point the transaction acquired
ownership equals Ni). Second, if validation fails or the transaction
is not in the active state (due to a user retry or a failed open op-
eration), txnCommit invokes txnAbortTransaction to abort the
transaction and returns false to restart it (as shown in Figure 2). Fi-
nally, if the transaction is in the active state and its read set is valid,
it changes the state to commit the transaction and releases own-
ership of each transaction record in the write set by incrementing
their version numbers: for each 〈Ti, Ni〉 in its write set, it sets the
current value of Ti to Ni + 4.

On abort, txnAbortTransaction rolls back the transaction
and invokes the contention manager. If the abort was due to a val-
idation failure or a failed open, the contention manager will back-
off as described earlier. If the abort was due to a user retry, the
contention manager will also block until another thread invalidates
the read set; this is a necessary condition in order for the trans-
action to proceed on a different path [17]. More precisely, txn-
AbortTransaction executes the following steps. First, it restores
the original values of the memory locations written by the transac-
tion using the undo log: for each 〈Ai, Oi, Vi, Ki〉 in its undo log
starting from the most recent entry, it sets the value of Ai to Vi.
Second, if the transaction is in the retry state (due to a user retry),
it preserves the read set: it copies the contents of the write set into
the read set 3, and it increments (by 4) the version number for all
tuples in the read set where the transaction record is owned by the
current transaction. Third, it releases ownership of the transaction
records in the write set by incrementing their original version num-
ber: for each 〈Ti, Ni〉 in its write set, it sets the current value of Ti

to Ni + 4. Finally, it invokes the contention manager as described
above: if the transaction is in the retry state, it waits (by spinning
with exponential backoff and scheduler yields) until another thread
invalidates the read set before returning.

To prevent the program from looping indefinitely due to an
inconsistent view of memory, the JIT inserts calls to txnValidate
(which validates the read set by calling txnValidateReadSet) on
backward branches and tries to optimize these away for loops that
have constant bounds. Alternatively, the STM can use scheduler
hooks and validate a transaction at a time slice. Note that any errors
(e.g., runtime exceptions) due to an inconsistent view of memory
will eventually be caught by txnValidateReadSet before the
transaction completes via either a JIT inserted call or an explicit
call in txnCommit.

Our current implementation uses 32 bit version numbers, but an
implementation may choose to use 64 bit version numbers (or try to
use additional bits from the object header) to guard against version
numbers rolling over, and causing validation to return an incorrect
result. Note that the probability of an erroneous validation due to
32 bit version numbers is extremely small. For a validation error, a

3 Our system may elide open for read operations that follow open for writes.
Thus, we must conservatively assume that any tuple in the write set may also
represent a read value that affected the control flow.
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bool txnCommit() {
void* txnDesc = getTxnDesc();
if ((txnValidateReadSet() == False) ||

(CAS(&txnDesc->state, Active, Commit) == False)) {
txnAbortTransaction(); // abort transaction
return False;

}
for <txnrec, ver> in transaction’s write set {

*txnrec = ver + 4; // release ownership
}
return True;

}

bool txnValidateReadSet() {
void* txnDesc = getTxnDesc();
for <txnrec, ver> in transaction’s read set {

currentVersion = *txnrec;
if (currentVersion == ver)

continue;
if (currentVersion == txnDesc &&

<txnrec, ver> in transaction’s write set)
continue;

return False; // validation failed
}
return True;
}

Figure 6. Commit and validation algorithms.

transaction record’s version number needs to roll over and assume
exactly the same value at the end of a transaction as its value when
the record was read during the transaction.

3.4 Nested transactions

Our STM implements closed nested transactions [29] and supports
both (1) composable memory transactions and (2) partial aborts
when a data conflict occurs within a nested transaction. Our imple-
mentation takes advantage of the static block structure of the atomic
construct by saving the state required for a nested transaction in the
runtime stack of activation records, and uses the Java exception
mechanism to unwind the stack and rollback nested transactions.
The stack mechanism also allows us to implement partial rollbacks
on validation failure or contention.

For each nested transaction, StarJIT allocates a transaction me-
mento structure (TxnMemento) in the activation record. The trans-
action memento records the frontier pointers of the transaction de-
scriptor’s read set, write set, and undo log at the start of the nested
transaction. The STM function txnStartNested starts a nested
transaction and copies the three buffer pointers from the transac-
tion descriptor into the memento.

Nested transactions are very lightweight when they commit:
a nested transaction incurs only the overhead of saving the three
buffer pointers into its memento in the common case.

The txnAbortNested function undoes the writes performed
by the nested transaction. It first restores the values logged in the
undo log buffer starting from the last undo log buffer entry up to
the entry recorded in the memento. It then resets the transaction
descriptor’s undo log frontier pointer to the value recorded in the
memento. It does not reset the read set or write set frontier pointer,
effectively merging the nested transaction’s read set and write set
with its parent transaction’s read set and write set respectively.
This is necessary for implementing nested transaction retries for
composable memory transactions; the system must still record all
memory locations that affected the control-flow in case the program
blocks. It must preserve the nested write set as well, as our system
may have elided open for read operations that followed open for
writes.

a.x = 0;
c.y = null;
atomic {

S1: a.x = 1;
atomic {

S2: c.y = b.y;
...

}
...

}

Figure 7. Example of a simple nested transaction

The memento structures allow us to rollback a transaction par-
tially on a read set validation failure. To do this, read set vali-
dation starts validation from the first entry in the read set, and
records in the transaction descriptor the first element k containing
an invalid version number. During the stack unwinding propagat-
ing TransactionException, each txnCommitNested operation
checks its memento to find the first memento M whose read set
pointer occurs before k in the read set. Since the validation error
occurred within M ’s transaction, the transaction can abort and retry
M rather than aborting and restarting at the top level transaction.
To perform a partial abort, txnCommitNested first performs the
same actions as txnAbortNested and then resets the transaction
descriptor’s read set frontier pointer to the value recorded in the
memento.

3.5 Example

We illustrate the data structures described in this section using the
code fragment in Figure 7. This example involves one transaction
nested inside another. The top-level transaction writes field x of
object a (statement S1). The nested transaction copies field y from
object b to object c (statement S2).

active

Read Set

txnReca 1

Write Set

&(a.x) a 0 non-ref

Undo Log

Transaction 
Descriptor 

…

…

…

Figure 8. STM data structures after executing statement S1 in
Figure 7.

active

txnReca 1

Write Set

&(a.x) a 0 non-ref

Undo Log

Transaction 
Descriptor 

…

…

…

txnRecb 1

Read Set

txnRecc 1

&(c.y) c null ref
Stack

Transaction 
Memento

…

…

Figure 9. STM data structures after executing statement S2 in
Figure 7.
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Figure 8 illustrates the state of our STM data structures after
executing statement S1. The transaction descriptor contains the
transaction state (active) and pointers to the beginning and frontier
of the three buffers: the read set, the write set, and the undo log.
At this point, the read set is empty as the transaction has not yet
opened any objects for read.4 The write set contains a single entry
with the transaction record (txnReca) and version number (1) of
the written object a. The undo log has an entry for the field a.x
that specifies the address of the written field (&(a.x)), the object
containing the field (a), the old value of the field (0), and a tag
indicating that a.x is not a reference field (non-ref).

Figure 9 shows the state of the STM data structures after exe-
cuting statement S2 inside the nested transaction. At the start of the
nested transaction, our STM copies the frontier pointers from the
transaction descriptor into a transaction memento allocated on the
run-time stack. It then proceeds with the execution of the statement
S2: it opens object b for read, it reads the value of b.y, it opens ob-
ject c for write, it records the old value of c.y in the undo log, and
finally, it sets c.y to the new value. Figure 9 reflects the changes to
the read set, write set, and undo log due to these actions: a read set
entry for object b, a write set entry for object c, and an undo log
entry for field c.y.

4. Compiler optimizations for STM
StarJIT performs three types of optimizations targeting STM over-
heads: (1) optimizations that leverage the existing SSA-based
global optimization phases, (2) new transaction-specific global op-
timizations, and (3) transaction-specific code generation for IA32.
This section covers these optimizations.

4.1 Leveraging existing optimizations

The initially-generated STIR representation contains many oppor-
tunities for optimization. In particular, the STM operations are
amenable to many conventional optimizations already performed
by StarJIT such as redundancy elimination, dead code elimina-
tion, inlining, and loop transformations. Consider, for example, the
code in Figure 10. The first atomic block (labeled A1) contains
four writes to the object referenced by the obj variable. Assuming
object-level conflict detection, straightforward code generation for
the first atomic block produces four open for write operations on
obj, of which only the first is necessary. Furthermore, each STM
operation inside function foo must get the transaction descriptor
held in thread-local storage; it’s sufficient to get that descriptor just
once. Also, control-flow transformations such as loop peeling and
inlining increase redundancy elimination opportunities.

We carefully designed our representation of STM operations
in such a way that existing optimization phases can safely elimi-
nate STM operations with virtually no modifications. In particular,
transactions impose two safety constraints on optimizations that we
encode in STIR:

1. Transaction scope constraints ensure that STM operations as-
sociate with the correct transaction scope in the IR. In Figure
10, for example, optimizations cannot eliminate the open for
write required for statement S5 even though it is dominated by
other open for write operations in a different transaction. Sim-
ilarly, even though optimizations can eliminate statement S2’s
open for write operation because it is dominated by the same
open for write at statement S1, S2 still requires an undo logging
operation because A1 1 may abort and rollback (e.g., due to a
retry).

4 In this example, we assume object-level contention. With word-level con-
tention, the data structures would be identical except that the read and write
sets would contain different (word-level) transaction records.

foo() {
...
A1: atomic {

S1: obj.f1 = x1;
...
A1_1: atomic {

S2: obj.f1 = x2;
S3: obj.f2 = x3;

} orelse {...}
...
S4: obj.f2 = x4;

}

A2: atomic {
S5: obj.f3 = x5;

}
}

Figure 10. Nested transaction source example.

2. Dependence constraints explicitly connect open and log opera-
tions with the memory accesses they guard. These constraints
serve two purposes. First, they enable dead code elimination;
for example, if a loaded value becomes dead or a store operation
becomes unreachable, the corresponding open or log operations
are unnecessary if they guard no other operations. Second, these
dependences ensure that code motion optimizations such as in-
struction scheduling do not move a memory access operation
before the STM operations that guard it.

To satisfy the transaction scope constraints, StarJIT uses the
transaction handles. STIR STM operations take a transaction han-
dle operand (as well as a transaction descriptor operand). The
transaction handle acts as a qualifier on an operation so that the
scope of an operation is syntactically known. Commonly used re-
dundancy elimination algorithms typically rely on either lexical or
value equivalence [7], and the transaction handle suffices for both.

In the presence of nesting, multiple transaction handles may be
in scope. It is always safe to use the handle corresponding to the
innermost transaction. As discussed above, open operations are re-
dundant within the same outer-level transaction; as an optimization,
we use the outermost handle that is in scope for these operations.

To satisfy the second constraint, StarJIT uses proof variables[26]
to explicitly represent safety dependences. The undo logging and
open operations generate proof variables that are consumed by
the corresponding load and store operations. These proof variables
simplify dead code elimination. If a proof variable becomes dead
during the course of optimization, the open or logging operation
that produces it may be safely removed. Furthermore, they con-
strain code motion optimizations such that transformations cannot
move load and store operations above their corresponding open
operations, and cannot move write operations above their corre-
sponding undo log operations. Finally, the StarJIT type checker
verifies that these proof variables are used correctly, assisting us in
the process of developing and debugging optimizations.

In addition to these changes, we made other STM-specific mod-
ifications to existing optimizations. We modified code motion to
hoist transaction descriptor loads out of loops to reduce the thread
local storage accesses that it entails. We modified our dominator-
based common subexpression elimination (based on [7]) to elimi-
nate open for read operations that are dominated by open for write
operations. Finally, we modified the inliner to more aggressively in-
line transactional methods and, thus, introduce further optimization
opportunities.
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4.2 Transaction-specific global optimizations

In addition to leveraging existing StarJIT optimizations, we imple-
mented several new STM specific optimizations. The first optimiza-
tion eliminates STM operations for accesses to provably immutable
memory locations. In Java, final fields may only be defined once, in
the class initializer for static fields or in the object constructor for
instance fields. Once the class or object is initialized, the final field
is immutable [23] and no open for read operation is necessary to ac-
cess it. StarJIT suppresses generation of an open for read operation
for accesses to final fields (including accesses to the vtable slot for
type checks and method dispatch, and accesses to the array length
field). Some standard library types, such as the String class in
the java.lang package, are known to be immutable. For method
invocation bytecodes that invoke safe methods belonging to one of
these immutable types, StarJIT generates code that invokes the non-
transactional versions of the methods. Additional immutable fields
could be discovered via whole program analysis; however, we did
not pursue this as it is often impractical in production systems that
permit dynamic class loading.

The second optimization suppresses STM operations for trans-
action local objects. Objects allocated inside a transaction do not
need to be opened before accessing in the same transaction, as, by
atomic semantics, they will not be visible to other threads. In the
presence of nesting, StarJIT only suppresses log operations if the
object was allocated within the same transaction or a nested trans-
action. A nested transaction needs to generate an undo log call if it
stores to an object allocated in a parent transaction (but it doesn’t
have to open it). Similarly, transactional versions of constructors do
not need to open the this pointer and do not require undo logging
except inside any nested transaction inside the constructor.

To expose more redundancy elimination opportunities, StarJIT
transforms a program to proactively acquire write locks in certain
cases. When an open for read dominates an open for write operation
with matching arguments (e.g., the same object within the same
transaction) but profile information suggests that the open for write
operation will executed almost as frequently, StarJIT replaces the
open for read with an open for write. Subsequently, any following
open for write operations will be eliminated.

4.3 Transaction-specific code generation

Finally, we implemented partial inlining of frequent STM library
calls to reduce overhead and to expose further compiler opportu-
nities. The sequential buffers that our STM operations use lead to
very efficient instruction sequences, illustrated in Figure 11. This
figure shows the IA32 assembly code for opening a transaction
record for writing. (The code for opening for read is the same as
this except that it omits instructions I5 – I6, and it uses the read
set buffer pointer offset.) The code is organized into a hot portion
containing the common path, and an out-of-line cold portion (start-
ing at instruction I14) containing the less frequent case of buffer
overflow (handled by txnHandleBufOverflow) and the slow case
of opening a transaction record owned by another thread (handled
by txnHandleContention). We can shorten the hot path even fur-
ther by moving instructions I1 and I2 — which check whether a
transaction is accessing a transaction record that it already owns —
into the cold portion if this case occurs infrequently. We can also
eliminate the overflow check instructions (I8 – I9) using a guard
page after each buffer, and relying on page protection hardware and
OS signal handling.

The JIT inlines the code sequence of Figure 11 to avoid the
branching and register save-restore overheads of a function call in
the common case and to promote the buffer pointer into a register

I0: mov eax, [txnrecord]
I1: cmp eax, txndesc
I2: jeq done // this txn owns txnrecord
I3: test eax, #versionmask
I4: jz contention
I5: cmpxchg [txnrecord],txndesc
I6: jnz contention
I7: mov ecx, [txndesc+wsbufptr]
I8: test ecx, #overflowmask
I9: jz overflow
I10: add ecx, 8
I11: mov [txndesc+wsbufptr],ecx
I12: mov [ecx-8], txnrecord
I13: mov [ecx-4], eax
done:

. . .
contention: // handle contention
I14: push txnrecord
I15: call txnHandleContention
I16: jmp I0
overflow: // handle buffer overflow
I17: push ecx
I18: call txnHandleBufOverflow
I19: jmp I0

Figure 11. Code to open a transaction record for writing. The
txnrecord and txndesc registers point to the transaction record
and the transaction descriptor, respectively. wsbufptr is the offset
of the write set buffer pointer in the transaction descriptor.

inside loops (eliminating I7 & I11).5 The measurements in Section
5 show that this improves performance significantly. Like the open
for read and write sequences, the undo logging sequence is also
very efficient and can be optimized via inlining.

5. Experimental results
We evaluated our STM system against Java’s built-in synchroniza-
tion facilities. We measured the sequential overhead it imposes on
a single thread, and its scalability on a 16-processor machine. In
this section, we demonstrate that transactional Java programs run-
ning on our STM are competitive with synchronized Java programs,
particularly when using multiple processors.

5.1 Experimental framework

We performed our experiments on an IBM xSeries 445 machine
running Windows 2003 Server Enterprise Edition. This machine
has 16 2.2GHz Intel R© Xeon R© processors and 16GB of shared
memory arranged across 4 boards. Each processor has 8KB of L1
cache, 512KB of L2 cache, and 2MB of L3 cache, and each board
has a 64MB L4 cache shared by its 4 processors.

As benchmarks, we used two types of shared collection classes,
a hashtable and an AVL tree. For each benchmark, we used sev-
eral variations of synchronized and transactional implementations.
For the transactional runs of each benchmark, we used three con-
flict detection granularities: object-level only, word-level only, and
word-level for arrays.

Our baseline hashtable consists of a fixed array of 256 buck-
ets, where each bucket is an unsorted singly-linked list of elements
updated in place. This version uses coarse-grained synchroniza-
tion; it synchronizes on the entire hashtable for all operations (like
Java’s built-in hashtable). We also implemented a fine-grained one
that adds an explicit bucket object and uses that for synchroniza-

5 Inlining allows the JIT to eliminate I1 and I2 altogether if it can prove
that no other open for writes on the transaction record have occurred in the
transaction.
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tion. Additionally, we provide a transactional implementation that
uses our atomic extension to Java and is identical to the baseline
hashtable, with synchronized replaced by atomic in the source.

We also implemented a quasi-functional hashtable that has im-
mutable bucket list elements. Rather than altering the old list struc-
ture in place, insertion or deletion creates a new list when neces-
sary, much as in functional languages like ML or Lisp. Although
this type of hashtable allocates additional memory, it has signifi-
cant advantages with an STM: linked list traversals incur no STM
overhead because existing list elements are immutable 6 and newly
allocated ones are transaction-local. In fact, the quasi-functional
hashtable only needs to open or log accesses to the bucket itself.
While the standard hashtable requires O(n) STM operations per
access (where n is the average number of elements per bucket), the
quasi-functional hashtable requires O(1).

For our AVL tree, we have two implementations: a synchronized
implementation that uses a single lock to gate all accesses to the tree
and a transactional implementation that uses our atomic construct.
For performance, an AVL tree requires periodic balancing — an
operation that modifies significant portions of the tree.

Finally, to evaluate the performance of our STM system on a
large benchmark, we used the OO7 object operations benchmark
originally designed in the database community. We used the Java
version of the benchmark as described in [38] and modified the
synchronized regions to use transactions. The benchmark does a
number of traversals over a synthetic database organized as a tree.
Traversals either lookup (read-only) or update the database. The
synchronized version allows locking at different levels of the tree,
thus providing different locking granularities.

5.2 Compiler optimizations and single thread overhead

Figure 12 shows the single-threaded execution overhead of the
transactional versions of the benchmarks relative to the synchro-
nized versions. For each benchmark, we measured the execution
time required to perform a random set of 1,000,000 operations us-
ing a total of 20,000 values. For the transactional runs, we used
object-level contention. The No STM Opts bars show the STM
overhead with no compiler optimizations enabled. The remain-
ing bars show the cumulative influence of compiler optimizations:
Base STM Opts enables standard StarJIT global optimizations for
STM operations, +Immutability used immutable field optimiza-
tion, +Txn Local used transaction-local object optimization, and
+Fast Path Inlining used inlining the STM fast paths.
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 +Txn Local  +Fast Path Inlining

Figure 12. Single-thread execution overhead of transactional vs.
synchronized programs with varying STM compiler optimizations.

The first set of bars demonstrate the overall effect of compiler
optimizations on the standard hashtable. With no optimizations, the

6 This is enforced by final fields.

transactional code is 63% slower than the synchronized code on
a single thread. Simply enabling StarJIT’s standard compiler op-
timizations reduced this overhead to 36%. As there are few re-
maining immutable fields or transaction-local objects, there is little
additional benefit from these optimizations. The major remaining
overhead is the open for read operation (potentially) required on
each list element in a bucket. Partial inlining of this read operation
into compiled code reduced the final overhead substantially. With
all optimizations, the atomic code is only 16% slower than the
synchronized code.

The second set of bars shows the same optimizations on the
quasi-functional hashtable. Here, with no optimizations, the trans-
actional code is over a factor of two slower than the synchronized
version. Our core StarJIT optimizations bring this down to 85%.
Detecting and suppressing STM operations for immutable fields re-
duces it to 57%, and the similar optimization for transaction-local
objects reduces it further to just less than 9%. As few STM open
operations are left at this point, partial inlining does not give us any
significant additional benefit. For this benchmark, the optimized
atomic code is only 9% slower than the synchronized code.

The final set of bars shows our compiler optimizations on the
balanced AVL tree. The behavior here is similar to that of the
standard hashtable. In total, compiler optimizations reduced the
overhead from 33% to roughly 14%.

In each of these benchmarks, the single-threaded overhead of
optimized transactional code is less than 20%. For the benchmark
written with an STM in mind, the overhead is less than 10%.

5.3 Scalability

Figures 13 and 14 illustrate the scalability of fully optimized trans-
actional code with respect to synchronized code.
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Figure 13. Hashtable execution time over multiple threads

In Figure 13, we show the performance of our hashtable imple-
mentations from 1 to 16 threads where each thread is mapped to a
different processor. For each run, we used a distribution of 64,000
operations consisting of 10% insertions, 10% removals, and 80%
lookups. The bars marked Synch represent our baseline hashtable.
The bars marked Synch (fine) represent the fine-grained vari-
ant. The three sets of bars marked Atomic represent our transac-
tional version with (1) uniform object-level conflict detection, (2)
uniform word-level detection, and, (3) a mixed array mode using
word-level detection only for array elements. Finally, the last set of
bars represent the quasi-functional hashtable run atomically using
word-level detection only for array elements.

On a single thread, both the coarse-grained and fine-grained
synchronized implementations are equivalent in performance as
they incur the same costs of acquiring and releasing a monitor.
In contrast, the atomic version is about 3% slower with object-
level detection and 20% slower with word-level. The overhead of
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word-level detection has two primary causes. First, the mapping
from a word to a transaction record is more complex and, thus, is
more expensive to compute. Second, object-level detection uses a
transaction record embedded within the object and, thus, interacts
better with the memory hierarchy.

As we add threads, however, we see the benefit of both trans-
actions and word-level conflict detection. The coarse-grained syn-
chronized implementation does not scale at all, as all operations
to the hashtable are serialized and no parallelization is permitted.
On the other hand, the fine-grained implementation does scale at
the cost of requiring an extra bucket object to serve as a lock. The
atomic implementation scales only partially with object-level de-
tection. In this case, the entire bucket array is the granularity of con-
flict. In contrast, the atomic implementation scales very well with
word-level detection, matching the fine-grained implementation at
16 processors. However, the mixed array mode detection does bet-
ter than both. In this case, it has the benefit of object-level detec-
tion’s low overhead during the linked list traversal and the benefit
of word-level detection’s better scalability for the bucket array.

Finally, our quasi-functional hashtable, outperforms all of the
above. Surprisingly, it even outperforms the synchronized version
on a single thread. We believe that this is due to better spatial lo-
cality. Remove operations periodically reallocate each bucket list;
in our GC, these allocations will be contiguous in memory. Im-
portantly, this hashtable implementation maintains its advantage as
we scale to 16 threads. It avoids the lower overhead of object-level
contention management during the list traversal as the compiler is
able to detect that only immutable, final fields are accessed.
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Figure 14. AVL Tree execution time over multiple threads

In Figure 14, we show the scalability of our AVL tree implemen-
tations. Here, we used two distributions of 64,000 operations. The
bars marked -80 represent executions with 80% lookups and 20%
updates. The bars marked -20 represent the reverse. As all opera-
tions are effectively gated through the root node, neither implemen-
tation scales particularly well to sixteen processors. The synchro-
nized version requires that the root node be locked and effectively
serializes all accesses. It shows no benefit at two processors and
degrades beyond. The transactional version, however, scales to two
processors; on an update intensive run, it scales to four processors.
The transactional version provides finer-grain concurrency as it al-
lows multiple readers to access the root simultaneously. Although
the synchronized tree is faster on a single thread, the transactional
version is faster on two threads and beyond.

Figure 15 studies the performance of the transactional and syn-
chronized versions of OO7, with lookups constituting 80% of the
operations. The benchmark performs 8,000 traversals equally di-
vided between the threads. Sync L1 locks the root of the tree, and
as expected, does not scale. Sync L3 and L6 lock at lower levels

0

0.5

1

1.5

2

2.5

1 2 4 8 16

# Threads

T
im

e 
(s

) Atomic

Synch L1

Synch L3

Synch L6

Figure 15. OO7 execution time over multiple threads

of the tree and show better scalability. The atomic version treats
the entire traversal as a transaction. In effect, the granularity of the
atomic version is the same as Sync L1. As shown in the figure, the
atomic version performs much better than Sync L1 and approaches
the performance of finer-grained locking (Sync L3 and L6).

5.4 Discussion

Our quasi-functional hashtable highlights some significant ad-
vantages of STMs and of our implementation in particular. This
hashtable is similar to Java 5’s ConcurrentHashMap,7 as both use
lists with immutable structure. However, ConcurrentHashMap is
much more complex as it relies on clever use of standard Java syn-
chronization for scalability. The main performance techniques used
in ConcurrentHashTable at the source level are automatically pro-
vided by our system. First, to enable fine-grain concurrency, Con-
currentHashMap maintains a separate array of Java lock objects
where each protects a set of slots in the bucket array. In contrast,
our system automatically provides word-level contention manage-
ment to get very similar fine-grain concurrency without user effort.
Second, on a get operation, ConcurrentHashMap does not require
synchronizing the linear traversal through the linked elements. In-
stead, it explicitly validates the result to ensure consistency. If val-
idation fails, it repeats the traversal. Again, our system provides
this automatically, with no user effort, through read versioning. As
a get operation performs no writes, our implementation will ac-
quire no locks. Instead, any read to mutable memory is validated
at commit. Third, our JIT is able to detect that list links are final
(and thus immutable). This obviates the need to log link traversal
operations and results in fast constant-time validation. Finally, our
system automatically inserts the control flow and bookkeeping to
repeat the get operation if necessary. Incorporating these features
into ConcurrentHashMap was important for performance but added
significant effort, code, and complexity. In contrast, our transac-
tional, quasi-functional implementation is no more complex than
our standard, coarse-grained hashtable. The only significant dif-
ference is that the bucket lists are written in a functional ML/Lisp
style rather than a typical C/Java style.

6. Related work
In lieu of locks, the recent High-Productivity Computing Systems
languages — Fortress[2], X10[9] and Chapel[11] — all specify
an atomic statement for concurrency control. Although details on
their implementation are not yet available, these languages demon-

7 ORP and StarJIT do not yet support Java 5 generics or classfiles, so we
cannot do a direct comparison at this time.
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strate the trend towards using transactions as the concurrency con-
trol mechanism in emerging languages.

Several researchers have implemented TM language constructs.
Harris and Fraser [16] add to the Java language a conditional
critical region (CCR) statement of the form atomic(E){S}, which
atomically executes S when the expression E evaluates to true.
We adopt their techniques for cloning methods in the JVM and
dealing with native method calls, and we build on their technique
for detecting conflicts at the memory word granularity.

Harris, Marlow, Peyton-Jones, and Herlihy [17] add a trans-
actions monad to Concurrent Haskell and introduce composable
memory transactions with two functions to block and compose
nested transactions: (1) retry, which blocks a transaction until an
alternate execution path becomes possible, and (2) orElse, which
composes two possibly-blocking transactions as alternatives. We
build on [17] by adding retry and orelse operations to an imper-
ative, object-oriented language (Java) running on a multiprocessor.

AtomCAML [33] extends Objective Caml with a new primitive
synchronization function (atomic) of type (unit->’a)->’a that
executes its function argument atomically. The AtomCAML STM
implementation[33] updates memory in place and uses an undo log
to roll back side effects. Their implementation runs on a unipro-
cessor and uses scheduler-based techniques to provide atomicity.
Shinnar, Tarditi, Plesko, and Steensgaard [36] use undo logging on
a uniprocessor to implement a new language construct that restores
memory state on an exception.

Shavit and Touitou [35] introduce the term STM and present a
static STM, which requires advance knowledge of the memory lo-
cations involved in a transaction. Herlihy, Luchangco, Moir, and
Scherer’s DSTM [18] and Marathe, Scherer, and Scott’s ASTM
[24] provide an object-based STM API for Java, while Fraser’s
FSTM [13] provides an object-based STM API for C. Marathe,
Scherer and Scott [25] compare the performance and design trade-
offs of DSTM and FSTM. Object-based STMs create a writable
clone of an object on an open for write. On a commit, the transac-
tion atomically makes the clone the valid version visible to other
transactions. To handle read-after-write dependencies, an open for
read on an object O checks whether the transaction has already
created a writable clone of O. Object cloning requires the program-
mer to wrap a transactional object with a new type — for example,
TMObject in DSTM and stm obj in FSTM — that indirectly ref-
erences the object. All references to a transactional object must go
through its wrapper. Marathe et. al.’s measurements [25] show that
going through extra levels of indirection (DSTM has two levels of
indirection, while FSTM has one) hurts performance. Cloning is
also expensive for large objects such as arrays. Ananian and Ri-
nard suggest handling large arrays using functional arrays[4]. Be-
cause object cloning requires the programmer to use wrappers, it
precludes the programmer from using existing library code trans-
actionally. Welc, et. al., [37] propose transactional monitors, which
implement Java monitors as lightweight transactions, but they do
not consider compiler optimizations.

The STM implementations of [16] and [17] buffer memory up-
dates in a per transaction write buffer. On a commit, the transaction
updates the written memory locations from the write buffer after
acquiring ownership of those locations — Marathe et. al. [25] re-
fer to this as lazy acquire and show how this affects performance.
Write buffering makes individual accesses expensive: to handle
read-after-write dependencies, a read of a memory location L first
checks the write buffer data structure in case the transaction has
previously written to L.

Past multiprocessor STM implementations provide non-block-
ing property guarantees. Ennals [12] presents a lock-based STM
and argues that STMs do not need to be non-blocking. Our TM
system builds on the McRT-STM [34], which uses two-phase lock-

ing. Preemption safety is a desirable property, but it should become
less of a concern as future processors use Moore’s law to increase
the number of processing cores. In the long run, memory will be
but one transactional resource in a potentially distributed environ-
ment, and TM would need to be integrated with a general transac-
tion monitor — a lock-based STM is necessary in such a setting.

Hardware transactional memory (HTM) leverages existing
cache coherence logic to implement transactions efficiently in the
cache [19, 31]. To support a general purpose transactional memory
language construct, HTMs must support transactions of arbitrary
footprint and duration either purely in hardware or in combina-
tion with software. Virtualized Transactional Memory [32] and
Unbounded Transactional Memory [3] support transactions of un-
bounded footprint and duration. Large Transactional Memory [3]
supports transactions whose footprint fits within physical memory.
Log-based Transactional Memory (LogTM) [28] supports trans-
actions of unbounded footprint. Similar to our approach, LogTM
updates memory locations in place and uses an undo log to roll
back side effects.

Hybrid transactional memory [27, 4, 21] combines HTM with
STM: a transaction first executes using HTM and then falls back
on STM if the HTM aborts. The techniques we describe should
integrate nicely with HTM as a hybrid solution.

Carlstrom et. al. [8] map the Java concurrency features onto the
TCC HTM system [15] and discuss mismatches between existing
Java features and transactional execution, most notably the condi-
tion synchronization methods wait, notify and notifyAll.

7. Conclusions
Transactional language constructs in a modern imperative language
such as Java not only provide a powerful concurrency control
mechanism but also enable JIT compiler and runtime optimiza-
tions that target their overheads. This paper is the first to address
JIT compiler optimizations for transactional memory. We extended
Java with new syntax that provides composable nested transac-
tions, and we implemented a high-performance software transac-
tional memory system integrated into a managed runtime environ-
ment. We demonstrated how a tight integration between an opti-
mizing dynamic compiler and a well-tuned runtime results in a
high performance software transactional memory system. We de-
scribed new compiler optimizations that specifically target STM
overheads and showed how to model STM operations in a com-
piler intermediate representation so that existing global optimiza-
tions target STM overheads correctly, especially in the presence of
nested transactions. We also showed how supporting both object
level and word level conflict detection on a per-type basis improves
scalability while minimizing overhead.

The results on a 16-way SMP system demonstrate that using
our techniques, performance of transactional memory in Java can
compete with that of well-tuned synchronization, especially as the
number of processors increases. On a single processor, StarJIT’s
optimizations reduced STM overhead for the hashtable and AVL
tree benchmarks to 16% or less compared to their lock-based ver-
sions. The STM overhead was even less (under 10%) for the quasi-
functional hashtable. On multiple processors, a combination of
object- and word-granularity conflict detection achieved the best
overall scalability.
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