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ABSTRACT
Profiling can accurately analyze program behavior for select data
inputs. We show that profiling can also predict program locality for
inputs other than profiled ones. Here locality is defined by the dis-
tance of data reuse. Studying whole-program data reuse may reveal
global patterns not apparent in short-distance reuses or local con-
trol flow. However, the analysis must meet two requirements to be
useful. The first is efficiency. It needs to analyze all accesses to all
data elements in full-size benchmarks and to measure distance of
any length and in any required precision. The second is predication.
Based on a few training runs, it needs to classify patterns as regular
and irregular and, for regular ones, it should predict their (chang-
ing) behavior for other inputs. In this paper, we show that these
goals are attainable through three techniques: approximate analy-
sis of reuse distance (originally called LRU stack distance), pattern
recognition, and distance-based sampling. When tested on 15 inte-
ger and floating-point programs from SPEC and other benchmark
suites, our techniques predict with on average 94% accuracy for
data inputs up to hundreds times larger than the training inputs.
Based on these results, the paper discusses possible uses of this
analysis.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimization,
compilers

General Terms
Algorithms, Measurement, Languages

Keywords
Program locality, reuse distance, stack distance, data locality, train-
ing, sampling, profiling, pattern recognition and prediction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

1. INTRODUCTION
Caching is widely used in many computer programs and systems,

and cache performance increasingly determines system speed, cost,
and energy usage. The effect of caching depends on program lo-
cality or the pattern of data reuse. Many applications may have a
consistent recurrence pattern at the whole-program level, for ex-
ample, reusing a large amount of data across the time steps of an
astronomical simulation, the optimization passes of a compiler, or
the moves of a game-playing program. To exploit program local-
ity, new cache designs are adding more cache levels and dynamic
configuration control. As the memory hierarchy becomes deeper
and more adaptive, its performance will increasingly depend on our
ability to predict whole-program locality.

The past work provides mainly three ways of locality analysis:
by a compiler, which analyzes loop nests but is not as effective for
dynamic control flow and data indirection; by a profiler, which an-
alyzes a program for select inputs but does not predict its behavior
change in other inputs; or by run-time analysis, which cannot af-
ford to analyze every access to every data. The inquiry continues
for a prediction scheme that is efficient, accurate, and applicable to
general-purpose programs.

In this paper, we predict locality in programs that have consis-
tent reuse patterns. Since different runs of the same program may
use different data and go through different control flow, our analy-
sis is not based on program code nor its data but on a concept we
call reuse distance. In a sequential execution, reuse distance is the
number of distinct data elements accessed between two consecu-
tive references to the same element. It measures the volume of the
intervening data not the time between two accesses. While time
distance is unbounded in a long-running program, reuse distance is
always bounded by the size of physical data. In 1970, Mattson et
al. studied stack algorithms in cache management and defined the
concept of stack distance [30]. Reuse distance is the same as LRU
stack distanceor stack distance using LRU (Least Recently Used)
replacement policy. In this paper, we use a different (and shorter)
name to reflect our purpose in program analysis, not cache manage-
ment. We later show that reuse distance is measured much faster
using a tree instead of a stack.

Reuse distance is a powerful basis for pattern analysis for three
reasons. First, reuse distance is at most a linear function of program
data size. The search space is therefore much smaller for pattern
recognition and prediction. Second, reuse distances reveal invari-
ance in program behavior. Most control flow perturbs only short
access sequences but not the cumulative distance over millions of
data. Long reuse distances suggest important data and signal ma-
jor phases of a program. For example, a distance equal to 50% of
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program data is likely to span a significant program phase. Finally
and most importantly for this work, reuse distance allows direct
comparison of data behavior in different program runs. Distance-
based correlation does not require two executions to have the same
data or execute the same function. Therefore, it can identify consis-
tent patterns in the presence of dynamic data allocation and input-
dependent control flow.

This paper presents three new techniques. The first is approx-
imate reuse distance analysis, which bounds the relative error to
arbitrarily close to zero. It takes O(log logM) time per access and
O(log M) total space, where M is the size of program data. The
second is pattern recognition, which profiles a few training runs
and extracts regular patterns as a function of program data size.
The last one, distance-based sampling, predicts reuse pattern for an
unknown data input at run time by sampling at the beginning of the
execution when needed. Together these three techniques provide a
general method that predicts locality patterns in whole or parts of a
program or its data.

We should note two important limitations of this work. First,
our goal is not cache analysis. Cache performance is not a direct
measure of a program but a projection of a particular execution
on a particular cache configuration. Our goal is program analysis.
We find patterns consistent across all data inputs. We analyze the
reuses of data elements instead of cache blocks. The element-level
behavior is harder to analyze because it is not amortized by the size
of cache blocks or memory pages (element miss rate is much higher
than cache-block miss rate). We analyze the full distance, not its
comparison with fixed cache sizes. Per-element, full-length anal-
ysis is most precise and demands highest efficiency and accuracy.
Program analysis, however, does not directly improve a program or
a machine. In Section 4, we discuss current and future uses of this
analysis in compiler, file system, and memory system design.

We do not find all patterns in all programs. Not all programs
have a consistent pattern, nor are all patterns predictable, let alone
by our method. Our goal is to define common recurrence patterns
and measure their presence in representative programs. As depen-
dence analysis analyzes loops that can be analyzed, we predict pat-
terns that are predictable. We now show that, in many cases, reuse
distance can extend the scope of locality analysis to the whole pro-
gram.

2. REUSE PATTERN ANALYSIS
This section describes the three components of reuse pattern anal-

ysis: approximate reuse distance analysis, reuse pattern recogni-
tion, and distance-based sampling.

2.1 Approximate reuse distance analysis
In a distance analysis, we view program execution as a sequence

of accesses to data. Measuring reuse distance between two data
accesses means counting the number of distinct data between them.
In the worst case, the measurement needs to examine all preceding
accesses for each access in the trace. So a naive algorithm would
need O(N2) time and O(N) space for a trace of length N . This
cost is impractical for real programs, which have up to hundreds of
billions of memory accesses.

The time and space costs can be improved, as shown by the ex-
ample in Figure 1. Part (a) shows that we need to count accesses
to distinct data. Part (b) shows that instead of storing the whole
trace, we can store (and count) just the last access of each data.
Part (c) shows that we can organize the last-access time of all data
in a search tree. The counting can be done in a single tree search if
we maintain the weight or the number of nodes in all sub-trees. For
a balanced tree, reuse-distance measurement takes O(logM) time

per access and O(M) total space, where M is the size of program
data. For a program with a large amount of data, however, the space
requirement becomes a limiting factor. Each data element needs a
tree node, which stores the last-access time, pointers to its children,
and the weight of its sub-tree. Since the tree data at least quadru-
ple program data, they easily overflow physical memory and even
the 32-bit address space for a program with more than 100 million
data.

To reduce the space cost, we introduce approximate analysis for
long reuse distances. If the length of a distance is in the order
of millions, the accuracy of the last couple of digits rarely matters.
The main feature of our analysis is approximating a block of data in
a tree node, as shown in Part (d) of Figure 1. The space requirement
is reduced by a factor equal to the average block size. Using a large
block size, the approximate analysis can make its tree data small
enough to fit in not only the physical memory but also the processor
cache.

In our discussion, we do not consider the cost of finding the last
access time. This requires a hashtable with one entry for each data.
The space cost is O(M). However, Bennett and Kruskal showed
that hashing can be done in a pre-pass, using blocked algorithms
to reduce the memory requirement to arbitrarily low [6]. The time
complexity of hashing is constant per access, a well-studied prob-
lem compared to distance measurement. In the rest of this paper,
we will focus our attention only on reuse distance measurement.

We present two approximation algorithms, with different guaran-
tee on the accuracy of the measured distance, dmeasured, compared
to the actual distance, dactual, as shown below.

1. bounded relative error e, 1 ≥ e > 0 and dactual−dmeasured
dactual

≤ e

2. bounded absolute error B, B > 0 and dactual − dmeasured ≤ B
Both methods also guarantee dmeasured ≤ dactual. The rest of
this section describes them in more detail.

2.1.1 Analysis with a bounded relative error
The analysis guarantees a bounded error rate that can be arbitrar-

ily close to zero. Figure 2 shows the main algorithm. Given the cur-
rent and last access time, the main routine uses TreeSearchDelete
to search the block tree and calculate reuse distance using sub-tree
weights. Once the node containing the last access time is found, the
subroutine TreeSearchDeleteupdates the capacity of the node. The
new capacity is distance∗ e

1−e
. To simplify the notation, we use e′

to represent e
1−e

. The value of distance is the number of distinct
data accessed after this node. The subroutine uses distance as the
approximate distance. The approximation is never greater than the
actual distance. The maximal relative error e happens when the ac-
tual distance is distance ∗ (1 + e′). The formula of e′ assumes
1 > e > 0. The algorithm is not valid if e = 0, which means
no approximation. It is trivial to approximate if e = 1: we simply
report all reuse distance as 0.

After capacity update, the subroutine TreeSearchDeletedeletes
the last access and inserts the current access. The tree insertion and
deletion will rebalance the tree and update sub-tree weights. These
two steps are not shown because they depend on the type of the tree
being used, which can be an AVL, red-black, splay, or B-tree.

The most important part of the algorithm is dynamic tree com-
pression by subroutine TreeCompression. It scans tree nodes in re-
verse time order, updates their capacity as in TreeSearchDelete, and
merges adjacent tree nodes when possible. The size of the merged
node must be no more than the smaller capacity of the two nodes;
otherwise, the accuracy cannot be guaranteed. Tree compression is
triggered when the tree size exceeds 4 ∗ log1+e′ M + 4, where M
is the number of accessed data. It guarantees that the tree size is cut
by at least a half, as proved by the following proposition.
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d a c b c c g e f  a  f  b

1 2 3 4 5 6 7 8 9 10 11 12time:

access:

distance: | |5 distinct accesses

(a)  An example access sequence.

The reuse distance between two b's is 5.

d a c b c c g e f  a  f  b
| |5 last accesses

(b)  Store and count only the last access of each data.

// //

tree node

   (time ,weight)

(1,1)

(7,7)

(10,3)(4,3)

(11,1)(8,1)(6,1)

tree node

   (time, weight, capacity, size)

(10,7,2,2)

(7,4,6,4) (11,1,1,1)

d

b
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g
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d b c g f

1 2 3 4 5 6 7 8 9 10 11 12time:

access:

distance: 

(c) Organize last access times as a tree.  Each node 

represents a distinct element.  Attribute time is its 

last access time, weight is the number of nodes in 

the subtree.  The tree search for the first b finds the 

reuse distance, which is the number of nodes whose 

last access time is greater than 4.

(d) Use an approximation tree with 33% guranteed 

accuracy.  Attributes capacity and size are the 

maximal and current number of distinct elements 

represented by a node, time is their last access time, 

and weight is the total size of subtree nodes.  The 

approximate distance of two b's is 3 or 60% of the 

actual distance. 

Figure 1: Reuse distance example

PROPOSITION 2.1. For a trace ofN accesses toM data ele-
ments, the approximate analysis with a bounded relative errore
(1 > e > 0) takesO(N log logM) time andO(logM) space,
assuming it uses a balanced tree.

PROOF. The maximal tree size cannot exceed 4∗log1+e′ M+4,
or, O(logM), because of tree compression. Here e′ = e

1−e
. We

now show that TreeCompressionis guaranteed to reduce the tree
size by at least a half. Let n0, n1, ..., and nt be the sequence of
tree nodes in reverse time order. Consider each pair of nodes af-
ter compression, n2i and n2i+1. Let sizei be the combined size
of the two nodes. Let sumi−1 be the total size of nodes before
n2i, that is sumi−1 =

∑
j=0,...,i−1 sizej . The new capacity of

n2i.capacity is �sumi−1 ∗ e′�. The combined size, sizei, must
be at least n2i.capacity + 1 and consequently no smaller than
sumi−1 ∗ e′; otherwise the two nodes should have been com-
pressed. We have size0 ≥ 1 and sizei ≥ sumi−1 ∗ e′. By in-
duction, we have sumi ≥ (1 + e′)i or i ≤ log1+e′ sumi. For
a tree holding M data in Tcompressed tree nodes after compres-
sion, we have i = �Tcompressed/2� and sumi = M . Therefore,
Tcompressed ≤ 2 ∗ log1+e′ M + 2. In other words, each compres-
sion call must reduce tree size by at least a half.

Now we consider the time cost. Assume that the tree is balanced
and its size is T . The time for tree search, deletion, and insertion is
O(log T ) per access. Tree compression happens periodically after
a tree growth of at least 2 ∗ log1+e′ M + 2 or T/2 tree nodes.
Since at most one tree node is added for each access, the number
of accesses between successive tree compressions is at least T/2
accesses. Each compression takes O(T ) time because it examines
each node in a constant time, and the tree construction from an
ordered list takes O(T ). Hence the amortized compression cost is
O(1) for each access. The total time is therefore O(log T + 1), or
O(log logM) per access.

2.1.2 Analysis with a bounded absolute error
For a cut-off distance C and a constant error bound B, the sec-

ond approximation algorithm guarantees precise measurement of
distance shorter than C and approximate measurement of longer
distances with a bounded error B. It keeps the access trace in

two parts. The precise tracekeeps the last accessed C elements.
The approximate tracestores the remaining data in a tree with tree
nodes having capacity B. Periodically, the algorithm transfers data
from the precise trace to the approximate trace. Our earlier pa-
per describes a detailed algorithm and its implementation using a
B-Tree in both precise and approximate traces [44].

In this work, we generalize the previous algorithm. In addition to
using B-Tree, the precise trace can use a list, a vector, or any type
of trees, and the approximate trace can use any type of trees, as
long as two minimal requirements are met. First, the size of precise
trace is bounded by a constant. Second, the minimal occupancy
of the approximate tree is guaranteed. Invoking a transfer when the
precise trace exceeds a pre-set size can satisfy the first requirement.
For the second requirement, we dynamically merge a tree node with
any of its neighbors when the combined size is no more than B.
The merge operation guarantees at least half utilization of the tree
capacity. Therefore, the maximal size of the approximate tree is
2M
B

.
We implemented a splay tree [37] version of the algorithm in this

work. We will use only the approximate trace (the size of precise
trace is set to 0) in distance-based sampling because it runs fastest
among all analyzers, as shown in Section 3.

2.1.3 Comparison
The past 30 years have seen a steady stream of work in measur-

ing reuse distance. We categorize previous methods by their orga-
nization of the data access trace. The first three rows of Table 1
show methods using a list, a vector, and a tree. In 1970, Mattson
et al. published the first measurement algorithm [30]. They used a
list-based stack. Bennett and Kruskal showed that a stack was too
slow to measure long reuse distances. They used a vector and built
an m-ary tree on it [6]. They also showed how to use blocked hash-
ing in a pre-pass. In 1981, Olken implemented the first tree-based
method using an AVL tree [34]. Olken also showed how to com-
press the trace vector in Bennett and Kruskal’s method and improve
the time and space efficiency to those of tree-based algorithms. In
1994, Sugumar and Abraham showed that a splay tree [37] has bet-
ter memory performance [41]. Their analyzer, Cheetah, is widely
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data declarations
TreeNode= structure(time, weight, capacity,

size, left, right, prev)
root: the root of the tree representing the trace
e: the upper bound to the error rate

algorithm ReuseDistance(last, current)
// inputs are the last and current access time
1. TreeSearchDelete(last,distance)
2. new = TreeNode(current, 1, 1, 1,⊥,⊥,⊥)

TreeInsert(new)
3. if (tree size ≥ 4 ∗ log1+e root.weight + 4)

TreeCompression(new)
Assert(compression more than halves the tree)

end if
4. return distance

end algorithm

subroutine TraceSearchDelete(time,distance)
// time is last access time of the current data.
// distance will be returned.
node = root; distance = 0
while true

node.weight = node.weight− 1
if (time < node.time and

node.prev exists and time ≤ node.prev.time)
if (node.right exists)

distance = distance + node.right.weight
if (node.left not exists) break
distance = distance + node.size
node = node.left

else if (time > node.time)
if (node.right not exists) break
node = node.right

else break
end if

end while
node.capacity = max(distance ∗ e

1−e
, 1)

node.size = node.size− 1
return distance

end subroutine TreeSearchDelete

subroutine TreeCompression(n)
// n is the last node in the trace
distance = 0
n.capacity = 1
while (n.prev exist)

if (n.prev.size + n.size ≤ n.capacity)
// merge n.prev into n
n.size = n.size + n.prev.size
n.prev = n.prev.prev
deallocate n.prev

else
distance = distance + n.size
n = n.prev
n.capacity = max(distance ∗ e

1−e
, 1)

end if
end while
Build a balanced tree from the list and return the root

end subroutine TreeCompression

Figure 2: Approximate analysis with a bounded relative error

Analysis methods Time Space
trace as a stack (or list) [30] O(NM) O(M)

trace as a vector [6, 2] O(N logN) O(N)
trace as a tree [34, 41, 2] O(N logM) O(M)

list-based aggregation [25] O(NS) O(M)

block tree [44] O(N log M
B

) O(M
B

)
dynamic tree compression O(N log logM) O(log M)
N is the length of execution, M is the size of program data

Table 1: Asymptotic complexity of measuring full distance

available from the SimpleScalar tool set. Recently, Almasi et al.
gave an algorithm that records the empty regions instead of non-
empty cells in the trace. Although the asymptotic complexity re-
mains the same, the actual cost of trace maintenance is reduced by
20% to 40% in vector and tree based traces. They found that the
modified Bennett and Kruskal method was much faster than meth-
ods using AVL and red-black trees [2].

Kim et al. gave the first imprecise (but accurate) analysis method
in 1991 [25]. Their method stores program data in a list, marks S
ranges in the list, and counts the number of distances fell inside
each range. The time cost per access is proportional to the number
of markers smaller than the reuse distance. The space cost is O(C),
where C is the furthest marker. The method is efficient if S and C
are bounded and not too large. It is not suitable for measuring the
full length of reuse distance, where S and C need to be propor-
tional to M . Unlike approximate analysis, this method is accurate
in counting the reuse distance within a marked range.

In comparison, approximation methods, shown in the last two
rows in Table 1, trade accuracy for efficiency especially space ef-
ficiency. They can analyze larger data and longer reuse distances.
They are adjustable because the cost is proportional to accuracy.
The analysis with bounded relative error has the lowest asymptotic
space and time cost, for any error rate that is greater than (and can
be arbitrarily close to) zero.

Reuse distance is no longer a favorable metric in low-level cache
design because it cannot model the interaction between cache and
CPU such as timing. However, at the high level, reuse distance de-
termines the number of capacity misses for all cache sizes. Earlier
work has also extended it to analyze interference in various types
of set-associative cache [22, 30]. Section 4 will discuss the uses of
reuse distance analysis in cache optimization.

2.2 Pattern recognition
Pattern recognition detects whether the recurrence pattern is pre-

dictable across different data inputs. Example recurrence patterns
at the whole-program level include ocean simulation in a series of
time steps, compilation of a collection of files, and computer chess-
playing in a number of moves. Based on two or more training runs,
pattern recognition constructs a parameterized reuse pattern. The
main parameter is the size of data involved in program recurrences.
This is not the same as the size of data touched by a program. The
next section will show how to obtain an estimate of this number
through distance-based sampling. In this section, we assume it ex-
ists and refer to it indistinctively as program data size.

We define the reuse, recurrence or locality pattern as a histogram
showing the percentage of memory accesses whose reuse distance
falls inside consecutive ranges divided between 0 and the data size
(maximal distance). We will use ranges of both logarithmic and
linear sizes. Our approach is not specific to a particular accuracy of
the histogram. We now describe the three steps of pattern recogni-
tion.
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2.2.1 Collecting reference histograms
A reference histogram is a transpose of the reuse distance his-

togram. It sorts all memory accesses based on their reuse distance
and shows the average distance of each k percent of memory ref-
erences. For example, when k is 1, the reference histogram first
gives the average distance for 1% shortest reuse distances, then the
average for the next 1% shortest reuse distances, and so on.

We use the reference histogram for two purposes. First, we iso-
late the effect of non-recurrent parts of the program. Some instruc-
tions are executed per execution; some are repeated per program
data. When the data size becomes sufficiently large, the effect of
the former group diminishes into at most a single bin of the his-
togram. Second, the size of the bin controls the granularity of
prediction. A bin size of 1% means that we do not predict finer
distribution of distances within 1% of memory references.

A reference histogram is computed from a reuse-distance his-
togram by traversing the latter and calculating the average distance
for each k% of memory references. Getting a precise histogram
incurs a high space cost. We again use approximation since we
do not measure precise distances anyway. In the experiment, we
collect reuse-distance histogram using log-linear scale bins. The
size of bins is a power of 2 up to 1024 and then it is 2048 for each
bin. To improve precision, we calculate the average distance within
each bin and use the average distance as the distance of all refer-
ences in the bin when converting it to the reference histogram. The
cost and accuracy of the approximation scheme can be adjusted by
simply changing the size of bins in both types of histograms.

2.2.2 Recognizing patterns
Given two reference histograms from two different data inputs

( we call them training inputs), we construct a formula for each
bin. Let d1i be the distance of the ith bin in the first histogram,
d2i be the distance of the ith bin in the second histogram, s1 be
the data size of the first training input, and s2 the data size of the
second input. We use linear fitting to find the closest linear function
that maps data size to reuse distance. Specifically, we find the two
coefficients, ci and ei, that satisfy the following two equations.

d1i = ci + ei ∗ fi(s1)
d2i = ci + ei ∗ fi(s2)

Assuming the function fi is known, the two coefficients uniquely
determine the distance for any other data size. The formula there-
fore defines the reuse-distance pattern for memory accesses in the
bin. The overall pattern is the aggregation of all bins. The pattern
is more accurate if more training profiles are collected and used in
linear fitting. The minimal number of training inputs is two.

In a program, the largest reuse distance cannot exceed the size of
program data. Therefore, the function fi can be at most linear, not
a general polynomial function. In this work, we consider the fol-
lowing choices of fi. The first is the function pconst(x) = 0. We
call it a constant pattern because reuse distance does not change
with data size. The second is plinear(x) = x. We call it a lin-
ear pattern. Constant and linear are the lower and upper bound of
the reuse distance changes. Between them are sub-linear patterns,
for which we consider three: p1/2(x) = x1/2, p1/3(x) = x1/3,
and p2/3(x) = x2/3. The first happens in two-dimensional prob-
lems such as matrix computation. The other two happen in three-
dimensional problems such as ocean simulation. We could consider
higher dimensional problems in the same way, although we did not
find a need in our test programs.

For each bin of the two reference histograms, we calculate the
ratio of their average distance, d1i/d2i, and pick fi to be the pattern
function, pt, such that pt(s1)/pt(s2) is closest to d1i/d2i. Here t
is one of the patterns described in the preceding paragraph. We

take care not to mix sub-linear patterns from a different number
of dimensions. In our experiments, the dimension of the problems
was given as an input to the analyzer. This can be automated by
trying all dimension choices and using the best overall fit.

2.2.3 Limitations
Although the analysis can handle any sequential program, the

generality comes with several limitations. The profiling inputs
should be large enough to factor out the effect of non-recurring
accesses. The smallest input we use in our experiment has four
million memory accesses. For linear and sub-linear patterns, our
analysis needs inputs of different data sizes. The difference should
be large enough to separate pattern functions from each other. For
high-dimensional data, pattern prediction requires that different in-
puts have a similar shape, in other words, their size needs to be
proportional or close to proportional in all dimensions. Otherwise,
a user has to train the analyzer for each shape. In our future work,
we will combine the pattern analyzer with a compiler to predict for
all shapes. All high-dimensional data we have seen come from sci-
entific programs, for which a compiler can collect high-level infor-
mation. Finally, predicting reuse pattern does not mean predicting
execution time. The prediction gives the percentage distribution but
not the total number of memory accesses, just as loop analysis can
know the dependence but not the total number of loop iterations.

Once the pattern is recognized from training inputs, we can pre-
dict constant patterns in another input statically. For other patterns,
we need the data size of the other input, for which we use distance-
based sampling.

2.3 Distance-based sampling
The purpose of data sampling is to estimate data size in a pro-

gram execution. For on-line pattern prediction, the sampler cre-
ates a twin copy of the program and instruments it to generate data
access trace. When the program starts to execute, the sampling
version starts to run in parallel until it finds an estimate of data
size. Independent sampling requires that the input of the program
be replicated, and that the sampling run do not produce side effects.

The sampling is distance-based. It uses the reuse distance ana-
lyzer and monitors each measured distance. If a distance is greater
than a threshold, the accessed memory location is taken as a data
sample. The sampler collects more data samples in the same way
except that it requires data samples to have between each other a
spatial distance of a fraction of the first above-threshold distance.
The sampler records above-threshold reuse distances to all data
samples. We call them time samples. Given the sequence of time
samples of a data sample, the sampler finds peaks, which are time
samples whose height (reuse distance) is greater than that of its
preceding and succeeding time samples.

The sampler runs until seeing the first k peaks of at least m data
samples. It then takes the appropriate peak as the data size. The
peak does not have to be the actual data size. It just needs to be
proportional to the data size in different inputs. We use the same
sampling scheme to determine data size in both training and predic-
tion runs. For most programs we tested, it is sufficient to take the
first peak of the first two data samples. An exception is Apsi. All
its runs initialize the same amount of data as required by the largest
input size, but smaller inputs use only a fraction of the data in the
computation. We then use the second peak as the program data
size. More complex cases happen when early peaks do not show a
consistent relation with data size, or the highest peak appears at the
end of a program. We identify these cases during pattern recogni-
tion and instruct the predictor to predict only the constant pattern.
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The sampling can be improved by more intelligent peak finding.
For example, we require the peak and the trough differ by a certain
factor, or use a moving average to remove noises. The literature
on statistics and time series is a rich resource for sample analysis.
For pattern prediction, however, we do not find a need for sophis-
ticated methods yet because the (data-size) peak is either readily
recognizable at the beginning or it is not well defined at all.

The cost of distance-based sampling is significant since it needs
to measure reuse distance of every memory reference until peaks
are found. The analysis does not slow the program down since it
uses a separate copy. It only lengthens the time taken to make a
prediction. For minimal delay, it uses the fastest approximation an-
alyzer. It can also use selective instrumentation and monitor only
distinct memory references to global and dynamic data [19]. For
long-running programs, this one-time cost is insignificant. In ad-
dition, many programs have majority of memory references reused
in constant patterns, which we predict without run-time sampling.

Another use of distance-based sampling is to detect phases in a
program. For this purpose, we continue sampling through the entire
execution. Time segments between consecutive peaks are phases.
A temporal graph of time samples shows recurrent accesses in time
order and the length and shape of each recurrence. The evaluation
section will use phase graphs to understand the results of pattern
prediction.

Finding the first few peaks of the first few data samplings is an
unusual heuristic because it is not based on keeping track of a par-
ticular program instruction or a particular data item. The peaks
found by sampling in different program executions do not have to
be caused by the same memory access to the same data. Very likely
they are not. In programs with input-dependent control flow, one
cannot guarantee the execution of a function or the existence of
a dynamic data item. Distance-based sampling allows correlation
across data inputs without relying on any pre-assumed knowledge
about program code or its data.

3. EVALUATION

3.1 Reuse distance measurement
Figure 3 compares the speed and accuracy for eight analyzers,

which we have described in Section 2.1. BK-2, BK-16, and BK-256
are Bennett and Kruskal’s k-ary tree analyzers with k equal to 2,
16, and 256 [6]. KHW is list-based aggregation with three markers
at distance 32, 16K, and the size of analyzed data [25]. We re-
implemented it since the original no longer exists. Cheetahuses
a splay-tree, written by Sugumar [41]. ZDK-2k and Samplingare
approximate analysis with the error bound B = 2048, as described
in Section 2.1.2. ZDK-2k uses a B-tree and a mixed trace [44].
Samplinguses a splay tree and only the approximate trace. 99%
is the analysis with the bounded relative error e = 1%. The input
program traverses M data twice with a reuse distance of M/100.
To measure only the cost of reuse-distance analysis, the hashing
step was bypassed by pre-computing the last access time (except for
KHW, where hashing was inherent). We did not separately measure
the cost of hashing since we did not implement blocked hashing [6].
The timing was collected on a 1.7 GHz Pentium 4 PC with 800
MB of main memory. The programs were compiled with gccwith
optimization flag -O3.

Compared to accurate methods, approximate analysis is faster
and more scalable with data size and distance length. The vector-
based methods have the lowest speed. KHW with three markers
is fastest (7.4 million memory references per second) for small
and medium distances but is not suited for measuring very long
reuse distances. Cheetahachieves an initial speed of 4 million
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Figure 3: Comparison of analyzers

memory references per second. All accurate analyses run out of
physical memory at 100 million data. Samplinghas the highest
speed, around 7 million memory references per second, for large
data sizes. ZDK-2kruns at a speed from 6.7 million references per
second for 100 thousand data to 2.9 million references per second
for 1 billion data. Samplingand ZDK-2kdo not analyze beyond 4
billion data since they use 32-bit integers.

The most scalable performance is obtained by the analyzer with
99% accuracy (e = 1%), shown by the line marked 99%. We use
64-bit integers in the program and test it for up to 1 trillion data.
The asymptotic cost is O(log logM) per access. In the experi-
ment, the analyzer runs at an almost constant speed of 1.2 million
references per second from 100 thousand to 1 trillion data. The
consistent high speed is remarkable considering that the data size
and reuse distance differs by eight orders of magnitude. The speed
is so predictable that when we first ran 1 trillion data test, we esti-
mated that it would finish in 19.5 days: It finished half a day later,
a satisfying moment considering that prediction is the spirit of this
work. If we consider an analogy to physical distance, the precise
methods measure the distance in miles of data, the approximation
method measures light years.

The lower graph of Figure 3 compares the accuracy of approx-
imation on a partial histogram of FFT. The y-axis shows the per-
centage of memory references, and the x-axis shows the distance
in a linear scale between 55 thousand and 66 thousand with an in-
crement of 2048. 99.9%and 99% approximation (e = 0.1% and
e = 1% respectively), shown by the second and third bar, closely
match the accurate distance. Their overall error is about 0.2% and
2% respectively. The bounded absolute error with a bound 2048,
shown by the last bar, has a large misclassification near the end,
although the error is no more than 4% of the actual distance. In
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terms of the space overhead, accurate analyzers need 67 thousand
tree or list nodes, ZDK-2kneeds 2080 tree nodes, 99%needs 823,
and 99.9%needs 5869. The analysis accuracy is adjustable, so is
the cost.

3.2 Pattern prediction
Figure 4 shows the result of pattern prediction for Lucasfrom

Spec2K, which is representative in our test suite. The graph has
four groups of bars. The first two are for two training inputs. Their
data access traces are feed into our analyzer for pattern recognition.
The third input is the target of prediction. The analyzer samples
0.4% of its execution, finds the data size, and predicts the reuse
distance histogram shown by the third bar. The prediction matches
closely with the measured histogram shown by the fourth bar. The
two histograms overlap by 95%. The accuracy is remarkable con-
sidering that the target execution has 500 times more data and 300
times more data accesses than the training runs. The correct pre-
diction of the peaks on the far side of the histograms is especially
telling because they differ from the peaks of the training inputs not
only in position but also in shape and height.

Table 2 shows the effect of pattern prediction on 15 benchmarks,
including 7 floating-point programs and 6 integer programs from
SPEC95 and SPEC2K benchmark suites, and 2 additional programs,
SPfrom NASA and a two-dimensional FFT kernel. We reduce the
number of iterations in a program if it does not affect the overall
pattern. We compile the tested programs with DEC compiler with
the default compiler optimization (-O3). Different compiler opti-
mization levels may change the reuse pattern but not the accuracy
of our prediction. We use Atom [39] to instrument the binary code
to collect the address of all loads and stores and feed them to our
analyzer, which treats each distinct memory address as a data ele-
ment.

Column 1 and 2 of the table in Figure 2 give the name and a
short description of the test programs. The programs are listed in
the decreasing order of the average reuse distance. Their data in-
puts are listed by the decreasing order of the data size. For each
input, Column 5 shows the data size or the number of distinct data,
and Column 6 and 7 give the number of data reuses and average
reuse distance normalized by the data size. The programs have up
to 36 million data, 130 billion memory references, and 5 million
average reuse distance. The table shows that these are a diverse set
of programs: no two programs are similar in data size or execution
length. Although not shown in the table, the programs have differ-
ent reuse distance histograms (even though the average distance is
a similar fraction of the data size in a few programs). In addition,
the maximal reuse distance is very close to the data size in each
program run.

The third column lists the patterns in benchmark programs, which
can be constant, linear, or sub-linear. Sub-linear patterns include
2nd root(x1/2) and 3rd roots(x1/3 and x2/3). Floating-point pro-
grams generally have more patterns than integer programs.

The prediction accuracy is shown by the second to the last col-
umn of the table. Let xi and yi be the size of ith bar in predicted and
measured histograms. The cumulative difference, E, is the sum of
|yi −xi| for all i. In the worst case, E is 200%. We use 1−E/2 as
the accuracy. It measures the overlap between the two histograms,
ranging from 0% or no match to 100% or complete match. The
accuracy of Lucasis 95%, shown in Figure 4.

We use three different input sizes for all programs except for
Gcc. Based on two smaller inputs, we predict the largest input.
We call this forward prediction. The prediction also works back-
wards: based on the smallest and the largest inputs, we predict the
middle one. In fact, the prediction works for any data input over

a reasonable size. The table shows that both forward and back-
ward predictions are very accurate. Backward prediction is gener-
ally better except for Lucas—because the largest input is about 500
times larger than the middle input—and for Li—because only the
constant pattern is considered by prediction. Among all prediction
results, the highest accuracy is 98.7% for the train input of Gcc, the
lowest is 81.8% for the train input of Lucas. The average accuracy
is 93.7%.

The last column shows the prediction coverage. The coverage is
100% for programs with only constant patterns because they need
no sampling. For others, the coverage starts after the data-size
peak is found in the execution trace. Let N be the length of ex-
ecution trace, P be the logical time of the peak, then the coverage
is 1−P/N . For programs using a reduced number of iterations, N
is scaled up to be the length of full execution. To be consistent with
other SPEC programs, we let SP and FFT to have the same num-
ber of iterations as Tomcatv. Data sampling uses the first peak of the
first two data samples for all programs with non-constant patterns
except for Compressand Li. Compressneeds 12 data samples. It is
predictable only because it repeats compression multiple times, an
unlikely case in real uses. Li has random peaks that cannot be con-
sistently sampled. We predict Li based on only the constant pattern.
The average coverage is 98.8%.

The reported coverage is for predicting simulation results. In-
stead of measuring reuse distance for the whole program, we can
predict it by sampling on average 1.2% of the execution. To predict
a running program, the coverage is smaller because the sampled
version of a program runs much slower than the program without
sampling. Our fastest analyzer causes a slowdown by factors rang-
ing from 20 to 100. For a slowdown of 100, we need coverage of at
least 99% to finish prediction before the end of the execution! For-
tunately, the low coverage happens only in Compressand the train
input of Swim. Without them, the average coverage is 99.88%, indi-
cating a time coverage over 88%. Even without a fast sampler, the
prediction is still useful for long running programs and programs
with mainly constant patterns. Six programs or 40% of our test
suite do not need sampling at all.

Most inputs are test, train, and reference inputs from SPEC. For
GCC, we pick the largest and two random ones from the 50 input
files in its ref directory. SP and FFT do not come from SPEC,
so we randomly pick their input sizes (FFT needs a power of two
matrix). We change a few inputs for SPEC programs, shown in
Column 4. Tomcatv and Swim has only two different data sizes.
We add in more inputs. All inputs of Hydro2dhave a similar data
size, but we do not make any change. The test input of Twolf has
26 cells and is too small. We randomly remove half of the cells in
its train data set to produce a larger test input. Finally, Apsi uses
different-shape inputs of high-dimensional data, which our current
predictor cannot accurately predict. We change the shape of its
largest input.

3.2.1 Comparisons
Most profiling methods use the result from training runs as the

prediction for other runs. An early study by Wood measured the
accuracy of this scheme in finding the most frequently accessed
variables and executed control structures in a set of dynamic pro-
grams [43]. We call this scheme constant prediction, which in our
case uses the reuse-distance histogram of a training run as the pre-
diction for other runs. For programs with only constant patterns,
constant prediction is the same as our method. For the other 11
programs, the worst-case accuracy is the size of the constant pat-
tern, which is 57% on average. The largest is 84% in Twolf, and
the smallest 28% in Apsi. The accuracy can be higher if the lin-
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Data Avg. reuses Avg. dist. Accura- Cover-
Benchmarks Description Patterns Inputs elements per element data size cy(%) age(%)

Lucas Lucas-Lehmer test const ref 20.8M 621 2.49E-1 95.1 99.6
(Spec2K) for primality linear train 41.5K 971 2.66E-1 81.8 100

test 6.47K 619 2.17E-1
Applu solution of five const ref(603) 22.8M 185 1.37E-1 83.6 99.6

(Spec2K) coupled nonlinear 3rd roots train(243) 1.29M 178 1.37E-1 94.7 99.4
PDE’s linear test(123) 128K 176 1.33E-1

Swim finite difference const ref(5122) 3.68M 46.9 2.47E-1 99.0 99.9
(Spec95) approximations for 2nd root 4002 2.26M 46.6 2.47E-1 99.3 88.1

shallow water equation linear 2002 572K 46.2 2.47E-1
SP computational fluid const 503 4.80M 132 1.05E-1 90.3 99.9

(NAS) dynamics (CFD) 3rd roots 323 1.26M 124 1.01E-1 95.8 99.9
simulation linear 283 850K 125 9.78E-2

Tomcatv vectorized mesh const ref(5132) 1.83M 208 1.71E-1 92.4 99.5
(Spec95) generation 2nd root 4002 1.12M 104 1.67E-1 99.2 99.3

linear train(2572) 460K 104 1.67E-1
Hydro2d hydrodynamical ref 1.10M 13.4K 2.23E-1 98.5 100
(Spec95) equations computing const train 1.10M 1.35K 2.23E-1 98.4 100

galactical jets test 1.10M 139 2.20E-1
FFT fast Fourier const 5122 1.05M 72.9 6.41E-2 84.3 99.7

transformation 2nd root 2562 265K 69.0 6.76E-2 94.0 99.6
linear 1282 66.8K 61.4 7.60E-2

Mgrid multi-grid solver const ref(643) 956K 35.6K 6.81E-2 96.4 100
(Spec95) in 3D potential 3rd roots test(643) 956K 1.42K 6.76E-2 96.5 99.3

field linear train(323) 132K 32.4K 7.15E-2
Apsi pollutant distribution const 128x1x128 25.0M 6.35 1.60E-3 91.6 97.8

(Spec2K) for weather prediction 3rd roots train(128x1x64) 25.0M 146 2.86E-4 92.5 99.1
linear test(128x1x32) 25.0M 73.6 1.65E-4

Compress an in-memory version const ref 36.1M 628 4.06E-2 85.9 92.2
(Spec95) of the common UNIX linear train 279K 314 6.31E-2 92.3 86.9

compression utility test 142K 147 9.73E-2
Twolf circuit placement and const ref(1888-cell) 734K 177K 2.08E-2 94.2 100

(Spec2K) global routing, using linear train(752-cell) 402K 111K 1.82E-2 96.6 100
simulated annealing 370-cell 227K 8.41K 1.87E-2

Vortex an object oriented ref 7.78M 4.60K 4.31E-4 95.1 100
(Spec95) database const test 2.58M 530 3.25E-4 97.2 100
(Spec2K) train 501K 71.3K 4.51E-4

Gcc based on the expr 711K 137 2.75E-3 98.2 100
(Spec95) GNU C compiler cp-decl 705K 190 2.65E-3 98.6 100

version 2.5.3 const explow 321K 68.3 3.69E-3 96.1 100
train(amptjp) 467K 221 3.08E-3 98.7 100

test(cccp) 456K 233 3.25E-3
Li const ref 87.9K 328K 2.19E-2 82.7 100

(Spec95) Xlisp interpreter linear train 44.2K 1.86K 3.11E-2 86.0 100
test 14.5K 37.0K 2.56E-2

Go an internationally ref 109K 124K 3.78E-3 96.5 100
(Spec95) ranked go-playing const test 104K 64.6K 3.78E-3 96.9 100

program train 86.1K 2.68K 2.02E-3
average 93.7 98.8

Table 2: Prediction accuracy and coverage for 15 programs
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Figure 4: Pattern prediction for Spec2K/Lucas

ear and sub-linear patterns overlap in training and target runs. It is
also possible that the linear pattern of a training run overlaps with
a sub-linear pattern of the target run. However, the latter two cases
are not guaranteed; in fact, they are guaranteed not to happen for
certain target runs. The last case is a faulty match since those ac-
cesses have different locality.

For several programs, the average reuse distance is of a similar
fraction of the data size 1. For example in Swim, the average dis-
tance is 25% of the data size in all three runs. This suggests that
we can predict the average reuse distance of other runs by the data
size times 25%. This prediction scheme is in fact quite accurate for
programs with a linear pattern (although not for other programs).
When the data size is sufficiently large, the total distance will be
dominated by the contribution from the linear pattern. The average
distance is basically the size of the linear pattern, which in Swim
is 25% of all references. This scheme, however, cannot predict
the overall distribution of reuse distance. It also needs to know
the input data size from distance-based sampling. The total data
size is not always appropriate. For example, Apsitouches the same
amount of data regardless of the size of the data input.

As a reality check, we compare with the accuracy of random
prediction. If a random distribution matches the target distribution
equally well, our method would not be very good. A distribution
is an n-element vector, where each element is a non-negative real
number and they sum to 1. Assuming any distribution is equally
likely, the probability of a random prediction has an error α or less
is equal to the number of distributions that are within α error to the
target distribution divided by the total number of possible distribu-
tions. We calculate this probability using n-dimensional geometry.
The total number of such vectors is equal to the surface volume on
a corner cut of an n-dimensional unit-size hypercube. The number
of distributions that differ by α with a given distribution equals to
the surface volume of a perpendicular cut through 2n−1 corner cuts
of an α-size hypercube. The probability that a random prediction

1The observation came from two anonymous reviewers of PLDI’03

yields at least 1 − α accuracy is αn−1, the ratio of the latter vol-
ume to the former. For the program Lucasshown in Figure 4, n is
26 and the probability of a random prediction achieving over 95%
accuracy is 0.0525 or statistically impossible.

3.2.2 A case study
The program Gcc compiles C functions from an input file. It

has dynamic data allocation and input-dependent control flow. A
closer look at Gcc helps to understand the strength and limitation
of our approach. We sample the entire execution of three inputs,
Spec95/Gcccompiling cccp.i and amptjp.i and Spec2K/Gcc
compiling 166.i. The three graphs in Figure 5 show the time
samples of one data sample. Other data samples produce similar
graphs. The upper two graphs, cccp.i and amptjp.i, link time
samples in vertical steps, where the starting point of each horizontal
line is a time sample. The time samples for 166.i are shown
directly in the bottom graph.

The two upper graphs show many peaks, related to 100 func-
tions in the 6383-line cccp.i and 129 functions in the 7088-line
amptjp.i. Although the size and location of each peak appear
random, their overall distribution is 96% to 98% identical between
them and to three other input files (shown previously in Table 2).
The consistent pattern seems to come from the consistency in pro-
grammers’ coding, for example, the distribution of function sizes.
Our analyzer is able to detect such consistency in logically unre-
lated recurrences. On the other hand, our prediction is incorrect if
the input is unusual. For example for 166.i, Gcc spends most
of its time on two functions consisting of thousands lines of code.
They dominate the recurrence pattern, as shown by the lower graph
in Figure 5. Note the two orders of magnitude difference in the
range of x- and y-axes. Our method cannot predict such unusual
pattern.

Our analyzer is also able to detect the similarity between differ-
ent programs. For example, based on the training runs of
Spec95/Gcc, we can predict the reuse pattern of Spec2K/Gccon its
test input (the same as the test input in Spec95) with 89% accuracy.
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Figure 5: Sampling results of Gcc for three inputs

While our initial goal was to predict programs with regular recur-
rence patterns, Gccand other programs such as Li and Vortextook
us by surprise. They showed that our method also captured the
cumulative pattern despite the inherent randomness in these pro-
grams. High degree of consistency was not uncommon in applica-
tions including program compilation, interpretation, and databases.
In addition, Gccshowed that our method could predict the behavior
of a later version of software by profiling its earlier version.

4. USES OF PATTERN INFORMATION
A program has different portions of accesses with different reuse

distances, as shown graphically by the peaks in the histogram of
Lucasin Figure 4. The peaks differ in number, position, shape, and
size among different programs and among different inputs to the
same program. Since our method predicts these peaks, it helps to
better model program locality and consequently improves program
and machine optimization as well as program-machine co-design.

Compiler design Reuse distance provides much richer informa-
tion about a program than a cache miss rate does. For this reason,
at least four compiler groups have used reuse distance for differ-
ent purposes: to study the limit of register reuse [29] and cache
reuse [17, 44], to evaluate the effect of program transformations [2,
7, 17, 44], and to annotate programs with cache hints to a proces-
sor [8]. In the last work, Beyls and D’Hollander used reuse distance
profiles to generate hints in SPEC95 FP benchmarks and improved
performance by 7% on an Itanium processor [8]. The techniques in
this paper will allow compiler writers to analyze larger programs
faster and with adjustable accuracy and to predict analysis results
on data inputs other than analyzed ones. Another potential use is
to find related data in a program based on their usage pattern, for
example, arrays or structure fields that can be grouped to improve
cache performance.

Reconfigurable memory system A recent trend in memory system
design is adaptive caching based on the usage pattern of a running
program. Balasubramonian et al. described a system that can dy-
namically change the size, associativity, and the number of levels
of on-chip cache to improve cache speed and save energy [4]. They
used an on-line method that tries different choices and searches for
an appropriate cache configuration. Since our pattern analysis di-
rectly determines the best cache size for capacity misses, it should
reduce the search space (and overhead) of run-time adaptation. For
FPGA-based systems, So et al. showed that a best design can be
found by examining only 0.3% of design space with the help of
program information [38], including the balance between compu-
tation and memory transfer as defined by Callahan et al [9]. So et
al. used a compiler to adjust program balance in loop nests and to
enable software and hardware co-design. While our analysis can-
not change a program to have a particular balance (as techniques
such as unroll-and-jam do [10]), it can measure memory balance
and support hardware adaptation for general programs.

File caching Two recent studies by Zhou et al. [45] and by Jiang
and Zhang [24] have used reuse distance in file caching. The com-
mon approach is to partition cache space into multiple buffers, each
holding data of different reuse distances. Both studies showed that
reuse-distance based methods well adapt to the access pattern in
server and database traces and therefore significantly outperform
single-buffer LRU and frequency-based multi-buffer schemes. Zhou
et al. used run-time statistics to estimate the peak distance [45].
Our work will help in two ways. The first is faster analysis, which
reduces management cost for large buffers (such as server cache),
handles larger traces, and provides faster run-time feedbacks. The
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second is predication, which gives not only the changing pattern
but also a quantitative measure of the regularity within and between
different types of workloads.

5. RELATED WORK
The preceding sections have discussed related work in the mea-

surement and use of reuse distance. This section compares our
work with program analysis techniques. We focus on data reuse
analysis.

Compiler analysis Compiler analysis has achieved great success
in understanding and improving locality in basic blocks and loop
nests. A basic tool is dependence analysis. Dependence summa-
rizes not only the location but also the distance of data reuse. We
refer the reader to a recent, comprehensive book on this subject by
Allen and Kennedy [1]. Cascaval gave a compiler algorithm that
measures reuse distance directly [11]. Because dependence analy-
sis is static, it cannot accurately analyze input-dependent control
flow and dynamic data indirection, for which we need profiling
or run-time analysis. However, dynamic analysis cannot replace
compiler analysis, especially for understanding high-dimensional
computation.

Bala et al. used training sets in performance prediction on a
parallel machine [5]. They ran test programs to measure the cost
of primitive operations and used the result to calibrate the perfor-
mance predictor. While their method trains for different machines,
our scheme trains for different program inputs. Compiler analysis
can differentiate fine-grain locality patterns. Recent source-level
tools use a combination of program instrumentation and profiling
analysis. McKinley and Temam carefully measured various types
of reference locality within and between loop nests [31]. Mellor-
Crummey et al. measured fine-grained reuse and program balance
through their HPCView tool [32]. Reuse distance can be included
in these or binary-level tools to recognize reuse-distance pattern in
smaller code or data units. Since our current analyzer can analyze
all data in complete executions, it can definitely handle program
fragments or data subsets.

Data profiling Access frequency has been used since the early days
of computing. In early 80s, Thabit measured how often two data el-
ements were used together [42]. Chilimbi recently used grammar
compression to find longer sequences of repetition called hot data
streams[12]. To measure both CPU and cache behavior, many
studies have tried to identify representative segments in an exe-
cution trace. The most recent (and very accurate) is reported by
Lafage and Seznec [28] and by Sherwood et al. [36]. The two tech-
niques cut instruction traces into fixed size windows (10 and 100
million instructions) and find representative windows through hier-
archical and k-means clustering respectively.

While previous studies find repeating sequences by measuring
frequency and individual similarity, we find recurrence patterns by
measuring distance and overall accumulation. Reuse distance anal-
ysis does not construct frequent sub-sequences as other techniques
do. On the other hand, it discovers the overall pattern without re-
lying on identical sequences or fixed-size trace windows. Repeti-
tion and recurrence are orthogonal and complementary aspects of
program behavior. Recurrence helps to explain the presence or ab-
sence of repetition. Lafage and Seznec found that Spec95/Gccwas
so irregular that they needed to sample 33% of program trace [28],
while Sherwood et al. found that Spec2K/Gcc(compiling 166.i)
consisted of two identical phases with mainly four repeating pat-
terns [36]. Being a completely different approach than cycle-
accurate CPU simulation, data sampling shown in Figure 5 con-
firms both of their observations and suggests that the different re-

currence pattern is the reason for this seemingly contradiction. On
the other hand, clustering analysis like theirs provides a broader
framework than ours does. They can include reuse distance as one
of the clustering parameters. Lafage and Seznec mentioned this
possibility but chose not to use reuse distance because it was too
time consuming to measure.

Phalke and Gopinath used a Markov model to predict the time
distance of data reuses inside the same trace [35]. Our focus is
to predict behavior changes in other inputs. After a few training
inputs, it predicts locality pattern in other inputs, including those
that are too large to run, let alone to simulate.

Correlation among data inputs Early analysis of execution fre-
quency included sample- and counter-based profiling by Knuth [27]
and static probability analysis by Cocke and Kennedy [15]. Most
dynamic profiling work considered only a single data input. Wall
presented an early study of execution frequency across multiple
runs [43]. Recently, Chilimbi examined the consistency of hot
streams [13]. Since data may be different from one input to an-
other, Chilimbi used the instruction PC instead of the identity of
data and found that hot streams include similar sets of instructions
if not the same sequence. The maximal stream length he showed
was 100. Hsu et al. compared frequency and path profiles in dif-
ferent runs [23]. Eeckhout et al. studied correlation in 79 inputs of
9 programs using principal components analysis followed by hier-
archical clustering [20]. They considered data properties including
access frequency of global variables and the cache miss rate. All
these techniques measure rather than predict correlation.

Instead of using program data or code like most previous work,
we correlate program data by their reference histogram. The direct
correlation of data recurrence allows us to predict the changing be-
havior in other program inputs, a feature that we do not know any
previous work has attempted.

Run-time data analysis Saltz and his colleagues pioneered dy-
namic parallelization with an approach known as inspector-executor,
where the inspector examines and partitions data (and computa-
tion) at run time [16]. Similar strategies were used to improve dy-
namic locality, including studies by Ding and Kennedy [18], Han
and Tseng [21], Mellor-Crummey et al. [33], and Strout et al [40].
Knobe and Sarkar included run-time data analysis in array static-
single assignment (SSA) form [26]. To reduce the overhead of run-
time analysis, Arnold and Ryder described a general framework for
dynamic sampling [3], which Chilimbi and Hirzel extended to dis-
cover hot data streams to aid data prefetching [14]. Their run-time
sampling was based on program code, while our run-time sam-
pling is based on data (selected using reuse distance). The two
schemes are orthogonal and complementary. Ding and Kennedy
used compiler and language support to mark and monitor impor-
tant arrays [18]. Ding and Zhong extended it to selectively moni-
tor structure and pointer data [19]. Run-time analysis can identify
patterns that are unique to a program input, while training-based
prediction cannot. On the other hand, profiling analysis like ours is
more thorough because it analyzes all accesses to all data.

6. CONCLUSIONS
The paper has presented a general method for predicting program

locality. It makes three contributions. First, it builds on the 30-
year long series of work on stack distance measurement. By using
approximate analysis with arbitrarily high precision, it for the first
time reduces the space cost from linear to logarithmic. The new an-
alyzer achieves a consistently high speed for practically any large
data and long distance. Second, it extends profiling to provide pred-
ication for data inputs other than profiled ones. It defines common
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locality patterns including the constant, linear, and a few sub-linear
patterns. Finally, it enables correlation among different executions
with distance-based histogram and sampling, which overcomes the
limitation of traditional code or data based techniques. When tested
on an extensive set of benchmarks, the new method achieves 94%
accuracy and 99% coverage, suggesting that pattern prediction is
practical for use by locality optimizations in compilers, architec-
ture, and operating systems.
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