
Reuse-distance-based Miss-rate Prediction on a Per
Instruction Basis

Changpeng Fang
cfang@mtu.edu

Steve Carr
carr@mtu.edu

Soner Önder
soner@mtu.edu

Zhenlin Wang
zlwang@mtu.edu

Department of Computer Science
Michigan Technological University

Houghton MI 49931-1295 USA

ABSTRACT
Feedback-directed optimization has become an increasingly impor-
tant tool in designing and building optimizing compilers. Recently,
reuse-distance analysis has shown much promise in predicting the
memory behavior of programs over a wide range of data sizes.
Reuse-distance analysis predicts program locality by experimen-
tally determining locality properties as a function of the data size of
a program, allowing accurate locality analysis when the program’s
data size changes.

Prior work has established the effectiveness of reuse distance
analysis in predicting whole-program locality and miss rates. In
this paper, we show that reuse distance can also effectively pre-
dict locality and miss rates on a per instruction basis. Rather than
predict locality by analyzing reuse distances for memory addresses
alone, we relate those addresses to particular static memory opera-
tions and predict the locality of each instruction.

Our experiments show that using reuse distance without cache
simulation to predict miss rates of instructions is superior to using
cache simulations on a single representative data set to predict miss
rates on various data sizes. In addition, our analysis allows us to
identify the critical memory operations that are likely to produce a
significant number of cache misses for a given data size. With this
information, compilers can target cache optimization specifically to
the instructions that can benefit from such optimizations most.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compilers, opti-
mization

General Terms
Algorithms, Measurement, Languages

Keywords
Data locality, reuse distance, profiling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSP’04, June 8, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-941-1/04/06 ...$5.00.

1. INTRODUCTION
With the widening gap between processor and memory speeds,

program performance has become increasingly dependent upon the
effective use of a machine’s memory hierarchy. To improve locality
in programs, compilers have traditionally used either static analysis
of regular array references [8, 13] or profiling [1] to determine the
locality of memory operations. Static analysis has limited appli-
cability when index arrays are used in addressing and when deter-
mining locality across multiple loop nests. Profiling can measure
locality for a larger set of references, but the results may be specific
to the profiled data set. This may lead to inaccurate analysis when
the input set is changed.

Recently, Ding, et al. [3, 14], have proposed techniques to pre-
dict the reuse distance of memory references across all program
inputs using a few profiling runs. They use curve fitting to predict
reuse distance (the number of distinct memory locations accessed
between two references to the same memory location) as a func-
tion of a program’s data size. By quantifying reuse as a function
of data size, the information obtained via a few profiled runs allow
the prediction of reuse to be quite accurate over varied data sizes.
Ding, et al., have used reuse-distance predictions to accurately pre-
dict whole program miss rates [14].

In order to use reuse distance in program optimization, it is ben-
eficial to associate reuse distance prediction with the actual instruc-
tions that access those locations. By predicting the reuse distance
for individual instructions, we can identify those instructions which
may be most amenable to cache optimization. In this paper, we ex-
tend the work of Ding, et al., to apply reuse-distance prediction on
a per instruction basis. We examine the reuse distance of the data
referenced by each memory operation and use that information to
determine the reuse distance of the operation as a function of the
data size. We show experimentally that the reuse distance of static
instructions is highly predictable. Furthermore, both the L1 and L2
miss rates for instructions can be predicted accurately using reuse-
distance-based analysis.

Reuse-distance analysis opens up new possibilities for compiler
and architectural optimization of memory operations. The dynamic
analysis information provides the compiler with additional infor-
mation that is impossible to compute at compile time, allowing the
compiler to have more knowledge concerning the effects of op-
timization. Reuse-distance analysis may also be used in micro-
architectural optimization via compiler hints to gain a more global
view of the expected behavioral patterns of a program.

The most obvious application of reuse distance is to prefetch-
ing those memory operations that cause the most misses. Both
hardware and software prefetching may issue many unnecessary
prefetches. By predicting the miss rate of instructions, we can

60

identify those instructions that are likely to provide the most benefit
via prefetching and eliminate misses through dynamic or feedback-
directed optimization. In addition, hardware could be constructed
to use reuse-distance information to schedule prefetches dynami-
cally for important instructions.

We begin the rest of this paper with a review of work related to
static and dynamic locality analysis. Next, we describe our analysis
techniques and algorithms for measuring instruction-based reuse
distance. Then, we present our experiments examining the pre-
dictability of instruction-based reuse distance and finish with our
intentions for application of this analysis.

2. RELATED WORK
The previous work most pertinent to this paper consists of the

two recent papers by Ding, et al. [3, 14]. They present a technique
to predict reuse patterns of the whole program based on a couple
of training runs on small inputs [3]. A follow-up work uses the
predicted reuse distances to estimate the capacity miss rates of a
fully associative cache [14]. We describe their techniques in detail
in Section 3.1. In contrast, our work focuses on the prediction of
reuse patterns and miss rates for each instruction. We expect to
use this prediction to capture critical instructions, which generate
dominant misses for a program.

Typically we can rely on cache simulation or an analytical model
to analyze program cache behavior. Cache simulation can supply
accurate miss rates and even performance impact for a cache con-
figuration. The simulation itself is costly, making it less adaptive to
system changes and impossible to apply during dynamic optimiza-
tion on the fly. Various techniques have been discussed to make
cache simulation more effective. Mattson, et al., present a stack al-
gorithm to measure cache misses for different cache sizes in one
run [6]. Sugumar and Abraham [12] use Belady’s algorithm to
characterize capacity and conflict misses. They present three tech-
niques for fast simulation of optimal cache replacement. We find
using the reuse-distance pattern to predict cache misses for other
inputs yields better accuracy than applying cache simulation on a
single test input.

A simple analytical model uses dependence and locality analysis
to detect data reuse and estimate cache misses [5, 10]. McKinley,
et al., design such a model to group reuses and estimate cache miss
costs for loop transformations [8]. McKinley and Temam quan-
tify loop nest locality related to self or group, spatial or temporal
reuses [9]. Wolf and Lam use an approach based upon uniformly
generated sets to analyze locality. Their technique produces similar
results to that of McKinley, but does not require the storage of in-
put dependences [13]. Beyls and D’Hollander detect reuse patterns
through profiling and generate hints for the Itanium processor [1].
It’s unclear whether their profiling and experiments are on the same
input or not. However, our work can be directly applied to generate
their hints.

Both the dependence based and uniformly generated set based
locality analysis provide a high-level view of data reuse and data
locality, but may generate poor accuracy, especially due to the lack
of consideration of cache interference. For better cache interfer-
ence analysis, Ghosh, et al. [4], suggest a set of miss equations for
precisely analyzing cache misses for individual loop nests. Their
framework enables compiler algorithms to find optimal solutions
for transformations like blocking, loop fusion, and padding. Cache
miss equations allow the compiler to reason about how different
transformations work together. Chatterjee, et al. [2], set up a set of
Presburger formulas to characterize and count cache misses. Chat-
terjee’s model is powerful enough to handle imperfectly nested
loops and various non-linear array layouts. Compared to cache

simulation, these analytical models can capture high-level reuse
patterns but may be hard to use for dynamic optimization due to
lack of run-time knowledge such as loop bounds. Both the models
of Ghosh and of Chatterjee sacrifice prediction efficiency for high
accuracy.

3. REUSE-DISTANCE ANALYSIS
We begin this section with a description of reuse distance and

whole-program locality analysis. Reuse distance provides the foun-
dation for our analysis. We then describe per instruction reuse-
distance and miss-rate analysis in detail.

3.1 Reuse Distance
The reuse distance of a reference is defined as the number of

distinct memory references between itself and its reuse. In this pa-
per, we ignore the impact of spatial locality by treating each cache
line (block) as a unit, resulting in the measurement of reuse on a
per cache line basis. Backward reuse distance is the gap between
a particular memory reference and its previous access. Similarly,
forward reuse distance quantifies the gap between a particular ref-
erence and the next access to the same location.

Previous work represents the whole program as a histogram de-
scribing reuse distance distribution, where each bar consists of the
portion of memory references whose reuse distance falls into the
same range [3]. Ding, et al., investigate dividing the consecutive
ranges linearly, logarithmically, or simply by making the number of
references in a range a fixed portion of total references. Our work
uses logarithmic division where we put reuse distances between 2k

and 2k
�

1 into the same range. These bounds on the ranges are re-
lated to increments in cache size.

Ding, et al., define the data size of an input as the largest reuse
distance. Given two histograms with different data sizes, they find
the locality patterns of a third data size are predictable in a selected
set of benchmarks. The pattern recognition step generates the his-
togram for the third input. Typically, one can use this method to
predict locality patterns for a large data input of a program based
on training runs of a pair of small inputs.

Let d1
i be the distance of the ith bin in the first histogram and

d2
i be that in the second histogram. Assuming that s1 and s2 are

the data sizes of two training inputs, we can fit the reuse distances
through two coefficients, ci and ei, and a function fi as follows.

d1
i

� ci
�

ei � fi
�
s1 �

d2
i

� ci
�

ei � fi
�
s2 �

When the function fi is fixed, ci and ei can be calculated and the
equation can be applied to another data size to predict reuse dis-
tance distribution. Ding, et al., try several types of fitting functions,
such as linear or square root, and choose the best fit.

3.2 Reuse Distance Prediction
Although we know that the reuse distance distribution of the

whole program is predictable, it is unclear whether the reuse dis-
tances of an instruction show the same predictability. Moreover,
the reuse pattern for each instruction can serve as better informa-
tion for both static and dynamic optimizations. In this section, we
discuss our methods to predict instruction-based reuse patterns.

To apply per instruction reuse distance and miss rate prediction
on the fly, it is critical to represent the locality patterns of train-
ing runs as simply as possible without sacrificing much prediction
accuracy. For the training runs, we collect the reuse distances of
each instruction and store the number of instances for each of the
power of 2 intervals. We also record the minimum, maximum, and

61

mean distance within each interval. An interval is active if there ex-
ists an occurrence of reuse in the interval. Our results in Section 4
show that most instructions contain just one or two active intervals.
We note that at most 6 words of information are needed for most
instructions in order to track their reuse intervals.

The ad hoc use of power of 2 as bounds for intervals may split
the locality pattern of certain reuses across the interval bounds. We
solve this problem through an additional scan of original intervals
and merge any pair of adjacent intervals i and i

�
1 if

mini
�

1 � maxi
�

maxi � mini �

This inequality is true if the difference between the maximum dis-
tance in interval i

�
1 and the minimum distance in interval i is no

greater than the length of interval i. The merging process contin-
ues by testing whether the newly created interval should be merged
with the next interval. We observe that this additional pass reflects
the locality patterns of each instruction and notably improves pre-
diction accuracy.

Following the prediction model discussed in Section 3.1, the
reuse distance patterns of each instruction for a third input can be
predicted through two training runs. For each instruction, we pre-
dict its ith interval by fitting the ith interval in each of the training
runs. The fitting function is then used to solve the minimum, max-
imum, and mean distances of the current interval. Note that this
prediction is simple and fast, making it a good candidate for inclu-
sion in adaptive compilation.

For reuse distance prediction, we compute both the prediction
coverage and the prediction accuracy. Prediction coverage indi-
cates the percentage of instructions whose reuse distance distribu-
tion can be predicted. An instruction’s reuse distance distribution
can be predicted if and only if it occurs in both of the training runs
and all of its reuse distance patterns are regular. A pattern is said to
be regular if the pattern occurs in both training runs and its reuse
distance does not decrease in the larger input size. Irregular pat-
terns rarely occur in our test programs. Prediction accuracy indi-
cates the percentage of covered instructions whose reuse distance
distribution is correctly predicted by our model.

An instruction’s reuse distance distribution is said to be correctly
predicted if and only if all of its patterns are correctly predicted.
In the experiments, we cross-validate this prediction by comparing
the predicted locality intervals with the collected intervals through
a real run. The prediction is said to be correct if both the predicted
and observed patterns fall in the same 2k interval or if the predicted
intervals and the observed intervals overlap by at least 90%. Given
two patterns A and B such that B � min � A � max

�
B � max, we say

that A and B overlap by at least 90% if

A � max � max
�
A � min � B � min �

max
�
B � max � B � min � A � max � A � min �

�
0 � 9 �

3.3 Miss Rate Prediction
This section describes miss rate prediction for each instruction.

We first describe our general methodology for miss rate prediction
given a single cache. Then, we apply our model to multi-level,
set-associative caches.

Given the size of a fully associative cache, we predict a cache
miss for the next reference to a particular cache line if its forward
reuse distance is greater than the cache size. This model catches
the compulsory and capacity misses, but neglects conflict misses,
which have previously been shown to be relatively less critical in
some programs [7].

If the minimum distance of an interval is greater than the cache
size, all accesses in the interval are considered as misses. When

the cache size falls in the middle of an interval, we estimate the
miss rates based on relative position of the size in the interval. In
our experiments, we used an effective cache size equal to one-half
of the actual cache size for all set-associative cache configurations,
where the associativity is small (

�
4). For the fully associative

configurations we used the actual size as the effective size. The
prediction for L2 cache is identical to that for L1 cache with the
predicted L1 cache hits filtered out.

In our analysis, an accurate miss-rate prediction for an instruc-
tion occurs if the predicted miss rate is within 5% of the actual miss
rate gleaned through cache simulation using the same input. Al-
though the predicted miss rate does not include conflict misses, the
actual miss rate does. The results reported in the next section show
that in spite of not incorporating conflict misses in the prediction,
our prediction of miss rates is highly accurate.

4. EXPERIMENT
In this section, we report the results of our experiment evaluat-

ing the predictability of per instruction reuse distance. We begin
with a discussion of our experimental methodology and then, we
discuss the predictability of instruction reuse distance. Next, we
report the predictability of per instruction cache miss rate for six
different cache organizations. Finally, we show that our analysis
can accurately predict the instructions that generate the most L2
misses.

4.1 Methodology
To compute reuse distance, we instrument the program binaries

using Atom [11] to collect the data addresses for all memory in-
structions. The Atom scripts incorporate Ding and Zhong’s reuse-
distance collection tool [3, 14] into our analyzer to obtain reuse dis-
tances. During profiling, our analysis records the cache-line based
forward reuse distance distribution for each individual memory in-
struction.

Our benchmark suite consists of 11 of the 14 programs from
SPEC CFP2000. Table 1 lists the programs that we used. The
remaining three benchmarks in SPEC CFP2000 are not included
because we could not get them to compile correctly on our Alpha
cluster. We used version 5.5 of the Compaq compilers using the
-O3 optimization flag to compile the programs.

In the tables and figures reported throughout the rest of this sec-
tion, we report both static and dynamic weightings of the results.
The static weighting considers each instruction weighted identi-
cally, irrespective of the number of times it is executed. The dy-
namic weighting weights each static instruction by the number of
times it executed. For instance, if a program contains two mem-
ory instructions, A and B, and we correctly predict the result for
instruction A and incorrectly predict the result for instruction B, we
have a 50% static prediction accuracy. If, however, instruction A is
executed 80 times and instruction B is executed 20 times, we have
an 80% dynamic prediction accuracy.

For miss-rate prediction measurements, we implemented a cache
simulator and embedded it in our analysis routines to collect the
number of L1 and L2 misses for each instruction. Table 2 shows the
cache configurations that we used in our experiments. Each of the
cache configurations uses 64-byte lines and an LRU replacement
policy.

To compare the effectiveness of our miss-rate prediction, we im-
plemented three miss-rate prediction schemes. The first scheme,
called predicted reuse distance (PRD), uses the reuse-distance pre-
dicted by our analysis of the training runs to predict the miss rate for
each instruction. We use the test and train input sets for the training
runs. The second scheme, called reference reuse distance (RRD),

62

Static Weighting Dynamic Weighting
Benchmark Patterns Input Set Data Size Coverage Accuracy Coverage Accuracy

(cache blocks) (%) (%) (%) (%)
const(87.1%) test*(1002 atoms) 7.2 K

188.ammp linear(9.8%) train(30002 atoms) 147.1 K
others(3.9%) ref(300002 atoms) 366.7 K 89.9 97.0 84.1 97.0
const(87.3%) test(12 � 12 � 12) 18.8 K

173.applu 1third(6.8%) train(24 � 24 � 24) 175.1 K
others(5.9%) ref(60 � 60 � 60) 2.86 M 87.7 97.8 95.6 98.2
const(86.9%) test*(128 � 1 � 32) 8.2 K

301.apsi linear(8.7%) train(128 � 1 � 64) 15.1 K
others(4.4%) ref*(128 � 1 � 256) 62.3 K 96.0 98.6 92.1 96.6
const(92.4%) test(1 object) 37.4 K

179.art linear(3.9%) train*(10 objects) 57.4 K
others(3.7%) ref*(30 objects) 107.4 K 82.8 98.4 99.9 99.9
const(86.6%) test*(512 nodes) 11.4 K

183.equake 1third(5.3%) train(7294 nodes) 158.8 K
others(7.9%) ref(30169 nodes) 782.6 K 96.5 99.2 97.4 99.2
const(81.7%) test 782

189.lucas linear(16.7%) train 4.7 K
others(1.6%) ref 2.3 M 66.7 93.9 52.2 88.4
const(95.2%) test*(200 � 200) 5.2 K

177.mesa linear(2.2%) train*(400 � 400) 14.9 K
others(5.6%) ref(800 � 800) 44.3 K 94.8 96.5 95.2 91.3
const(82.8%) test*(32 � 32 � 32) 16.6 K

172.mgrid 1third(7.8%) train(64 � 64 � 64) 119.5 K
others(9.6%) ref(128 � 128 � 128) 907.4 K 90.3 94.0 94.2 95.6

test 391.8 K
200.sixtrack train 391.8 K

ref 391.8 K 99.9 99.7 99.7 99.9
const(71.2%) test*(128 � 128) 32.7 K

171.swim sqrt(12.3%) train(512 � 512) 476.4 K
others(16.5%) ref(1334 � 1334) 3.1 M 86.3 95.1 93.7 99.8
const(96.0%) test*(16 � 5 � 5 � 5) 45.1 K

168.wupwise 1third(2.7%) train*(16 � 10 � 10 � 10) 360.1 K
others(1.3%) ref(16 � 20 � 20 � 20) 2.9 M 98.2 99.5 99.9 98.0

average 89.9 97.2 91.3 96.7
* – data size adjusted from SPEC distribution

Table 1: Forward reuse distance distribution prediction coverage and accuracy for CFP2000 benchmarks

config. no. L1 L2
1 fully assoc.
2 32K, 2–way 1M 4–way
3 2–way
4 fully assoc.
5 16K, 2–way 512K 4–way
6 2–way

Table 2: Cache configurations

uses the actual reuse distance computed by running the program on
the reference input data set to predict the miss rates. RRD repre-
sents an upper bound on the effectiveness of using reuse distance to
predict cache-miss rates. The third scheme, called test cache sim-
ulation (TCS), uses the miss rates collected from running the test
data input set on a cache simulator to predict the miss rate of the
same program run on the reference input data set. Table 3 gives a
summary of each technique for easy reference.

4.2 Results
In this paper, we only report statistics involving forward reuse

distance prediction. The results for backward reuse distance pre-
diction are similar. We begin this section with data related to reuse
distance distribution prediction accuracy and coverage. Then, we
show how well reuse distance prediction predicts both L1 and L2
miss rates for six different cache configurations. Throughout the
section, we focus more on the dynamically weighted results than

the statically weighted results since the dynamic results factor in
execution frequency.

4.2.1 Reuse-distance Prediction Accuracy and Cov-
erage

Table 1 lists the coverage and accuracy of reuse-distance predic-
tion on a per instruction basis. The statically weighted coverage is
89.9% while the dynamically weighted coverage is 91.3%, on aver-
age. For all programs except 188.ammp and 189.lucas the dynamic
coverage is well over 90%. 188.ammp exhibits a larger than normal
percentage of irregular patterns. In 189.lucas, approximately 31%
of the memory operations do not appear in both training runs. If an
instruction does not appear during execution for both the test and
train data sets, we cannot predict its reuse distance.

Our model predicts reuse distance correctly for 97.2% of the cov-
ered instructions using a static weighting and 96.7% using a dy-
namic weighting, on average. Our analysis predicts the reuse dis-
tance accurately for over 95% of the covered instructions using dy-
namic weighting for all programs except 189.lucas and 177.mesa.
In 189.lucas, the fact that all instructions do not appear in both the
test and train runs throws off our computation of reuse distance.
These extra instructions change the reuse distance because differ-
ent memory locations are accessed. In 177.mesa, some instructions
that exhibit a single pattern in the test and train runs, exhibit multi-
ple patterns in the reference run.

In Table 1, the column labeled “Patterns” shows the major pat-

63

Scheme Name Description
PRD predicted reuse distance Use reuse distance predicted from data size
RRD reference reuse distance Use actual reference reuse distance
TCS test cache simulation Use miss rates from test run

Table 3: Miss-rate prediction schemes

terns identified in the programs by our analysis.1 It can be seen that,
for all programs, most patterns are constant patterns. However, a
significant number of other patterns exist in some programs. For
example, in 171.swim 12.3% of the patterns exhibit a square root
(sqrt) distribution pattern and in 189.lucas 16.7% of the patterns
exhibit a linear distribution. For 200.sixtrack, we do not report the
patterns since all data sizes are identical. This makes it impossible
to construct a fitting function.

In addition to measuring the prediction coverage and accuracy,
we measured the number of locality intervals exhibited by each
instruction. Table 4 below shows the percentage of instructions
that exhibit 1, 2 or 3 or more intervals during execution.

Benchmark Static Weighting Dynamic Weighting
1 2

�
3 1 2

�
3

188.ammp 83.8 13.3 2.9 78.5 18.0 3.5
173.applu 73.8 23.3 2.9 62.7 32.5 4.8
301.apsi 87.2 10.0 2.8 60.3 31.3 8.4
179.art 92.8 6.4 0.8 91.1 8.8 0.1
183.equake 90.7 7.6 1.6 81.0 16.5 2.5
189.lucas 81.7 17.5 0.8 65.5 33.9 0.6
177.mesa 91.0 7.1 1.9 86.2 10.3 3.5
172.mgrid 70.4 17.1 12.5 60.4 25.0 14.6
200.sixtrack 84.2 23.1 2.7 64.8 22.1 13.1
171.swim 72.6 27.2 0.2 49.9 49.5 0.6
168.wupwise 91.5 6.7 1.8 66.2 22.1 11.7
average 83.6 14.5 2.8 69.7 24.5 5.8

Table 4: Number of locality intervals

For our benchmark suite, all but three programs have more than
90% of their instructions exhibiting only one or two reuse-distance
patterns. Each of the other three programs have over 85% of their
instructions having only one or two reuse-distance patterns. This
information shows that most references have highly predictable
reuse patterns.

Benchmark � 1K 1–8K 8–32K 32–64K
�

64K
188.ammp 95.5 8.3 10.8 6.4 5.3
173.applu 98.2 1.7 2.2 1.9 7.4
301.apsi 95.9 4.6 6.1 3.6 0.0
179.art 86.3 0.3 16.6 6.2 6.2
183.equake 95.8 2.5 3.5 2.9 9.6
189.lucas 93.6 2.3 2.4 2.1 19.2
177.mesa 98.6 0.7 0.1 5.0 0.0
172.mgrid 97.9 14.8 13.1 6.6 17.4
200.sixtrack 95.8 3.1 4.4 3.1 2.6
171.swim 92.2 7.2 6.4 8.3 30.0
168.wupwise 96.6 0.4 0.2 0.4 5.1
average 95.1 4.2 6.0 4.2 9.3

Table 5: Percentage instructions per interval

Table 5 reports the distribution of the static instructions within
the 2k intervals for the reference data set using 64-byte cache lines.

1Note that the rows labeled “1third” indicate fi
�
s � � s

1
3 .

The table gives the percentage of instructions that have a reuse dis-
tance pattern that falls into each of the intervals. Note that instruc-
tions can fall into more than one interval. As can be seen from
Table 5, most reuse patterns have a small reuse distance. However,
there are a number of reuse patterns with a long reuse distance.
These longer reuse distance instructions represent opportunities for
cache optimizations as the likelihood of cache misses is higher.

To evaluate the effect of merging two intervals as discussed in
Section 3.2, we report how often instructions whose reuse pattern
crosses the 2k boundaries are merged into a single pattern. Ta-
ble 6 shows that in most programs less than 10% of the patterns are
merged. Although not dominant, the merging still has a significant
effect on our prediction mechanism.

Benchmark % Intervals Merged
188.ammp 14.9
173.applu 14.2
301.apsi 8.0
179.art 8.2
183.equake 7.0
189.lucas 7.2
177.mesa 7.6
172.mgrid 19.2
200.sixtrack 10.3
171.swim 9.7
168.wupwise 7.6
average 10.4

Table 6: Percentage of merged intervals

4.2.2 Miss-rate Prediction Accuracy
Figures 1 and 2 report our miss-rate prediction accuracy using

dynamic and static weighting, respectively, for cache configura-
tions 1, 2 and 3 reported in Table 2. Table 7 summarizes the average
miss rate prediction accuracy from those figures and the remaining
cache configurations. These figures and table report the percentage
of instructions whose miss rate is predicted within 5% of the actual
miss rate. Examining Table 7 reveals that our prediction method
(PRD) predicts the L1 miss rate of instructions with at least a 93.1%
accuracy and the L2 miss rate with at least a 87.4% accuracy using
the dynamic weighting. On average PRD more accurately predicts
the miss rate than TCS, but is slightly less accurate than RRD.

Since TCS simply considers the test run’s miss rate as the refer-
ence miss rate, TCS is only effective when an instruction has only
constant patterns or the data sizes of the test and reference are very
close (reuse distance change is minimal). PRD takes the data size
change into account, and thus its prediction accuracy is not likely
to be negatively influenced by a large change in input data size.
For 189.lucas and 171.swim, the difference between the data sizes
of test and reference is large, and both programs have a significant
number of non-constant patterns. TCS makes a highly inaccurate
prediction compared to PRD, as shown in each part of Figures 1
and 2.

When the data size difference between test and reference runs
is small (e.g. 200.sixtrack and 179.art), TCS can predict the miss
rate quite accurately. TCS outperforms PRD for 200.sixtrack on

64

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100
pr

ed
ic

tio
n

ac
cu

ra
cy

 (%
)

TCS PRD RRD

(a) L1 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(b) Fully associative L2 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(c) 4–way set associative L2 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100
pr

ed
ic

tio
n

ac
cu

ra
cy

 (%
)

TCS PRD RRD

(d) 2-way set associative L2 cache

Figure 1: Dynamic miss-rate prediction accuracy

Cache L1 L2
Config. No. Dynamic Weighting Static Weighting Dynamic Weighting Static Weighting

TCS PRD RRD TCS PRD RRD TCS PRD RRD TCS PRD RRD
1 84.0 92.5 94.8 91.2 96.2 97.7
2 90.6 95.6 97.3 94.0 96.2 97.7 82.6 88.4 89.7 90.7 94.9 96.3
3 80.6 87.4 88.7 90.4 94.5 95.9
4 85.9 92.4 93.8 92.0 96.0 97.4
5 90.3 93.1 94.5 93.8 94.8 96.2 84.0 89.9 90.3 90.4 94.9 96.0
6 82.1 87.7 88.0 90.9 94.3 95.3

Table 7: Average miss-rate prediction accuracy

65

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(a) L1 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(b) Fully associative L2 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(c) 4–way set associative L2 cache

ammp

applu
apsi

art
equake

lucas
mesa

mgrid
sixtrack

swim
wupwise

average

60

70

80

90

100

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

TCS PRD RRD

(d) 2-way set associative L2 cache

Figure 2: Static miss-rate prediction accuracy

the L1 miss rate slightly, and both set-associative L2 miss rates,
but not the fully associative L2 miss rate. TCS even outperforms
RRD in predicting miss rate on those same configurations. This is
because the data size is not a factor and TCS can take into account
conflict misses through simulation, whereas reuse distance cannot.
179.art exhibits some of the same patterns, but since the data size
does change, PRD and RRD outperform TCS in some instances.

TCS also does well in L1 miss rate prediction for 301.apsi and
168.wupwise. For 168.wupwise, we believe this is due to the large
percentage of constant reuse distance patterns, making data-set size
change less pronounced. Note that for 168.wupwise PRD outper-
forms TCS on the L2 miss rates indicating that the constant patterns
are more likely handled in the L1 cache and the changes in data size
have more of an effect on the larger reuse distances. For 301.apsi, a
large percentage of L1 miss are conflict misses. For small constant
reuse patterns, TCS can predict those misses better than both PRD
and RRD.

Figures 1(b) through 1(d) and Figures 2(b) through 2(d) illus-
trate our prediction accuracies for L2 misses for 1M L2 caches with
different associativities. These results show that PRD is effective
in predicting L2 misses for a range of associativities. For fully-
associative L2 cache, as shown in Figure 1(b) and 2(b), PRD pre-
dicts the miss rate correctly for 92.5% of the dynamically weighted
instructions, and 96.2% of the statically weighted instructions cor-
rectly, while TCS predicts the miss rate with accuracies of only
84.0% and 91.2%, respectively. Since there are no conflict misses
for a fully-associative L2, PRD shows a significant improvement
in the prediction over TCS for all programs except 179.art. In this
instance, RRD outperforms TCS, while PRD does not. Since PRD
is a heuristic, it does not always perform as expected. However, our
results show that in most instances, PRD is quite effective.

Table 7 shows that across all cache configurations, on average
PRD performs almost as well as RRD and better than TCS. These
results indicate that PRD is not highly sensitive to cache size. As-

66

Cache 2% 5% 8%
TCS PRD RRD TCS PRD RRD TCS PRD RRD

2-way, 32K L1 90.4 95.0 97.2 90.6 95.6 97.3 90.7 96.0 97.3
4-way, 1M L2 82.1 88.0 89.4 82.6 88.4 89.7 82.9 89.0 90.2

Table 8: Prediction accuracy measures

sociativity does have an effect on PRD’s prediction accuracy. Be-
cause lower associativity introduces more conflict misses, the ac-
curacy will decrease. However, even for a 2-way set-associative L2
cache, on average, our model’s prediction can still achieve 87.4%
accuracy for dynamic weighting, and 94.5% for static weighting,
leading us to believe that PRD shows much promise in future ap-
plications to cache optimization.

To examine the effects of our accuracy measure, we examine the
miss-rate prediction accuracy if we considered a predicted miss rate
to be accurate if that rate was within 2%, 5% and 8% of the acutal
miss rate. Table 8 reports the dynamically weighted average miss
rate prediction accuracy for the cache configuration 2. As can be
seen from Table 8, the accuracy changes only slightly as we modify
the prediction accuracy measure. Note that there are no individual
programs where the changes are more dramatic than reported in the
averages.

4.2.3 Critical Instructions
For static or dynamic optimizations, we are interested in the crit-

ical instructions which generate the most L2 misses. In this section,
we show that we can predict most of the critical instructions. We
also observe that the locality intervals of the critical instructions
tend to be more diverse than non-critical instructions and tend to
exhibit non-constant reuse patterns more frequently.

We perform cache simulation on the reference input using cache
configuration 2 to identify the critical instructions which generate
the most L2 misses: those static instructions whose cumulative L2
misses account for 95% of the total L2 misses in the program. To
predict critical instructions, we use the execution frequency in one
training run to estimate the relative contribution of the number of
misses for each instruction given the total miss rate. We then com-
pare the predicted critical instructions with the real ones and show
the prediction accuracy weighted by the absolute number of misses
in Table 9. We also list the number of critical instructions for each
benchmark in the column labeled “# Critical” and the total num-
ber of static memory operations for each benchmark in the column
labeled “Total”.

The prediction accuracy for critical instructions is 86% on aver-
age. 189.lucas shows a very low accuracy because of low prediction
coverage. The unpredictable instructions in 189.lucas contribute a
significant number of misses. Notice that the number of critical in-
structions in most programs is very small. These results show that
reuse distance can be used to allow compilers to target the most
important instructions for optimization effectively.

Critical instructions tend to have more diverse locality patterns
than non-critical instructions. Table 10 reports the distribution of
the number of locality intervals for critical instructions using dy-
namic weighting. We find that the distribution is more diverse than
that shown in Table 4. Although less than 3% of the instructions
on average have more than 2 intervals, the average goes up to over
23% when considering only critcial instructions. However, only a
small number of critical instructions have more than three intervals
and no instructions exhibit over six intervals.

Critical instructions also tend to exhibit a higher percentage of
non-constant patterns than non-critical instructions. Table 11 re-

Benchmark Accuracy # Critical Total
188.ammp 85.2 16 5180
173.applu 93.0 224 11352
301.apsi 84.7 194 11567
179.art 99.5 14 1820
183.equake 87.7 76 3018
189.lucas 57.3 201 2915
177.mesa 100.0 3 5736
172.mgrid 76.0 84 2185
200.sixtrack 93.2 85 19688
171.swim 99.4 263 2028
168.wupwise 72.7 15 1667
average 86.2 107 6105

Table 9: Prediction accuracy for critical instructions

Benchmark Interval Distribution (%)
1 2 3 4 5 6

188.ammp 96.3 0.0 3.7 0.0 0.0 0.0
173.applu 6.0 77.9 16.1 0.0 0.0 0.0
301.apsi 7.0 58.5 30.7 3.7 0.0 0.0
179.art 100.0 0.0 0.0 0.0 0.0 0.0
183.equake 18.8 80.0 1.2 0.0 0.0 0.0
189.lucas 7.9 92.1 0.0 0.0 0.0 0.0
177.mesa 0.0 100.0 0.0 0.0 0.0 0.0
172.mgrid 0.0 67.3 28.1 3.0 0.6 1.0
200.sixtrack 0.3 18.8 79.4 1.4 0.0 0.0
171.swim 0.0 98.8 1.2 0.0 0.0 0.0
168.wupwise 0.4 10.1 68.4 5.4 15.7 0.0
average 21.5 54.9 20.8 1.2 1.5 0.1

Table 10: Distribution of the number of locality intervals for
critical instructions

ports the percentage of critical instructions that have all constant
patterns. As can be seen, critical instructions are more sensitive to
data size. This fact makes it important to predict accurately reuse
distance in order to apply optimization to the most important mem-
ory operations. Note that we report no data for 200.sixtrack because
all of its data sizes are identical.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that reuse distance is pre-

dictable on a per instruction basis for floating-point programs. On
average, over 90% of all memory operations executed in a program
are predictable with an almost 97% accuracy. In addition, the pre-
dictable reuse distances translate to predictable miss rates for the
instructions. For a 32KB 2-way set associative cache, our miss-rate
prediction accuracy is almost 96%, and for a 1MB fully associa-
tive L2 cache, our miss-rate prediction accuracy is over 92%. Our
analysis also identifies the critical instructions in a program that
contribute to 95% of the program’s L2 misses. On average, our
method predicts the critical instructions with an 86% accuracy.

The next step in our research is to apply reuse-distance and miss-
rate prediction to cache optimization. We are currently developing
a hardware-based prefetching mechanism that will utilize reuse dis-
tance for those instructions likely to cause a significant number of

67

Benchmark % Constant
188.ammp 25.0
173.applu 13.8
301.apsi 7.7
179.art 50.0
183.equake 11.8
189.lucas 1.5
177.mesa 0.0
172.mgrid 35.7
200.sixtrack -
171.swim 0.0
168.wupwise 33.3
average 17.9

Table 11: Percentage of critical instructions having all constant
patterns

cache misses. In addition, we are beginning work on phase detec-
tion of reuse distance. If an instruction has multiple reuse-distance
intervals, we would like to be able to determine if those reuse dis-
tance intervals occur in phases. Detecting phases will allow us
to further target cache optimization and possibly use source-level
transformations to isolate the regions in the code where misses are
likely to occur. Additionally, we plan to investigate the use of reuse
distance in optimizing pointer-based applications.

In order for significant gains to be made in improving program
performance, compilers must improve the performance of the mem-
ory hierarchy. Our work is a step in opening up new avenues of
research through the use of feedback-directed and dynamic opti-
mization in improving program locality through the use of reuse
distance.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF grant CCR-0312892.

We would like to thank Chen Ding and Yutao Zhang for providing
their reuse distance tools. Additionally, we would like to thank the
anonymous referees for their suggestions to improve this paper.

7. REFERENCES
[1] K. Beyls and E. D’Hollander. Reuse distance-based cache

hint selection. In Proccedings of the 8th International
Euro-Par Conference, August 2002.

[2] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck.
Exact analysis of the cache behaviour of nested loops. In
Proceedings of the SIGPLAN 2001 Conference on
Programming Language Design and Implementation, pages
286–297, Snowbird, Utah, June 2001.

[3] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In Proceedings of the 2003
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 245–257, San Diego,
California, June 2003.

[4] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis
for program transformations with caches of arbitrary
associativity. In Proceedings of the Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 228–239, San
Jose, CA, Oct. 1998.

[5] G. Goff, K. Kennedy, and C. Tseng. Practical dependence
testing. In Proceedings of the SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages
15–29, Toronto, Canada, June 1991.

[6] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems
Journal, 9(2):78–117, 1970.

[7] K. S. McKinley. A compiler optimization algorithm for
shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 9(8):769–787, Aug. 1998.

[8] K. S. McKinley, S. Carr, and C. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, July
1996.

[9] K. S. McKinley and O. Temam. Quantifying loop nest
locality using SPEC’95 and the Perfect benchmarks. ACM
Transactions on Computer Systems, 17(4):288–336, Nov.
1999.

[10] W. Pugh. A practical algorithm for exact array dependence
analysis. Communications of the ACM, 35(8):102–114, Aug.
1992.

[11] A. Srivastava and E. A. Eustace. Atom: A system for
building customized program analysis tools. In Proceeding
of ACM SIGPLAN Conference on Programming Language
Design and Inplementation, June 1994.

[12] R. A. Sugumar and S. G. Abraham. Efficient simulation of
caches under optimal replacement with applications to miss
characterization. In Proceedings of the ACM SIGMETRICS
Conference on Measurement & Modeling Computer Systems,
pages 24–35, Santa Clara, CA, May 1993.

[13] M. E. Wolf and M. Lam. A data locality optimizing
algorithm. In Proceedings of the SIGPLAN ’91 Conference
on Programming Language Design and Implementation,
pages 30–44, Toronto, Canada, June 1991.

[14] Y. Zhong, S. Dropsho, and C. Ding. Miss rate prediction
across all program inputs. In Proceedings of the 12th

International Conference on Parallel Architectures and
Compilation Techniques, pages 91–101, New Orleans, LA,
September 2003.

68

