
c© 2004 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.



Exploring the Performance Potential of
Itanium Processors with ILP-based Scheduling

Sebastian Winkel

Compiler Research Group, Informatik
Saarland University, Saarbrücken, Germany

E-mail: sewi@cs.uni-sb.de

Abstract

HP and Intel’s Itanium Processor Family (IPF) is
considered as one of the most challenging processor
architectures to generate code for. During global in-
struction scheduling, the compiler must balance the use
of strongly interdependent techniques like code motion,
speculation and predication. A too conservative applica-
tion of these features can lead to empty execution slots,
contrary to the EPIC philosophy. But overuse can cause
resource shortage which spoils the benefit.

We tackle this problem using integer linear program-
ming (ILP), a proven standard optimization method.
Our ILP model comprises global, partial-ready code mo-
tion with automated generation of compensation code
as well as vital IPF features like control / data specu-
lation and predication. The ILP approach can – with
some restrictions – resolve the interdependences be-
tween these decisions and deliver the global optimum.
This promises a speedup for compute-intensive appli-
cations as well as some theoretically funded insights
into the potential of the architecture.

Experiments with several hot functions from the
SPEC benchmarks show substantial improvements:
Our postpass optimizer reduces the schedule lengths
produced by Intel’s compiler by about 20-40%. The re-
sulting speedup of these routines is 16% on aver-
age.

1. Introduction

The Itanium Processor Family is an Explicitly Paral-
lel Instruction Computing (EPIC) architecture where
the compiler is solely responsible for extracting and
managing instruction-level parallelism. The compiler
explicitly groups parallelly executable instructions and
relieves the hardware of detecting dependences inside
these groups [14].

A

B C

D

I

II

III

IV

KIII

IV KIV

Figure 1. Code motion: upward (I+IV),
downward (III+II), speculative (I+II), non-
speculative (III+IV)

Instruction groups can be arbitrarily large. However,
the compiler should choose groups which do not need
more execution units than the target processor has to
avoid split cycles. So code generators, including ours,
usually form groups which can be issued in one cy-
cle. The execution of instruction groups always starts
in-order, but individual instructions can terminate out-
of-order. The execution pipeline stalls if an operand of
an instruction is not yet available; the processor tracks
inter-group dependences to detect this.

Register anti-dependences and memory dependences
are allowed inside instruction groups (intra-group de-
pendences). In these cases the order of instructions in-
side the groups still matters. The code generator must
allow for this when it packs the instructions into fixed-
sized 128-bit bundles of three (together with the tem-
plate restrictions). This work targets the Itanium 2 pro-
cessor which can execute two of these bundles with six
instructions altogether per cycle [15].



EPIC allows a simple, wide execution hardware with
plenty of parallel execution units – but it also places
the burden of feeding them on the compiler. During
scheduling it has to apply global code motion, specu-
lation and predication to shorten the schedule length,
but these techniques can also increase the demand for
execution slots in several ways, as Fig. 1 shows:

• A speculative upward movement of an instruction
from block B to A (I) has the effect that this in-
struction occupies an execution slot unnecessarily
on the path A-C-D.

• An upward movement across a join from D to B
(IV) enforces the placement of a compensation copy
of the instruction in block C (KIV), increasing the
instruction count.

• Moreover, control speculative loads require addi-
tional check instructions.

There is a two-fold effect how resource pressure in-
creases as these transformations are applied: First, the
demand for execution slots grows as described. Sec-
ond, at the same time the supply of execution slots di-
minishes because the schedule length shrinks. Apart
from these difficult trade-offs, instruction scheduling is
– even locally – an NP-complete problem where heuris-
tics deliver only approximations.

We use integer linear programming to obtain glob-
ally optimal and provably correct solutions to this prob-
lem. Note that the notion of “optimality” is used in an
algorithmic sense here: The resulting schedule is opti-
mal with respect to our mathematical definition of the
global scheduling problem, i. e. it has a minimal global
schedule length.

In the real world, however, optimality is relative and
more complex: for example, it depends on the input
set which we must approximate by profiling informa-
tion. Also there are a lot of difficult to predict, influen-
tial dynamic effects like cache misses interacting with
the schedule. Clearly, no mathematical model can fully
and precisely describe and minimize these runtime ef-
fects. We can achieve strict optimality only within a
well-defined problem scope. However, on a statically
scheduled architecture, there should be a strong corre-
lation between schedule length and performance – and
this is also what our experiments confirm.

Optimal solutions for NP-complete problems need
their time – in our case up to a few minutes for individ-
ual routines – hence this method is not suited for pro-
duction compilers. Instead it is intended for use in pro-
fessional optimization and research tools (see Sec. 7).

points P

Function
Objective

Feasible region P  of the
relaxed problem

ILP

Convex hull P  of the

Feasible region P of the

R

feasible integer 
C

I

I

Figure 2. Feasible regions

2. Integer Linear Programming

Since the invention of the simplex algorithm by
George B. Dantzig over fifty years ago [9], linear pro-
gramming (LP) has developed to an indispensable tool
for the formulation and solution of optimization prob-
lems.

This applies especially to the unequally more pow-
erful – and unequally more difficult to solve – integer
linear programming (ILP). Both LP and ILP minimize
(resp. maximize) an objective function subject to lin-
ear constraints. The distinguishing feature of ILP is
that the variables belong to a discrete set, namely a
subset of integers, which enables the modeling of com-
binatorial or discrete optimization problems.

The potential of ILP was almost immediately rec-
ognized after its discovery in the fifties [5], but insuffi-
cient hardware and software have soon led to some dis-
illusionment and to the perception that ILP has very
limited practical applicability. In the last years, how-
ever, this situation has changed “dramatically” due to
advances in solution algorithms as well as ILP formu-
lations [5]. This is also confirmed by our own experi-
ences.

Integer linear programming minimizes a linear ob-
jective function subject to a system of linear constraints
given by PR =

{
x|Ax ≤ b, x ∈ R

n
+

}
with c ∈ R

n, b ∈
R

m and A ∈ R
m×n:

min zIP = cT x (1)
x ∈ PR ∩ Z

n

The integer points PI = PR ∩ Z
n inside the polyhe-

dron PR form the feasible solutions or the search space.
Searched is the point that is furthest in the direction of
the objective function. Computing such an optimal so-
lution is NP-complete, but the relaxed problem with-
out the integrality restriction of equation (1) can be
solved in polynomial time [19, 20]. Then one of the ver-
tices of the polyhedron is always an optimal solution
[19, 20].



Note that, following from the last sentence, if the
polyhedron PR would be made equal to the convex hull
of the feasible integer points, then also the integer prob-
lem could be solved in polynomial time (see Fig. 2).
Though equality usually cannot be achieved in prac-
tice, it is important for the solution efficiency to find
a tight ILP formulation where PR is close to this con-
vex hull.

3. Related Work

Besides many heuristics like [4], there exist only few
ILP-based exact approaches to instruction scheduling:
Wilson et al. [21] and Chang et al. [6] simultaneously
perform scheduling and register allocation; the former
also include code selection. Both works show experi-
mental results only for very small examples, with solu-
tion times of several seconds.

Wilken et al. [13] show that by using a tight ILP for-
mulation and clever precomputations, solution times of
less than 0.1 seconds can be achieved for scheduling ba-
sic blocks of a hundred and more instructions. An ear-
lier work by the author with Daniel Kästner [17] com-
bines scheduling and bundling for the Itanium archi-
tecture in a two-phase approach.

All works mentioned so far only deal with lo-
cal scheduling – the only ILP model known to us that
tackles acyclic global scheduling is used by the post-
pass optimizer Propan for DSPs [16]. However, it al-
lows no disjoint control flow paths in the ILP and code
motion only between control equivalent basic blocks.
Propan adopts, like this work, the OASIC formu-
lation of the precedence constraints [11] whose high
efficiency has been proven through polyhedral analy-
sis in [7, 16].

A local scheduler based on optimal approaches with-
out ILP is presented by Haga and Barua [12]. In con-
trast to most earlier work, they integrate template se-
lection into the scheduling process to minimize the
number of nops on EPIC architectures.

4. The Basic ILP Model

Our goal is to find a set of linear inequalities for
a given input program where every integer point in-
side the polyhedron corresponds to a possible sched-
ule and vice versa. We say that a schedule is feasible
if the corresponding point is a feasible solution of the
ILP model.

It must be ensured that no incorrect schedule is fea-
sible (correctness) and that at least one optimal sched-
ule is feasible in order to be found by the ILP solver
(completeness). Also it should be considered that, for

search-based methods like ILP, solution efficiency is a
dominating issue. Hence the search space should be
kept as compact as possible and the linear inequali-
ties should describe a tight polyhedron.

Before we present our ILP model which aims to ful-
fill these requirements, we examine under which
conditions code motion is semantics-preserving and
where compensation copies have to be scheduled.
At first we assume that the scheduling region is
acyclic; we will expand on loops later in section 5.2.
Let GB = (B, EC ,Bentry,Bexit) be the basic block
graph of the scheduling region with the set of ba-
sic blocks B and the control flow edges EC . Entry and
exit blocks are given by Bentry ⊆ B and Bexit ⊆ B, re-
spectively. We call block D a (direct) successor of
C if there is a path from C to D in GB (consist-
ing of one edge); the definition of predecessor is ana-
logical.

Global data dependences are given by the acyclic
data dependence graph GD = (V,ED). Each edge e ∈
ED has a latency late associated with it; false and mem-
ory dependences have the latency zero. On the Itanium
architecture, almost all execution units have a through-
put of one instruction per cycle.

We can view global scheduling as a transformation
between global schedules which rearranges instructions,
but does not change the control flow structure (al-
though it may empty some blocks). Hence the set of
program paths – paths which go from an entry block to
an exit block through the scheduling region – remains
unchanged. This allows us to take a path-based view of
correctness and say that a transformation from sched-
ule δ to δ′ is correct if the same computations (and
probably exceptions) are performed in both schedules
along every program path.

To be more precise, this is the case when all instruc-
tions that occur along a path in δ also occur there in
δ′, and when all dependences between these instruc-
tions are preserved. Additionally, non-speculative in-
structions may only appear on a path in δ′ if they ap-
pear there in δ, too.

For each instruction n ∈ V , we call the block where
it originates from before scheduling source block, de-
noted by s(n). Code motion moves the instruction from
this source block to a destination block. Possible des-
tination blocks are all predecessors and successors of
the source block in GB . We denote Θspec(n) as the set
of those speculative destination block candidates1 for
instruction n. This range of destination blocks is fur-
ther limited for non-speculative (and unpredicated) in-

1 In the following, we often call destination block candidates
simply “destination blocks”.



structions which must not be executed unnecessarily
like loads and stores. For those instructions a specu-
lative placement can be ruled out if the source block
dominates and postdominates the destination block for
downward and upward code motion, respectively. Ac-
cordingly, we define a set Θ(n) of (actual) destina-
tion block candidates which is the same as Θspec(n)
except that the following blocks are excluded for non-
speculative instructions:

• all predecessors of s(n) which are not postdomi-
nated by s(n) and

• all successors of s(n) which are not dominated by
s(n)

Moreover, non-speculative instructions can be executed
speculatively if they are guarded by a predicate which
eliminates the speculativeness; this allows an extension
of the range of destination blocks. For upward motion of
an instruction, such a predicate register can be found as
follows: For all control flow edges (A,B) ∈ EC where B
is postdominated by the source block of the instruction
and A not, the qualifying predicate of the branch as-
sociated with the edge is a candidate. Guarded by this
predicate register, the instruction can be safely moved
to A and all of its predecessors (but there is a new data
dependence on the compare which generates the predi-
cate value; in addition, this compare then must not be
speculated itself).

We perform a similar extension for downward mo-
tion of an instruction [22]. This way we determine for
each new destination block a predicate register which
must be used as qualifying predicate if the instruction
is scheduled there; in doing so we include predication
in our model as a side-effect of code motion.

Each instruction can be scheduled into paral-
lelly executable instruction groups in its destina-
tion blocks. Within each destination block A, there
is a range G(A) = {1, . . . , GA} of possible succes-
sive groups (or cycles) given. Our ILP model uses the
following main decision variables to model this:

xAt
n = 1 ⇔ A copy of instruction n

is scheduled at cycle t in A

These binary variables are generated for all instruc-
tions n, all destination blocks A ∈ Θ(n) and all cycles
therein.

In a correct schedule, every path through the source
block of an instruction must contain a copy of the in-
struction. To express this later in an equation, we em-
ploy binary variables for all n ∈ V and all A ∈ Θspec(n)
with the following semantics:

a↑A
n = 1 ⇔ A copy of instruction n is scheduled

on all program paths through s(n)
before A

We need to couple the x and the a variables with
constraints to model the described semantics. This is
done inductively using the following observation: Let
B ∈ Θspec(n) be a destination block and A ∈ Θ(n) be
a direct predecessor of B. If n is scheduled on all paths
through s(n) before B, then it is either scheduled at
A or on all paths through s(n) before A. This is ex-
pressed by the following equations which are added to
the model for all instructions n, all blocks B ∈ Θspec(n)
and all of B’s direct predecessors A in Θ(n)

a↑B
n = a↑A

n +
∑

t∈G(A)

xAt
n (2)

In the case that a predecessor A is only a speculative
destination block and not element of Θ(n), we gener-
ate the equation without the sum2. If B has no prede-
cessors at all, we set a↑B

n = 0. It should be clear that
equation (2) realizes the desired semantics. These two
classes of variables are now sufficient to model global
scheduling:

First, we have to ensure that every program path
through the source block of an instruction contains a
copy of it. This is done by the following assignment con-
straints, where Ω is a new, empty pseudo block which
is added as a successor of all exit blocks:

a↑Ω
n = 1 ∀n ∈ V (3)

4.1. Precedence Constraints

Furthermore, if an instruction n is dependent on
m, then it must appear after m on every path. Glob-
ally, this can be achieved by adding the following prece-
dence constraints for all (m,n) ∈ ED and for all A ∈
Θspec(m) ∩ Θspec(n):

a↑A
n ≤ a↑A

m (4)

To ensure that dependences inside a basic block are
met, we adopt the proven and efficient (tight) local
precedence constraints from [11, 17, 23]:

∑
tn≤t

tn∈G(A)

xAtn
n +

∑
tm≥t−late+1

tm∈G(A)

xAtm
m ≤ 1, (5)

∀e = (m,n) ∈ ED,

2 In practice we use an optimized version which omits the equa-
tion in this case. This simpler version is presented here for
the sake of comprehensibility.



33

22

11

3

2

1

A

n

A

m

A

n

A

m

A

n

A

m

xx

xx

xx

nmx

n

m 1

n

m 1

n

m 1

n

m 1

+ � d

Local Precedence Constraints Dispersal Constraints

Cycles

33

22

11

3

2

1

A

n

A

m

A

n

A

m

A

n

A

m

xx

xx

xx

nmx

+

�1

+

+

Figure 3. Simple example for the local prece-
dence and dispersal constraints

∀t ∈ {t′ + late − 1 |t′ ∈ G(A)} ∩ G(A)

Fig. 3 helps to understand the intuition behind these
constraints with a simple example consisting of two de-
pendent instructions m and n and three cycles. The
bordered area represents the variables on the left-hand
side of inequality (5) (for one instance with t = 2) – if
an xm and an xn variable in this sum were one, this
would imply that m is scheduled at cycle two or three
and n at one or two, which would violate the depen-
dence. This violation is excluded by setting the sum less
than or equal to one. In [16] it has been shown that any
infeasible instruction ordering is excluded but no feasi-
ble solution discarded.

4.2. Resource Constraints

Further constraints must ensure that the number of
instructions scheduled per cycle does not exceed the
target processor’s execution resources. On Itanium pro-
cessors, this number is generally limited by the disper-
sal window size d (six for Itanium 2). With help of the
inverse Θ−1 of Θ, we can formulate that not more than
d instructions may be issued in one cycle:

∑
n∈Θ−1(A)

xAt
n ≤ d ∀A ∈ B, ∀t ∈ G(A) (6)

Similarly, we generate resource constraints which limit
the number of instructions scheduled for a specific ex-
ecution unit type [22, 23]. For complexity reasons, we
do not integrate resource binding into the ILP, i. e. the
ILP solver does not decide whether, for instance, an
ALU instruction is executed on a memory or an inte-
ger unit. In contrast to our earlier work [17], this deci-
sion is now left open to a later bundling phase. We can

afford to do so since the Itanium 2 has significantly less
restrictions than the first generation (e. g. full ALU by-
passing, much more flexible bundling [15]).

In the presence of intra-group dependences, how-
ever, it can happen that later an instruction group does
not fit in any possible template sequence (see Sec. 1,
[17, 8]). It is possible to integrate template selection
into the model, but to avoid the additional complex-
ity we have chosen a different solution. Our imple-
mentation searches in advance for potential instruc-
tion groups which would later fail during bundling.
Given such an “illegal” set of instructions S, it adds
the bundling constraint

∑
n∈S xAt

n ≤ |S|−1 for each cy-
cle t where these instructions can be scheduled to pre-
vent the formation of this group. In our experiments
only two out of several hundred groups failed during
bundling (they had four memory instructions, all de-
pending on a chk.s). This has been resolved by adding
a specific class of bundling constraints [23]. We will add
further classes when more of these cases occur.

The polytope for global scheduling is now com-
plete. Under the assumption that |V | ≤ |ED| and
with G =

∑
A∈B GA, we need O (G · |V |) variables and

O (G · |ED|) constraints. GA, the number of cycles re-
served for a basic block A, should be chosen as small
as possible since this value affects the size and thereby
the solution times of the produced ILPs. However, the
ILP solver could choose to grow less frequently exe-
cuted blocks by moving code into them – this possi-
bility should not be limited by a too small GA. A save
choice is to collect all instructions which could possi-
bly be moved into the block, Θ−1(A), and compute via
list scheduling an upper bound on the length of an op-
timal local schedule of all these instructions.

We conclude the presentation of the basic model
with two theorems about its correctness and complete-
ness. The proofs are given in our earlier paper [22] and
in [23], respectively.

Theorem 1 Every integer point satisfying the con-
straints corresponds to a correct global schedule.

Theorem 2 Let a correct schedule be given where no
instruction is placed twice on any path. Then the corre-
sponding integer point is a feasible solution of the ILP
model.

4.3. Objective Function

Optimization goal is to minimize the global sched-
ule length, which we define as the sum of the schedule
lengths of all basic blocks, each weighted by the execu-
tion frequency of the block.

To integrate this into the model, we introduce new
binary variables BA

t . A variable BA
t is equal to one if



op rX=rY

op rW=rZ,rX

ld.s rX’=[mem]

op rZ=rX

op rX=rY

op rW=rZ,rX

ld rX=[mem] chk.s rX’ mov rX=rX’ op rZ=rX’

Figure 4. Control speculation with register
renaming before (left) and after application
(right)

and only if basic block A has length t in the sched-
ule. This variable can be seen as the variable xAt

n of
an imaginary “last” instruction n inside block A which
is dependent on all other instructions there (with la-
tency zero). Accordingly, we can use instances of the
local precedence constraints (5) to link the BA

t vari-
ables to the model. With the execution frequency of
block A given as fA, the objective function now can be
written as:

min
∑
A∈B

fA ·

 ∑

t∈G(A)

t · BA
t


 (7)

If block A has length t̃, then the term in the brackets
evaluates to t̃ since only BA

t̃
is equal to one in the sum

– then t̃ · BA
t̃

= t̃ is the only non-zero addend.

5. Extensions

The presented model is our basis for several essential
extensions which incorporate different kinds of specu-
lation and extend the range of code motion. Note that
we can only outline the implementation of these ex-
tensions in this paper. For more details, please refer to
[23, 22].

5.1. Speculation

Non-speculative instructions are limited in their
scope of code motion as they must not be executed un-
necessarily. There are several reasons why the unnec-
essary execution of an instruction could harm correct-
ness: It could trigger a false exception, which concerns
mostly memory instructions. Furthermore, it could
overwrite a live value; this applies to stores and to in-
structions in a UD chain, i. e. several definitions that
reach a common use.

The Itanium architecture has control speculative
loads to overcome the first restriction [14]. Fig. 4 shows

an example of their application3: On the right-hand
side, the load is moved upwards as a control spec-
ulative version ld.s which sets a special bit in the
target register if an exception occurs. The check in-
struction chk.s detects a deferred exception by test-
ing this bit. If set, it branches to recovery code that
re-executes the load (and possible additional specula-
tive4 uses which have been scheduled before the chk.s;
not shown in the figure). The recovery code then even-
tually triggers the exception.

Furthermore, in the example from Fig. 4, the re-
sult register rX must not be written speculatively be-
cause the load is in a UD chain with “op rX=rY”. We
can overcome this second restriction by letting the load
write to a new temporary register. Exclusive uses like
the “op rZ=rX” can directly read the temporary regis-
ter and can possibly also be speculated with the load,
whereas for the“op rW=rZ,rX”, we insert a mov instruc-
tion which moves the value back to the original register.
All non-exclusive uses are dependent on this new mov
instruction, which must – like the chk.s – be treated
as a non-speculative instruction.

The scheme is flexible in the sense that it is also pos-
sible to speculate a definition inside a UD chain that
is not a load and vice versa – the chk.s and the mov
are then dropped, respectively. It also allows to cas-
cade several dependent speculated instructions. If the
load is predicated, both the chk.s and the mov inherit
the predicate, while it can be left out for the the ld.s.

We integrate the possibility to use this kind of spec-
ulation into the search space to let the ILP solver de-
cide whether to employ it. It chooses between two mu-
tually exclusive instruction groups: The first consists of
the normal load and the second of the speculative ver-
sion and the chk.s and/or the mov. Either the first
or the second group must appear in the final sched-
ule, and their dependences must be preserved.

To realize this, we include the instructions of both
groups in the ILP and define a binary variable usespec
as a “speculation switch”. The right-hand side of the
assignment constraints (3) is then replaced by (1 −
usespec) and usespec for instructions from the first and
second group, respectively.

To switch the global precedence constraints on and
off, we add the first and the second term to the right-
hand side of (4) for all dependences involving instruc-
tions from the first and second group, respectively. The

3 We use assembly pseudo-ops in the examples; the result reg-
isters are on the left-hand side of the “=”, the operand reg-
isters on the right-hand side. Those instructions which are
executed in parallel are written in the same line.

4 Analogously to the term “non-speculative”, we call instruc-
tions “speculative” if they can be executed speculatively.



terms relax these inequalities if the dependences are
“switched off”. All other constraints of the ILP are not
affected by these mutually exclusive instruction groups.
Data speculation [14] is implemented very similarly.

In Fig. 4, the resulting schedule length reduction is
depicted by the double-headed arrow inside the block.
It has been achieved at the cost of two additional in-
structions plus recovery code.

It should be noted that the branch to recovery code
is only taken if the load triggers an exception. In prac-
tice, this is a very rare event that happens in less than
0.001% of all cases [3]. Nevertheless, the use of control
speculation should be guided by a cost model which es-
timates the failure probabilities of individual loads, and
which also allows for the rare but significant penalties
that a ld.s may incur if it misses the L1 cache or the
TLBs [15]. This information – if available from static
analysis, heuristics or profiling – can be integrated into
the objective function of the model to increase its pre-
cision.

This information was not available during our exper-
iments, but we have excluded code motion of specula-
tive loads into blocks whose execution frequency is by
a factor k times higher than that of the source block,
i. e. we forbid control speculation which is likely to be
useless (we used k = 5 in the experiments).

5.2. Cyclic Code Motion

Unlike many other global scheduling algorithms,
we do not limit the scheduling scope to acyclic re-
gions. Loops are such an essential element of every
program that this restriction would limit the search
space and thereby our objective of truly optimal sched-
ules too strongly. Consequently, we allow code motion
into loops and out of loops (where software pipelin-
ing is not used).

Two variants of code motion into loops are
used: Non-speculative upward motion guards instruc-
tions with a predicate that is true only on loop exit.
This introduces a dependence on the compare instruc-
tion computing the predicate. If we do not predi-
cate the instruction, it is executed speculatively dur-
ing each loop iteration (at most) although only the
result of the last execution before the loop exit is ac-
tually being used. This sounds wasteful but it can
still be profitable if instead a nop would be exe-
cuted. This kind of code motion can only be allowed
for speculative instructions (except loads) which

• do not write a value which is live at the loop header

• are multiply executable without a changing seman-
tics, which is not the case for instructions where

op rW=rZ,rX

ld rZ=[rX]

op rW=0

op rX=c,rZ
op rW=rZ,rX
ld rZ=[rX]

op rW=0

op rX=c,rZ

op rX=c,rZ

Figure 5. Example of cyclic code motion

results and operands overlap, like add r1=1,r1, or
with post-increment.

Code motion out of loops if trivial if the code is
loop invariant. Otherwise an instruction can still be
hoisted upwards out of the loop if it is not only moved
into blocks above the loop header, but also along ev-
ery backedge to the bottom blocks of the loop and their
predecessors. We call this kind of code motion cyclic.
Cyclic motion can be profitable if the cyclically moved
code is overlapped inside the loop body with instruc-
tions from the previous iteration, reducing the critical
path here. Fig. 5 shows a small example of such a case
(the “op rX=c,rZ“ is cyclically moved).

Cyclic code motion can be regarded as a sim-
ple variant of software pipelining without fill overhead.
In practice, there are still many loops where software
pipelining can or should not be applied – for exam-
ple if they contain other loops, function calls or com-
plex control flow, or if they have low trip counts –
cyclic code motion can then help alleviate the inef-
ficiencies that static scheduling suffers from in these
cases. However, it should be used carefully since it
comes at the price of code expansion.

Currently we have integrated cyclic code motion into
the ILP only upwards for speculative instructions (in-
cluding those added in Sec. 5.1), and only out of the
innermost loop the instruction is contained in. If this
loop has the header block H, the variable a↑H

m is as-
signed a special meaning: m is cyclically moved if and
only if a↑H

m = 1. This choice is then left open to the
ILP solver.

We have decided to use the same xAt
n variables to

model both normal and cyclic placement of an instruc-
tion. This prevents a potential duplication of these vari-
ables, but it also complicates the design of the global
precedence and assignment constraints (see [22, 23] for
details).

5.3. Partial-Ready Code Motion

In principle, partial-ready code motion [4] is a spe-
cial form of control speculation: it speculates that a
particular control flow path is taken and ignores the



op rZ=rY

op rZ=rZ,rX

mov rW=rZ

ld rX=[rW]

0.9 0.1

A op rZ=rY ld.s rX=[rW]

op rZ=rZ,rX chk.s rX

mov rW=rZ

ld.s rX=[rW]

0.9 0.1

A

BB

Figure 6. Partial-ready code motion before
(left) and after (right) application

data dependences from other paths. Fig. 6 gives an ex-
ample where this is profitable.

On the left-hand side we cannot move the load into
block A because of the dependence on the mov. The load
is ready for scheduling there only under the assump-
tion that the left, likely path is taken (“partial-ready”).
On the right-hand side we ignore the dependence by
scheduling the load in block A, and we insert a com-
pensation copy on the other path which re-executes it
after the mov, overwriting rX with the correct value.
An important detail is that a speculative load must be
used in A because its load address is undefined if the
path A-B is taken.

Generally, the idea is to schedule instructions earlier
on a path by speculatively ignoring dependences from
other paths, and to place compensation copies on the
other paths which respect these dependences.

Some profound changes are necessary in the model
to support this transformation since it violates two of
its inherent assumptions: namely, that no instruction
is placed twice on any path (enforced by constraints
(2), cf. also Theorem 2; in the example violated by the
ld.s), and that data dependences are never violated
globally (constraints (4)). It is necessary to relax these
assumptions.

This can be done for the first assumption by replac-
ing the“=”by“≤” for specific instances of equation (2),
in the example for the edge A-B. This increased flexi-
bility also increases the search space and thereby the
solution times. To cope with the growing complexity
we currently impose several restrictions: Partial-ready
code motion is only allowed for speculative instructions
(including those added in Sec. 5.1) and their specula-
tive uses; a possible combination with predication is
not yet implemented. For instructions which support
cyclic code motion, it is only applicable together with
this transformation (which turns out to be a profitable
combination in practice).

5.4. Branches and If-Conversion

Branches are modeled as special instructions that
always appear in the last cycle of a basic block. If the
ILP solver empties blocks, branches to these blocks may
disappear and free execution slots. This did not hap-
pen rarely during our experiments, where almost 10%
of all blocks were collapsed. Therefore we have devel-
oped a formulation (with little additional complexity)
that models exactly the resulting changes in the branch
structure (including choices for fall-through edges). It
would also easily be possible to incorporate branch mis-
prediction penalties.

Calls are treated almost like normal instructions, but
are not subject to global code motion. Details are given
in [23].

5.5. Subsequent Optimization Phases

A consequence of the used objective function is that
the ILP solver has a blind spot for everything that is
not related to the schedule length. This can result in
schedules which are suboptimal with respect to other
aspects like register usage. To compensate for this we
can perform subsequent optimizations while preserving
the minimal schedule length.

This can be done by solving a second ILP subse-
quently which is the same as the first one except that
it has a different objective function and that the length
of each block is fixed to its solution value of the first
phase. We briefly sketch some possible objectives for
the second phase; only the first one is currently used in
the experiments.

• Minimization of the instruction count: Noth-
ing detains the ILP solver from using more specu-
lation and more compensation copies than neces-
sary, as long as the resulting schedule is valid and
optimal. Hence we use an objective function dur-
ing the second phase that minimizes the number
of scheduled instructions (i. e. the sum of all xAt

n

variables); this takes only a few seconds for all in-
put programs.

• Reducing register pressure: Long-range code
motion increases the register pressure, and the first
phase could use more of it than necessary. A sub-
sequent phase could alleviate this by shrinking live
ranges.

• Stall minimization expands the distances be-
tween loads and their nearest use. This reorder-
ing could utilize slack in the schedule to minimize
the stall cycles due to cache misses.



6. Experimental Evaluation

We have implemented all described modelings and
tested them on routines from the SPECint 2000 bench-
mark using a postpass approach. This method is too
new and too expensive to optimize the whole SPEC
benchmark with it; instead we had to select several rou-
tines according to the following criteria:

• The assembled routine should not have more than
a few hundred instructions to limit the complex-
ity.

• It should be hot so that the impact of the optimiza-
tion can be measured. We have chosen only rou-
tines whose weight (i. e. the time spent in these
routines) is at least 5%.

• It should not contain hot software-pipelined loops
because software pipelining is currently not sup-
ported by the model.

• It should not contain too many long-latency
(floating-point) instructions because the model is
imprecise here: the local precedence constraints
(5) can deal with latencies greater than one, but
the global propagation of these latencies is not al-
lowed for.

Table 1 shows the used input routines with their
weights as measured with the Caliper tool [2]. “Ins. in”
gives their instruction count. All functions are opti-
mized as a whole except prune match where we have
omitted a large, cold part of the routine (the last six en-
tries for prune match in Table 1 refer to the optimized
part). Table 2 shows the numbers of basic blocks and
loops for each routine.

6.1. Experimental Setup

The selected routines were compiled to assem-
bly with Intel’s Linux compiler 7 for the Itanium 2.
We used full optimization (-O3) and profiling infor-
mation (-prof_use). The assembly files are directly
input to our optimizer. The latter reconstructs con-
trol flow, data dependences and also reads the exe-
cution frequency estimates for the objective function
which are annotated by Intel’s compiler in the assem-
bly code.

It then undoes all uses of control and data spec-
ulation (with manual interaction for some instances)
and performs register renaming to remove all false de-
pendences which would otherwise restrict code motion.
The tool does not undo predication where it is used by
Intel’s compiler. In the input routines this feature is
used rarely and conservatively so that we see no bene-
fit in reversing these decisions.

The advantage of the postpass approach is that it
allows the direct comparison with Intel’s state-of-the-
art compiler [10]. But during the comparison it should
always be kept in mind that both code generators play
in different leagues regarding the computation times.

A drawback of the postpass approach is that no in-
formation about memory disambiguation is available.
Hence all memory dependences must be reconstructed
conservatively. Regarding data speculation our policy is
as follows: we include a possibility for data speculation
in the ILP only if the two memory accesses are inde-
pendent under the ANSI C aliasing rules. In these cases
it is assumed that aliasing is unlikely so that the cost
of recovering does not need to be taken into account.
In only two routines more data speculation is used in
the optimal schedule than before (get heap head and
add to heap).

The tool then performs several fully automated op-
timizations to make the search space compact, e. g. we
exclude possibilities for code motion which cannot be
utilized in any correct and optimal schedule. These
and further optimizations are applied to the model to
achieve acceptable solution times. They are the result
of a long process of analyzing and experimenting [23].

The ILPs are then solved with CPLEX 8.0 [1] on a
900-MHz-UltraSparc III+. CPLEX uses the same set-
tings for all input programs, there is no routine-specific
tuning. Also there is no optimality tolerance interval
granted to the ILP solver – only a 100% optimal re-
sult is accepted. Table 2 shows the ILP sizes, the num-
bers of branch-and-bound nodes and the solution times.
To keep the ILP sizes small, the value GA – the num-
ber of cycles reserved for a basic block – is chosen prag-
matically: it is set to the length of A in the input sched-
ule plus a constant reserve (usually k = 1, for six blocks
it has been extended to 2).

After CPLEX has finished, the optimal sched-
ule is constructed from the delivered solution. It is
then passed to a bundler which generates the final as-
sembly output. The bundler does not use the ILP
solver; it is based on precomputed results and dy-
namic programming [17] and incorporates all disclosed
information about bundling for the Itanium 2 [15]. Fi-
nally, recovery code is added manually.

6.2. Results and Analysis

Table 1 shows the achieved reductions of the global
schedule lengths in column “Static Red.”. Sometimes
the reductions are considerable like for longest match
and get heap head ; in other cases the critical path is
a limiting factor like in deflate and add to heap, but
the percentages are still respectable here with 19% and



Routine
Prog-

ram

Input

Set
Weight

Speedup

Program

Speedup

Routine

Static

Red.

Ins.

in

Ins.

out

Delta

Ins.

Delta

Bundl.

Weigh.

IPC in

Weigh.

IPC out

longest_match gzip program 68% 28.97% 43% 44% 191 230 20% 7% 2.4 5.4

deflate gzip random 14% 1.72% 12% 19% 226 233 3% -3% 2.6 3.6

send_bits gzip graphics 15% 3.05% 20% 30% 86 95 10% 3% 2.6 4.7

firstone crafty ref 10% 0.88% 9% 37% 37 42 14% 0% 2.6 4.8

get_heap_head vpr route/ref 30% 4.25% 14% 43% 71 94 32% 9% 2.3 4.6

add_to_heap vpr route/ref 13% 1.17% 9% 17% 108 119 10% 4% 3 4.1

qSort3 bzip2 ref 12% 1.93% 16% 26% 241 279 16% 4% 2.9 4.5

xfree parser ref 10% 0.76% 7% 22% 46 50 9% -5% 2.3 3.6

prune_match parser ref 6% 0.73% 12% 41% 69 84 22% -3% 2.5 5.4

Average 16% 31% 15% 2% 2.6 4.5

Table 1. Results of the optimization

Routine #BB #Loops
Spec.

in

Spec.

poss.

Spec.

out
#Constraints #Variables #Nodes

Sol. Time /

Seconds

longest_match 26 2 15 47 24 5619 2865 500 141

deflate 37 3 4 28 7 4570 2686 2 3

send_bits 12 0 0 10 1 2583 1417 8 4

firstone 8 0 0 7 5 458 277 0 0

get_heap_head 9 2 3 23 11 4126 1673 1 13

add_to_heap 12 1 2 16 5 3248 1665 0 2

qSort3 22 4 7 44 18 10723 4984 914 179

xfree 9 1 2 7 4 759 403 6 0

prune_match 10 1 4 19 11 1294 766 2 1

Table 2. Further characteristics of the input routines and the solution process

17%, respectively. Later we will examine how these im-
provements could have been achieved.

Tab. 2 displays the number of control and data spec-
ulative loads used in the input schedule (“Spec. in”).
The next two columns show how often speculation ac-
cording to Sec. 5.1 is included as a possibility in the ILP
and how many of these possibilities are actually utilized
in the output schedule (44% on the average), respec-
tively. This includes not only speculative loads but also
speculated instructions from UD chains. Counting only
uses of control and data speculation yields a 60% in-
crease compared to the input schedules.

The schedule length reductions are accompanied
by a drastically increased static instructions-per-clock
rate: the average IPC (without nops) weighted by the
execution frequency of the blocks goes up from 2.6
to 4.5 (the unweighted IPC from 2.5 to 3.8). This
shows that the ILP scheduler is successful in extract-
ing more parallelism and approaches the maximum
IPC of six for the Itanium 2.

However, the uninhibited use of free issue ports also
results in an increased instruction count by 15% on av-
erage (“Delta Ins.”, without nops and recovery code).
This is potentially harmful to the instruction cache ef-
ficiency. But interestingly, the relevant number of bun-
dles grows only by 2% (“Delta Bundl.”).

This comes from the fact that the new schedules
use fewer, but larger instruction groups which fit much
better into the bundling scheme of this architecture.
Small groups are more often forced to be filled up with
nops. Hence most new instructions move into execution
slots which were previously occupied by nops. With the
small code size increase the negative impact on the in-
struction cache should be very limited.

All benchmark programs were run on a 1.4 GHz Ita-
nium 2. Table 1 shows the speedups of these programs
when the routine is replaced by its optimized variant.
These numbers are sometimes less than 1% because
only a single small routine has been changed, there-
fore several runs were performed to determine them



0

5

10

15

20

25

30

35

40

45

50

lo
nge

st
_m

.

def
la
te

se
nd

_bits

fir
st

one

get
_h

ea
p_h

.

ad
d_t

o_h
.

qS
ort

3

xf
re

e

pru
ne_

m
.

A
ver

ag
e

S
ec

onds

Plus Partial-

Ready Code

Motion

Plus Cyclic

Code Motion

Plus Addition.

Speculation

Only Acyclic

Global

Scheduling

Figure 7. Schedule length reductions as different extensions are switched on incrementally

precisely. In some cases we have used those input sets
where the weight of the routine is maximal.

From the program speedup and the weight we can
derive the speedup of the individual routines (“Speedup
Routine”). It can be seen that the runtime impact of
the static improvements varies widely among the rou-
tines, which can be attributed to different stall charac-
teristics. The impact ranges from about one third for
routines with a relatively high average memory latency
like xfree to more than two thirds for the compute-
intensive, cache-friendly routines from gzip, with the
average at half. The latter is plausible because we cur-
rently only optimize the unstalled execution time which
is about half of the total execution time for SPECint
2000 [18].

Finally, Figure 7 shows how the schedules shrink as
the extensions additional speculation (i. e. more than
in the input schedule), cyclic code motion and partial-
ready code motion are switched on incrementally (in
this order). All these features improve only a subset of
the routines, but on the average, each is essential. The
last bar shows the accompanying increase in the av-
erage solution time (the y-axis displays both percents
and seconds). While scheduling with speculation gen-
erally can be solved within a few seconds, the two other
extensions cause search space expansions especially for
two of the larger routines (see Table 2). It is likely that
the efficiency of the ILP model can still be improved
here.

7. Applications

The experimental results have shown that the
ILP method is attractive as an optimization tool for

compute-intensive application kernels like compres-
sion and encryption routines. Not less interesting
is its application as a research tool to obtain in-
sights into the potential of EPIC architectures: for
instance, we can evaluate the impact of microarchi-
tectural changes on performance without compiler in-
fluence – in contrast to scheduling heuristics, it is
simple to model architectural restrictions and asym-
metries with this method and to obtain schedules that
account for them optimally. Another unique prop-
erty of this approach is that the researcher can formu-
late different optimization goals in the objective func-
tion without caring about how to achieve them. This
can greatly facilitate experimenting with different op-
timization objectives.

A further application arises from the fact that we
have proven the correctness of the basic model [17, 23].
It follows that a schedule is proven to be correct if it is
a feasible solution of the ILP (which can be checked in
time that is linear in the size of the ILP). This prop-
erty can be used to validate the schedules produced by
heuristics. It is an inherent advantage of this approach
which does not build on an algorithm, but on a pre-
cise mathematical model.

8. Conclusion and Outlook

We have modeled and solved global scheduling for
the Itanium 2 using integer programming. Our formula-
tion comprises generation of compensation code, sup-
port for partial-ready and cyclic motion, control and
data speculation and predication. To our knowledge,
we are the first to provide an exact solution to this
problem.



Our experiments have shown that this method can
reduce the schedule lengths produced by Intel’s com-
piler by about 20-40%. The tested routines may be not
representative enough to draw final conclusions from
these numbers. Nevertheless, the extent of the improve-
ments in both schedule length and IPC indicates that
there is still some considerable performance headroom
waiting to be unleashed in some tasks that are very fun-
damental to EPIC: static scheduling and use of specu-
lation.

Currently we are studying how the efficiency of the
model can be improved further and how it can be mod-
ified to support software pipelining.

9. Acknowledgements

This research has been funded by the graduate stud-
ies program “Quality Guarantees for Computer Sys-
tems” supported by the Deutsche Forschungsgemein-
schaft. Thanks go to Ingmar Stein who has imple-
mented the bundler used in the experiments. I am
also grateful to the Max-Planck-Institut für Infor-
matik, Saarbrücken, for giving access to their CPLEX
installation.

References

[1] ILOG CPLEX 8.0, 2002. www.cplex.com.

[2] HP Caliper, 2003. www.hp.com/go/caliper.

[3] D. Alpert. Itanium Processor Status Report. Micro-
processor Report, July 2003.

[4] J. Bharadwaj, K. Menezes, and C. McKinsey. Wave-
front Scheduling: Path Based Data Representation and
Scheduling of Subgraphs. Journal of Instruction-Level
Parallelism, 1(6):1–6, 2000.

[5] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and
R. Wunderling. ILOG CPLEX Division. MIP: The-
ory and Practice - Closing the Gap. In M. J. D. Pow-
ell and S. Scholtes, editors, System Modelling and Op-
timization: Methods, Theory and Applications, pages
19–49. Kluwer, The Netherlands, 2000.

[6] C.-M. Chang, C.-M. Chen, and C.-T. King. Using
Integer Linear Programming for Instruction Schedul-
ing and Register Allocation in Multi-Issue Proces-
sors. Computers and Mathematics with Applications,
34(9):1–14, Nov. 1997.

[7] S. Chaudhuri, R. Walker, and J. Mitchell. Analyz-
ing and Exploiting the Structure of the Constraints in
the ILP-Approach to the Scheduling Problem. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 2(4):456–471, Dec. 1994.

[8] D.-Y. Chen, L. Liu, C. Fu, S. Yang, C. Wu, and
R. Ju. Efficient Resource Management during Instruc-
tion Scheduling for the EPIC Architecture. In Proceed-
ings of the PACT 2003, New Orleans, Sept. 2003.

[9] G. Dantzig. Maximization of a linear function of vari-
ables subject to linear inequalities. In T. C. Koop-
mans, editor, Activity Analysis of Production and Al-
location, pages 339–347. Wiley, New York, 1951.

[10] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery,
W. Li, J. Ng, and D. Sehr. An Overview of the Intel r©
IA-64 Compiler. Intel Technology Journal, (Q4), 1999.

[11] C. Gebotys and M. Elmasry. Global Optimization Ap-
proach for Architectural Synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, pages 1266–1278, 1993.

[12] S. Haga and R. Barua. EPIC Instruction Schedul-
ing Based on Optimal Approaches. Proceedings of the
EPIC-1 Workshop, Dec. 2001.

[13] M. Heffernan, J. Liu, and K. Wilken. Optimal In-
struction Scheduling Using Integer Programming. Pro-
ceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation,
pages 121–133, June 2000.

[14] Intel. Intel r© Itanium r© Architecture Software De-
veloper’s Manual, Volume 1: Application Architecture,
Oct. 2002.

[15] Intel. Intel r© Itanium r© 2 Processor Reference Man-
ual for Software Development and Optimization, Apr.
2003.

[16] D. Kästner. Retargetable Code Optimisation by Inte-
ger Linear Programming. PhD thesis, Saarland Uni-
versity, 2000.

[17] D. Kästner and S. Winkel. ILP-based Instruction
Scheduling for IA-64. In Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools
for Embedded Systems, Snowbird, June 2001.

[18] J. McCormick and A. Knies. A Brief Analysis of the
SPEC CPU2000 Benchmarks on the Intel r© Itanium r©
2 Processor. HotChips 14, 2002.

[19] G. Nemhauser and L. Wolsey. Integer and Combina-
torial Optimization. John Wiley and Sons, New York,
1988.

[20] A. Schrijver. Combinatorial Optimization: Polyhe-
dra and Efficiency. Springer, Berlin; Heidelberg; New
York, 2003.

[21] T. Wilson, G. Grewal, and D. Banerji. An ILP Solution
for Simultaneous Scheduling, Allocation, and Binding
in Multiple Block Synthesis. In Proceedings of the In-
ternational Conference on Computer Design: VLSI in
Computers and Processors, pages 581–586. IEEE Com-
puter Society Press, 1994.

[22] S. Winkel. Optimal Global Scheduling for Itanium Pro-
cessor Family. In Proceedings of the EPIC-2 Workshop,
Istanbul, Nov. 2002.

[23] S. Winkel. Optimal Global Instruction Scheduling for
the Itanium Processor Architecture. PhD thesis, Saar-
land University, Saarbrücken, Germany, 2004. To ap-
pear.


