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ABSTRACT

Object-oriented programming languages provide a rich set
of features that provide significant software engineering ben-
efits. The increased productivity provided by these features
comes at a justifiable cost in a more sophisticated runtime
system whose responsibility is to implement these features
efficiently. However, the virtualization introduced by this so-
phistication provides a significant challenge to understand-
ing complete system performance, not found in traditionally
compiled languages, such as C or C++. Thus, understand-
ing system performance of such a system requires profiling
that spans all levels of the execution stack, such as the hard-
ware, operating system, virtual machine, and application.

In this work, we suggest an approach, called vertical pro-
filing, that enables this level of understanding. We illustrate
the efficacy of this approach by providing deep understand-
ings of performance problems of Java applications run on a
VM with vertical profiling support. By incorporating verti-
cal profiling into a programming environment, the program-
mer will be able to understand how their program interacts
with the underlying abstraction levels, such as application
server, VM, operating system, and hardware.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability|: Performance Anal-
ysis and Design Aids; C.4 [Computer Systems Organi-
zation]: Performance of Systems—measurement techniques,
performance attributes

General Terms

measurement, performance, experimentation
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1. INTRODUCTION

Compared to imperative languages, such as C/C++, mod-
ern object-oriented programming languages, such as Java,
offer the benefit of increased runtime flexibility (e.g., reflec-
tion, automatic memory management), improved security
properties (null pointer and array bounds checks, security
policies), and a portable deployment representation. How-
ever, these features, and several others, require a sophisti-
cated runtime system that introduces an additional layer of
virtualization, such as a JVM, between the application and
the operating system. Higher level programming models,
such as J2EE, require a further level of virtualization in the
form of an application server. Thus, in today’s commercial
system the application can be separated from the native
hardware by several layers of virtualization: an operating
system, a virtual machine, and an application server.

Although this virtualization provides several software en-
gineering advantages, the support of this virtualization in-
troduces obstacles to understanding application performance.
For example, popular implementation techniques, such as
dynamic recompilation and garbage collection, influence ap-
plication behavior in a way that makes correlation of hard-
ware performance to source code challenging. With dynamic
recompilation, the same source code statement can be trans-
lated to different machine instructions at different memory
locations throughout the execution of the program. Like-
wise, garbage collection can both relocate objects and reuse
addresses, resulting in a dynamic mapping between objects
and addresses.

The above issues indicate that there is a need to gather
more complete profiles, containing information about system
behavior on various levels (see Figure 1). We call this ap-
proach wvertical profiling. The main goal of vertical profiling
is to further the understanding of system behavior through
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nomena. We demonstrate that it is necessary to use vertical
profiling to understand existing performance problems, and
further demonstrate that vertical profiling can indeed ex-
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Figure 1: Layers of Virtualization

plain these problems. Through insight gained from five cases
studies, we demonstrate that achieving the goal of vertical
profiling requires more than capturing the mapping between
virtualized and real entities.

The main contributions of this paper are

e a novel approach, vertical profiling, for capturing and
correlating performance problems across multiple exe-
cution layers;

e five case studies that demonstrate how vertical profil-
ing can be used to understand performance phenom-
ena; and

e insight into issues that can impact the success of this
performance understanding.

By incorporating vertical profiling into a programming en-
vironment the programmer will be able to understand how
their program interacts with the underlying abstraction lev-
els, such as application server, VM, operating system, and
hardware.

The structure of this paper is as follows. Section 2 de-
scribes our infrastructure. Section 3 describes the method-
ology we use for our case studies and evaluates the over-
head caused by our vertical profiler. Section 4 presents five
detailed case studies that demonstrate how the infrastruc-
ture can be used to better understand program performance.
Section 5 presents lessons we learned while using vertical
profiling in our case studies. Section 6 covers work related
to vertical profiling, and Section 7 concludes.

2. INFRASTRUCTURE

This section describes our infrastructure. Section 2.1 in-
troduces the fundamental concepts of our vertical profiling
approach. Section 2.2 describes the software performance
monitors we introduced to capture the behavior of the soft-
ware layers. Section 2.3 presents the implementation of the
sampling infrastructure that gathers traces of performance
monitor values. Section 2.4 describes our approach for ana-
lyzing those traces.

2.1 Events, States, Monitors, and Counters

The fundamental components of our vertical profiler are
performance monitors. They observe (monitor) events and
states of the system on various levels.

252

2.1.1 Events and States

A computer system can be viewed as a large state ma-
chine, where a state captures the values in all of memory
(including registers, caches, main memory, and persistent
storage). An event is an atomic occurrence in time that
does not have any duration. An event usually causes the
system to change to a different state. For example, an ob-
ject allocation event means that the system now has less free
memory, but an additional new object. Or an instruction
completed event means that the processor pipeline now has
one less instruction in it.

Some events can have attributes. For example, an object
allocation event can have attributes specifying the object
size, address, type, etc. Conversely, a cycle event (a clock
tick in the CPU) has no attributes.

2.1.2 Monitors and Counters

A performance monitor observes the behavior of a system.
We use the hardware performance monitors available in the
processor, and we add software performance monitors to the
native libraries, the virtual machine, and the Java libraries.

A performance monitor is a scalar variable with a value
that changes over time. A performance counter is a special
kind of performance monitor. The value of a performance
counter reflects a count, usually a count of events.

2.2 Software Performance Monitors

In previous work [33] we used hardware performance mon-
itors to analyze the behavior of applications. We found
that hardware performance monitors are not enough for a
complete understanding of certain performance phenomena.
We concluded that we also needed information from higher
layers (Figure 1) of the system. This paper thus intro-
duces vertical profiling, adding software performance mon-
itors (SPMs) to observe the behaviour in the layers above
the hardware. Our software performance monitors cover the
following parts of the system:

Application. We provide a mechanism for profiling appli-
cation behavior by adding software performance mon-
itors to applications.

Virtual Machine. We monitor several subsystems of the
virtual machine:

Memory Manager. Our infrastructure implements
monitors to profile allocations of arrays and ob-
jects, and growing and shrinking of the virtual
machine’s heap.

Runtime Compilers. We provide software performance

monitors for dynamic compilations that count the
number of methods compiled, and the number of
byte code and machine code instructions gener-
ated by the different compilers, and captures the
compiled method ID and optimization level of the
last method that is recompiled.

Synchronization. We profile synchronization opera-
tions such as locks and unlocks, notify and waits,
the number of thread yields because of the need
to wait for a lock, and the number of attempted
and succeeded test-and-set operations.
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Figure 2: Scheduling in Jikes RVM

Operating System. We observe the interactions between
virtual machine and operating system. Those interac-
tions go both ways, system calls into the OS, and sig-
nals sent to the virtual machine. We provide monitors
that observe virtual memory management requests,
and signals caused by segmentation violations and arith-
metic errors.

2.3 Implementation

Our vertical profiling infrastructure is based on the hard-
ware performance monitor capability that exists in Jikes
RVM [33]. This section summarizes the existing infrastruc-
ture and describes our extensions.

Jikes RVM [19] is an open source research virtual machine
that executes Java bytecodes. The system is implemented
in the Java programming language [2] and uses Java threads
to implement several subsystems, such as the garbage collec-
tor [6] and the adaptive optimization system [4]. Figure 2 il-
lustrates how Jikes RVM'’s thread scheduler maps its M Java
threads (application and VM) onto N Pthreads (user level
POSIX threads). There is a 1-to-1 mapping from Pthreads
to OS kernel threads. The operating system schedules the
kernel threads on available processors. Typically, Jikes RVM
creates a small number of Pthreads (on the order of one per
physical processor). Each Pthread is called a wvirtual pro-
cessor because it represents an execution resource that the
virtual machine can use to execute Java threads.

To implement M-to-N threading, Jikes RVM uses com-
piler-supported quasi-preemptive scheduling by having the
two compilers (baseline and optimizing) insert yieldpoints
into method prologues, epilogues, and loop heads. The
yieldpoint code sequence checks a flag on the virtual pro-
cessor object; if the flag is set, then the yieldpoint invokes
Jikes RVM’s thread scheduler. The flag can be set by a
timer interrupt handler (signifying that the 10ms schedul-
ing quantum has expired) or by some other system service
(for example, the need to initiate a garbage collection) that
needs to preempt the Java thread to schedule one of its own
daemon threads.

This work builds on existing infrastructure [33] to capture
hardware performance monitors, such as processor cycles,
instructions completed, and L1 cache misses. The existing
infrastructure generates a trace file for each Jikes RVM vir-
tual processor, and one meta file. A trace file contains a
series of trace records, which capture performance monitor
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information for a measurement period in which exactly one
Java thread was executing on that virtual processor. A trace
record contains the following data:

Virtual Processor ID. This field contains the unique ID
of the virtual processor that executed during the mea-
surement period.

Thread ID. This field contains the unique ID of the Java
thread that executed during the measurement period.

Thread Yield Status. This boolean field captures if a thread

yielded before its scheduling quantum expired.

Real Time. This field contains the value of the PowerPC
time base register at the start of this measurement
period. The time base register contains a 64-bit un-
signed quantity that is incremented periodically (at an
implementation-defined interval) [23].

Real Time Duration. This field contains the duration of
the measurement period using the time base register.

Thread Switch Status. The existing infrastructure col-
lected a trace record only at thread switch time. Since
our extensions can also generate a record for other rea-
sons, we add a boolean field that describes what trig-
gered the trace record creation.

Compiled Method IDs. The existing infrastructure cap-
tured the top two method IDs on the call stack. We ex-
tended this to capture the top n > 0 compiled method
IDs on the call stack. A compiled method’s ID iden-
tifies a compiled method, which is a piece of machine
code that has been created by compiling a method with
a given compiler, at a given optimization level. The
value of n is a runtime parameter to the VM.

Monitor Values. In the existing infrastructure this array
contained the values of the selected hardware perfor-
mance monitors, where the selection of monitors was a
runtime parameter to the VM. In this work we gener-
alize this to apply to software as well as hardware per-
formance monitors. For a counter the captured value
corresponds to the number of events that occurred dur-
ing the measurement period.

Our new software performance monitors are implemented
on two levels: in native code and in Java code. In native
code, each Pthread has its private array of software per-
formance monitors. A pointer to this array is stored as
Pthread-specific data. This way, instrumentations in na-
tive code can update the monitor of the currently running
thread. On the Java level, we keep a reference to a Java
array of software performance monitors in the VirtualPro-
cessor object. Jikes RVM provides cheap access to the Vir-
tualProcessor object of the virtual processor (Pthread) on
which the current Java thread is scheduled.

The existing infrastructure creates one trace file for each
virtual processor. The real time values in the trace records
are used to merge together multiple trace files to accurately
model concurrent events on multiple processors. The values
are also used to detect when the measurement period has
been shared with other non-VM Pthreads.

A meta file is generated in conjunction with a benchmark’s
trace files. The meta file specifies the number of hardware



and software performance monitor values and the number of
compiled method IDs captured from the call stack in each
trace record, and provides the following mappings: moni-
tor field number to event name, thread ID to thread name,
method ID to method signature, type ID to type name, and
compiled method ID to method ID and optimization level.

2.4 Performance Analysis

Given a set of traces that contain trace records that pro-
vide the performance monitor values for each time slice, we
want to investigate performance phenomena and problems.
This subsection briefly describes the concepts of our perfor-
mance visualization and analysis tool, the Performance Ex-

plorer, which is described in more detail in previous work [33].

We also describe the correlation facilities we added to Per-
formance Ezxplorer for this work.

2.4.1 Metrics

Metrics are a concept we use for performance analysis.
They compute values given the values of performance moni-
tors. A metric computes a value given a sample. Each sam-
ple contains the values of all recorded hardware and software
monitors. Each of those monitors has an associated metric
(e.g., the Cyc metric produces the value of the Cyc moni-
tor of the given sample). Besides those monitor metrics we
also support computed metrics, which represent arbitrary
arithmetic expressions involving other metrics and constant
values. This allows the computation of the InstCmpl/Cyc
metric, given the InstCmpl and Cyc monitors.

2.4.2 Sample Lists

We provide a flexible and interactive way to declaratively
construct sample lists, i.e., a list of samples, using filters on
sample attributes and metrics, and using set operations on
other sample lists. We also allow the direct manual selection
of specific samples to include or exclude from sample lists.

2.4.3 Statistics

We provide descriptive statistics, such as min, max, aver-
age, and median, and multivariate statistics, such as cross
correlation coefficient and correlation matrix.

2.4.4 \isualizations

For manual investigations we present straightforward plots
of a metric over time. In addition, we also provide scatter
plots for plotting two metrics against each other. Further-
more we provide a matrix of scatter plots, for the pair-wise
comparison of any number of metrics. This matrix is actu-
ally a correlation matrix, showing a scatter plot in addition
to the correlation coefficient in each cell. Examples of such
visualizations are given in subsequent sections.

3. METHODOLOGY

This section describes the platform and benchmarks used
for our case studies, and it quantifies the overhead intro-
duced by our vertical profiler. The goal of vertical profiling is
to find cause-effect relations between performance phenom-
ena. Since this approach depends on the instrumentation of
code on various levels, we need to verify that the phenomena
we observe using vertical profiling are not caused by our in-
strumentation. This section describes the two components
to this verification: pertubation analysis and validation.
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Benchmark H Production ” Vertical Profiling

compress 9.77 || 10.15 3.6%
db 22.42 || 23.85 6.4%
jack 13.38 || 14.41 7.8%
javac 19.14 || 20.57 7.5%
jess 8.23 8.64 5.0%
mpegaudio 8.52 9.69 13.8%
mtrt 7.64 7.99 4.6%
jbb 27.17 || 31.84 17.2%
hsql 19.19 || 19.39 1.1%
l Average H H [ 7.4% ‘

Table 2: Vertical Profiling Overhead

3.1 Platform

We run all experiments on a 4-processor IBM POWER4 [18]
machine running the AIX 5.1 operating system. Our virtual
machine is an extended version of the Jikes RVM CVS head
as of January 19, 2004.

3.2 Benchmarks

Table 1 presents our benchmark suite, which consists of
the SPECjvm98 suite [10], a modified version of SPEC-
jbb2000 [9], which we refer to as jbb, and the HSQL server [28].
The upper part of the table contains the single-threaded
benchmarks, whereas the last three rows contain the multi-
threaded applications.

For the SPECjvm98 benchmarks we use the reference in-
puts (size 100). We use a modified version of SPECjbb2000
that is able to process a fixed number of transactions (in-
stead of running for a predetermined amount of time). We
run the HSQL database server (version 1.7.1) in in-memory
mode, using a modified version of the JDBCBench included
with the HSQL distribution.

3.3 Overhead

This section demonstrates that our implementation of ver-
tical profiling is fast enough to be useful. Table 2 summa-
rizes vertical profiling overhead. For each benchmark, the
best of ten runs was chosen. All times are in seconds. The
Production column gives the total time needed to execute
the benchmark without any vertical profiling. The two Ver-
tical Profiling columns show the total time needed to execute
the benchmark with vertical profiling (tracing both HPMs
an SPMs), and the overhead as a percentage of the produc-
tion run. The overhead for vertical profiling ranges from
as little as 3.6% for compress to as much as 17.2% for jbb.
For this measurement, all 148 software performance moni-
tors were enabled. Often a user might be interested in only
a small subset of the monitors, and would thus be able to
reduce overhead even more.

3.4 Perturbation Analysis

Because vertical profiling adds instrumentation to the sys-
tem, it can perturb the very behavior that it is trying to un-
derstand. For example, instrumentation for collecting data
on a software performance monitor may change the cache
behavior of the application. Our perturbation analysis as-
sures that the data collection is not perturbing the behavior
of interest.

The following structure provides the framework we will
use for the perturbation analysis in each of our case studies:



Benchmark [ Functionality [ Threads [ Reference Input ‘
compress File compressor/decompressor 1 main 5 iterations compressing and decompressing files
213x.tar (3.1MB), 209.tar (2.8MB), 239.tar (0.9MB),
211.tar (1.2MB), 202.tar (1.1MB)
db Simple in-memory address database | 1 main perform operations in scr6 (221 adds, 292 deletes, 8
modifies, 15 finds, 67 sorts) on address database in
db6 (1.1MB, 15,332 records)
jack Parser generator 1 main 17 iterations of generating the parser for grammar
Jack.jack (17kB, 17 productions)
javac Java compiler 1 main 4 iterations of compiling Javalex.java (1.8MB, contain-
ing 144 classes) with -O
jess Inference system 1 main solve wordgames.clp (12kB, containing 2 puzzles:
“GERALD+DONALD=ROBERT” and “5 houses, 5
attributes, 25 constraints”)
mpegaudio | MPEG Layer 3 audio decoder 1 main decode track2.mp3 (3.2MB)
mtrt Multithreaded raytracer 1 main render scene time-test.model (0.3MB, 2 lights, 5
2 renderers spheres, 1,407 polygons with totally 4,233 vertices)
into a 200x200 pixel image (each renderer renders a
100x200 section)
jbb In-memory 3-tier application server | 1 main execute 120,000 transactions per warehouse
2 warehouses
hsql In-memory SQL database server 1 main execute 4¥10,000 JDBC queries per client
2 clients

Table 1: Benchmarks

HPM perturbation analysis.

End-to-end perturbation analysis of HPMs. Because

HPMs are implemented in the hardware they do
not perturb the behavior of the application. How-
ever, our mechanism for recording HPMs at each
thread switch may perturb behavior. To see if
this is the case, we conduct an additional run that
does not collect any data at each thread switch,
but instead records the end-to-end difference be-
tween the HPM values at the end and beginning
of the run. We compare the end-to-end differ-
ences with the aggregate HPM values that are
recorded at each thread switch. If these two sets
of values are close, we have some confidence that
our mechanism for recording HPMs does not per-
turb behavior at the macro level. To minimize
inter-run variations due to things outside of our
control (e.g., context switches at the operating
system level) we use five runs for each configura-
tion and use the average of the runs. To enable
us to distinguish perturbation from measurement
noise, we also compute the standard deviations
for the five runs.

Temporal impact of HPMs. While the end-to-end
perturbation analysis gives us confidence that we
have not perturbed the application behavior at
the macro level, it does not tell us if we have per-
turbed behavior at the micro-level. For example,
the original application may experience a fixed
cache miss rate throughout its run whereas the
run that records HPMs at Java thread switches
may experience varying miss rates during its run.
If both runs end up with the same number of total
misses, our end-to-end perturbation analysis will
not recognize that we have perturbed the appli-
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cation. We use qualitative analysis based on our
knowledge of our HPM implementation to argue
that vertical profiling is not perturbing the micro-
level behavior of the application.

SPM perturbation analysis.

Impact of SPMs on HPMs. The instrumentation re-
quired to capture SPMs may also perturb sys-
tem behavior. To verify that the mechanism for
recording SPMs is not perturbing HPMs, we vi-
sually compare the HPM signals collected with
and without SPM tracing enabled. If the signals
visually correlate then we have some confidence
that SPMs are not changing HPMs in a signifi-
cant way.

Impact of SPMs on SPMs. We argue from knowl-
edge of our SPM implementation that one SPM
does not significantly perturb another SPM of in-
terest to our case study.

3.5 Validation

A vertical profiling session results in a hypothesis about
the cause of the observed performance phenomenon. In
our studies we validate these hypotheses by eliminating the
cause and running an additional experiment to verify that
the phenomenon is gone. Each case study in Section 4 has a
Validation subsection presenting the verification of our hy-
pothesis.

4. CASE STUDIES

So far, the paper has claimed that vertical profiling is nec-
essary for understanding the performance of Java programs.
In this section we provide evidence for this claim by describ-
ing five case studies. Each case study shows how we used
our infrastructure to explain a performance anomaly in a



benchmark program. We selected anomalies by gathering
the TPC (Instructions completed Per Cycle) of our bench-
marks over time (see Figure 3), and choosing the most sig-
nificant patterns.! We found that in all the case studies we
needed profile information from more than one system layer
(Figure 1) to explain the anomaly.

Figure 3 shows the IPC over time for our benchmark pro-
grams. In this figure the multithreaded benchmarks use only
one worker thread. The number to the right of each graph
gives the IPC for all worker and main thread time slices.
We see that not only do different benchmarks have vastly
different IPC (factor of 2.3 between lowest and highest), but
also the IPC changes dramatically over each benchmark run
(up to factor of 7.8 between lowest and highest time slice in
a benchmark).

We have marked the four most distinct patterns in Fig-
ure 3 as sudden increase, gradual increase, dip before GC,
and periodic pattern. Four of our case studies use vertical
profiling to explain these patterns. Our fifth case study uses
vertical profiling to investigate the scalability of the three
multithreaded benchmarks.

4.1 Gradual Increase inJjs

From Figure 3 we see that the IPC of many benchmarks
increases over time (gradual increase pattern). This section
uses vertical profiling to explain the cause of this pattern
in jbb. We picked jbb for this case study since the gradual
increase pattern is particularly visible in jbb and moreover
the pattern recurs several times during the run. For this case
study we focus on the marked instance in Figure 3 which
happens when the worker thread starts running (after the
main thread is done setting up the application).

4.1.1 Background

The worker thread of jbb performs about 50 transactions
per 10 ms time slice. Our vertical profiler reports perfor-
mance monitor values at the end of each time slice. The
changes in application behavior during a transaction are not
captured in the signal, because our sampling rate is too low
to observe individual transactions. Thus, we expect that
the gradual increase in IPC is not due to the transaction
behavior, but due to some other lower-level behavior.

In prior work [33] we speculated that jbb’s gradual increase
in IPC occurs because as jbb runs, more and more of its code
gets optimized. When a method runs for the first time, Jikes
RVM uses its baseline (non-optimizing) compiler to compile
the code; when a method becomes hot, Jikes RVM uses its
optimizing compiler to recompile the code.

We came to the above conclusion in prior work because
of two observations:

e We found that optimized code had a higher IPC (by
more than 32%) than unoptimized code. Thus one
could expect that the IPC of the application would
increase with an increase in the amount of executed
optimized code.

e We found that the number of flushes in the load/store
unit (LSU) went down when the IPC increased. LSU

! Although TPC does not necessarily reflect the amount of
useful work completed (e.g. noop instructions completed are
also counted) it is a popular metric used to measure CPU
utilization of an application running on a particular software
stack.
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flushes happen when the POWERA4’s LSU specula-
tively reorders a load and a store that access the same
address. The optimizing compiler uses a register allo-
cator to reduce the number of loads and stores while
the non-optimizing compiler simulates the Java expres-
sion stack, and issues frequent loads and stores to the
top of the stack. If the POWERA4 misspeculates the
frequent loads and stores issued by unoptimized code,
it incurs LSU flushes. We found that LSU flushes hap-
pen at 15.2% of the instructions completed for unop-
timized code and 0.1% of the instructions completed
for optimized code.

4.1.2 Findings

We were able to demonstrate that the gradual increase in
IPC for jbb is indeed caused by the Jikes RVM optimizing
more methods as the run progresses.

4.1.3 Exploration

Our prior work, which used only hardware performance
monitors, hypothesized that the IPC for jbb increased grad-
ually over time because as the program ran, more and more
of the code got optimized. However, using only the hardware
performance monitors we could not confirm this hypothesis.

To test this hypothesis, we needed to measure the amount
of time spent in optimized code and unoptimized code for
each time slice. Measuring this information directly would
add overhead (and perturbation) to every call and return
and thus we settled on an indirect way of capturing the in-
formation. We identified JVM lock acquisition performance
monitors that would approximate this information. The
Java compiler issues MonitorEnter bytecode instructions at
each call to a synchronized method and at each entry into
a synchronized block. Jikes RVM’s baseline compiler ex-
pands MonitorEnter into a call to a lock acquisition method
and the optimizing compiler expands MonitorEnter into an
inlined body of a different lock acquisition method. We
added two JVM performance monitors: UnoptMonitorEnter
and OptMonitorEnter. UnoptMonitorEnter is incremented in
the lock acquisition method used by baseline compiled code,
while OptMonitorEnter is incremented by the inlined lock
acquisition method used in optimized code. These JVM
performance monitors told us how many MonitorEnters
were executed in unoptimized and in optimized code. Since
jbb executes many synchronized methods throughout its ex-
ecution, these counts provide us with useful information.
For benchmarks that do not execute synchronized methods
throughout their execution, we would need different moni-
tors to determine the time spent in optimized and unopti-
mized code.

Figure 4 shows the IPC, LsuFlush/Cyc, and the percentage
of MonitorEnter byte code instructions executed that were
unoptimized?, over time. We can see that in the beginning
the IPC is low, while the two other metrics are high. Over
time the IPC increases while the other metrics decrease.
The LsuFlush/Cyc and the percentage of UnoptMonitorEnters
decrease at almost the same rate.

We use the correlation feature of the Performance Ex-
plorer to determine the cross correlation coefficient between
these signals. Figure 5 shows two scatter plots. The left
scatter plot correlates Cyc/InstCmpl® and LsuFlush/Cyc. The

2 UnoptMonitorEnter/(UnoptMonitorEnter+OptMonitorEnter).
3We use the CPI, inverse of IPC, because the correlation
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plot shows that overall higher flush rates come with higher
CPI rates. Also, the cross correlation coefficient of 0.726
indicates a significant correlation, which confirms the vi-
sual correlation. The right scatter plot correlates the Lsu-

Flush/Cyc with the percentage of unoptimized MonitorEnters.

Since the data points in this plot almost form a straight
line*it must be the case that the execution of unoptimized
code is strongly correlated to LsuFlush/Cyc (correlation co-
efficient 0.963), which in turn is correlated to Cyc/InstCmpl.

Thus, our investigation confirms our hypothesis: the IPC
of jbb increase gradually over time as more and more of the
code it executes is optimized.

4.1.4 Perturbation Analysis

This case study examines the Cyc, InstCmpl, and LsuFlush
HPMs. The end-to-end impact of HPMs is within measure-
ment noise with the three HPMs decreasing with aggregate
HPMs enabled: -0.92% for Cyc, -0.26% for InstCmpl/Cyc,
and -2.57% for LsuFlush. Their standard deviations for five
runs without vertical profiling enabled are 0.73% for Cyc,
0.63% for InstCmpl, and 1.48% for LsuFlush. 1t is highly
unlikely that the huge gradual drop in LsuFlush over the

coefficient indicates a linear relationship between two met-
rics, and we expect a linear relationship between the overall
cost of executing an instruction, CPI (Cyc/InstCmpl), and
the amount of load store unit flushing, LsuFlush/Cyc.

4The curved segment in the right half of the graph consists
of a small fraction of the points. The correlation coefficient
is dominated by the vast majority of the points forming a
straight line in the lower left corner.
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course of the whole run is caused by HPMs as the HPM
perturbation occurs consistently throughout the run at each
Java thread switch. We were able to visually correlate the
gradual increase in /PC and drop in LsuFlush/Cyc with and
without SPM updating. The UnoptMonitorEnter and Opt-
MonitorEnter SPMs can not perturb each other.

We conclude that the perturbation by our instrumenta-
tions is not signification enough to perturb our findings.

4.1.5 Validation

We validated our explanation for the gradual increase pat-
tern in jbb by disabling the adaptive optimization system
(aos), i.e. we used either the baseline or optimizing com-
piler exclusively without any recompilation. If our expla-
nation is correct then (i) at the beginning of the run the
aos system has no methods optimized and thus its metrics
(such as IPC) will be similar to the run with the baseline
compiler; and (ii) at the end of the run the aos system has
optimized all the hot methods and thus its metrics will be
similar to the run with the optimizing compiler. We found
both properties to be true, thus validating our explanation.
As further evidence we found that the runs with the base-
line and optimizing compilers did not exhibit the gradual
increase pattern, indicating that the aos is the cause of the
pattern.

4.2 Sudden Increase iCompress

At the start compress’s execution, we find a variation of
the gradual increase pattern presented in Section 4.1. In
this case, the IPC suddenly jumps from 0.3 to 1.0.

4.2.1 Background

The execution of compress is dominated by the alternat-
ing invocation of two long running methods: compress and
decompress.

4.2.2 Findings

The two long-running methods in compress account for
most of its execution time. Since these methods dominate
the execution time of compress, optimizing them results in
a jump in IPC (which as we discussed earlier is higher with
optimized code than with unoptimized code).

4.2.3 Exploration

In our previous case study (Section 4.1) we found that
when the amount of executed optimized code increases the
IPC also increases. However, unlike the previous case study,
the IPC increase in compress is not gradual. We suspected
that the rapid increase in IPC may happen when a key
method gets optimized.

To investigate this, we used two software performance
monitors at the JVM level. The first monitor, TopOfStack-
Methodld, captured and recorded the activation records at
the top of the call stack. The second monitor, Optimized-
Methodld, recorded the identity of the most recently opti-
mized method at the end of each sample.

The first monitor told us that most of the time during
the run of compress either the compress or the decompress
method is executing. When we superimposed the trace from
this monitor with the IPC trace we found that when the
IPC jumps up for the first time, the method compress is
executing and when the IPC jumps for the second time, the
method decompress is executing. Looking at the second



monitor we find that the first jump in IPC corresponds to the
optimization of compress and the second to the optimization
of decompress. These two pieces of information tell us that
it is likely that the two sudden increases in IPC are caused
by the optimization of the two methods that account for
most of the execution of the benchmark.

4.2.4 Perturbation Analysis

Similar to the previous case study, this case study ex-
amines the Cyc, InstCmpl, and LsuFlush HPMs. For com-
press, the end-to-end perturbation of HPMs is less than
the standard deviation and, therefore, within measurement
noise. In particular, end-to-end perturbations are 0.68% for
Cyc, 0.5% for InstCmpl/Cyc, and 0.4% for LsuFlush, which
is less than the corresponding standard deviations of 1.47%
for Cyc, 0.22% for InstCmpl, and 6.74% for LsuFlush. 1t is
highly unlikely that the temporal impact of HPMs cause the
isolated jump in InstCmpl/Cyc. We were able to visually cor-
relate the sudden increase in IPC and drop in LSU flushes
with and without SPM updating. The SPMs TopOfStack-
Methodld, and OptimizedMethodld have no impact on one
another as they count different events.

We conclude that vertical profiling does not invalidate our
hypothesis.

4.2.5 Validation

To validate our explanation we reran compress with OSR
(on-stack replacement [17, 16]) disabled. OSR replaces an
unoptimized version of a method with an optimized version
while the method is running. When OSR is disabled we ex-
pect the first execution of both methods to complete before
the IPC jumps up.

Without OSR

IPC

Flush

IPC

Flush

Figure 6: InstCmpl/Cyc and LsuFlush/Cyc for Com-
press with and without On-Stack Replacement

Figure 6 shows IPC and LsuFlush/Cyc over time for the
two runs. The top two graphs are with OSR enabled and the
bottom two graphs are with OSR disabled. The segment la-
beled 1 is the first execution of the compress method and the
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segment labeled 2 is the first execution of the decompress
method. We can see that the first invocations of compress
and decompress take about 2.5 times longer without OSR
than with OSR. This is because the baseline compiled meth-
ods cannot be replaced by optimized code until after their
first invocation finishes. This data confirms our expectation
and thus validates our explanation.

4.3 Scalability of Multithreaded Benchmarks

Three of our benchmarks, mtrt, jbb, and hsql, are multi-
threaded applications. Each of them allows us to arbitrarily
set the number of worker threads. When we first analyzed
the traces of runs with more than one worker thread, we
were surprised by the large number of time slices in those
traces. We observed almost an order of magnitude more
time slices (10,409 instead of 2,221 for jbb), and a much
shorter average time slice duration, for a multithreaded run
than for a single threaded run of the same benchmark with
the same amount of work. This case study uses our vertical
profiler to find the reason for this increase in the number of
time slices.

4.3.1 Background

Each of the three benchmarks provides worker threads
that can run in parallel. If we hand a fixed amount of work
to a benchmark with two worker threads executing on a ma-
chine with two processors, we might expect the work to be
done in about half the time it would take a benchmark with
only one worker thread executing on one processor. This
expectation is of course unrealistic because of the synchro-
nization overhead associated with parallelization.

The fundamental synchronization feature in Java are crit-
ical sections. In Java a critical section corresponds to a
synchronized block or a synchronized method. On entry to
a critical section, Java executes the MonitorEnter bytecode.
In Jikes RVM MonitorEnter is implemented as a call to the
VM_Thread.lock() method. When calling lock, a thread ei-
ther immediately gets the lock, retries a few times in a tight
loop, or yields if neither of the former is successful. The
number of yields happening from within the lock method
are an indication of lock contention, and thus a measure of
parallelization overhead.

In Java each object has an associated lock. A call to a
synchronized instance method acquires the lock associated
with the instance. A call to a synchronized class method
acquires the lock associated with the java.lang.Class ob-
ject describing the class. And an entry to a synchronized
block acquires the lock associated with the object explicitly
passed to the synchronized statement. Knowing the type
(the Java class) of a contended lock’s object can be very
helpful for understanding the cause of lock contention in a
parallel program.

4.3.2 Findings

We have found that a large number of time slices in multi-
threaded runs is caused by lock contention. Worker threads
try to acquire a lock that is already held by a different
thread, and thus they yield. A thread that yields ends its
time slice prematurely, and thus the length of the time slice
is shorter than the scheduler’s time quantum.



4.3.3 Exploration

Since our machine has four processors we run the bench-
marks in the following configurations: 1 worker thread on 1
processor, 2 worker threads on 2 processors, and 4 worker
threads on 4 processors. The only aspect that varies over
the three experiments is the number of available processors
and worker threads. The overall amount of work (mirt:
size of the picture; jbb and hsql: total number of transac-
tions) stays the same. In the following analysis we focus
on the behavior of the worker threads and we omit the sys-
tem threads (compiler, garbage collector, ...) and the main
thread (which generally just sets up the benchmark during
the startup phase).

Table 3 presents our measurements for the three different
levels of parallelism of the three multithreaded benchmarks.
The first column shows the benchmark. The Scale column
shows the level of parallelism (how many worker threads
are executing on how many processors). The Wall Time
column show the wall clock time from the point where the
first worker thread starts running to the point where the last
worker thread stops running. The first subcolumn shows the
time in million ticks (on the POWER4, a tick corresponds
to 8 cycles). The second subcolumn shows the time as a
percentage of the 1 on I time. The CPU Time column
shows the sum of CPU ticks used by the worker threads.
The Samples column shows the sum of the number of time
slices used by all worker threads, and the Sample D. column
shows the average duration (in million ticks) of the worker
thread time slices. The last column gives the number of
yields during lock acquisitions in the worker threads.

We expect the wall time to drop (the work to be completed
sooner) with higher levels of parallelism, and the table shows
that it generally does. The CPU time ideally would be con-
stant over the various levels of parallelism. We find that
the number increases, meaning that we actually use more
CPU time for the same amount of work when we increase
parallelism. Only hsql on 4 processors shows an increase in
wall time over the 2 processor run. This is either because of
the synchronization overhead growing very big, because of
secondary effects (like decreased cache performance) caused
by shorter time slices, or due to perturbation caused by in-
crementing our software performance counters.

We gather the number of lock yields using a software per-
formance monitor, LockYieldCount. We can see that this
value is 0 for all single-threaded runs. This is because there
is no lock contention in this situation. For parallel runs, the
value is greater than zero. We can also see that the number
of time slices of a parallel run is almost equal to the num-
ber of time slices of the corresponding single threaded run,
plus the number of lock yields in the parallel run. There is a
slight difference because a thread can also yield in situations
other than a lock acquisition. We currently cannot explain
the big discrepancy (72,256 samples, but only 51,363 lock
yields) observed in the hsql 4 on 4 run.

In the hsql 2 on 2 and 4 on 4 runs the time slices shrink
to less than 1% of the scheduler’s scheduling quantum (of
about 1.5 million ticks, or 10 ms). We expect such short
time slices to negatively affect memory performance due to
the frequent context switches. Our vertical profiler is the
ideal environment for continuing the study in this direction,
and we plan to do so in future work.

We have seen that the number of time slices goes up, and
their length shrinks, as we increase parallelism, and that
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l Benchmark [ Lock Yields H Library [ VM [ App ‘
mtrt 0 0 0 0
mtrt 40 40 0 0
mtrt 350 134 216 0
jbb 0 1 0 0
jbb 2,704 0 | 2,703 1
jbb 8,013 113 | 7,843 57
hsql 0 0 0 0
hsql 28,600 2 0 | 28,598
hsql 72,012 143 149 | 71,720

Table 4: Classes Used for MonitorEnter

this change is correlated with the number of yields due to
locking. Next we use another software performance moni-
tor, LockYieldTypeld, to investigate which locks are causing
the observed contention. This monitor is set to the type id
(a unique integer identifier for each Java type) whenever a
thread yields due to a lock acquisition (since it has to wait
for the lock to be released by another thread).

Table 4 gives a breakdown for the lock yields, by the sub-
system in which the lock type belongs. A MonitorEnter on
a java.lang.String, for example, would show up in the li-
brary column. In this table we report all lock yields, not
just the ones in the worker threads. As can be seen when
comparing the lock yields column in this table with the same
column in Table 3, the total number of lock yields is almost
equal to the number of lock yields by the worker threads.

We can see that for mirt contended locks are in the li-
brary and virtual machine classes. For jbb most contention
is caused by the VM, whereas for hsql the contention is al-
most exclusively caused by the application. In jbb, the ma-
jority of the locks are associated with com.ibm.JikesRVM. -
classloader.VM_NormalMethod, and we suspect that this in-
dicates contention in the runtime compilation subsystem.
All of the 71,720 locks in hsql are associated with just one
class, org.hsqldb.Database, which seems to be locked for
a large part of the time, and thus causes a lot of contention.

Even though the primary goal of a vertical profiler is to
correlate temporal behavior over different levels, this case
study shows that it can also be used to analyze classical
problems, like lock contention. We used two software per-
formance monitors to gather the information we needed to
not only find out that the short time slices are caused by
lock yields, but also to further investigate what locks the
application was yielding for.

4.3.4 Perturbation Analysis

Unlike the other four case studies, this study does not
analyze a temporal pattern. Thus our perturbation analysis
methodology is not fully applicable.

The SPMs never acquire any Java locks, nor do they cause
a yield for any other reason. Thus they do not directly affect
the duration of time slices, or the number of locks acquired.
But the perturbation caused by the SPMs still is significant.
It prohibited us from correlating the locking behavior to low
level performance characteristics. In the future, we plan on
reducing this perturbation by updating only the necessary
monitors, and by reducing the overhead of a SPMs update.



Benchmark | Scale | Wall time (M,%) | CPU time (M,%) [ Samples | Sample D. (M) [ Lock Yields |

mtrt lonl | 1,070 100% 828 100% 575 1.440 0
mtrt 2 on 2 754 70% 957 116% 694 1.379 40
mtrt 4 on 4 666 62% | 1,224 148% 1,129 1.084 302
jbb lonl | 4,276 100% | 3,227 100% 2,221 1.453 0
jbb 2o0n 2 | 2,401 56% | 3,509 109% 4,979 0.705 2,703
jbb 4on4 | 1,346 31% | 3,836 119% 10,409 0.369 7,940
hsql lonl 434 100% 265 100% 192 1.380 0
hsql 2 on 2 313 72% 277 105% 28,849 0.010 28,600
hsql 4 on 4 367 85% 317 120% 72,256 0.004 51,363

Table 3: Levels of Parallelism in Multithreaded Benchmarks

4.3.5 Validation

To validate our explanation we would need to change the
amount of lock contention in the application. Since this
requires significant changes to the application, we did not
perform this validation and instead defer it for future work.

4.4 Dip before GC in Hsql

From Figure 3 we see that for many benchmarks the IPC
dips immediately before a garbage collection (GC). GCs
show up as gaps in the curves since GC runs in separate
threads while all application threads are suspended, and
Figure 3 presents only the data for the main and worker
threads. In this study we analyze the pre-GC dip in hsql in
more detail. The hsql run invokes GC fifteen times and for
all except for the first two GCs, the IPC drops considerably,
from about 0.65 to about 0.55, just before the GC.

4.4.1 Background

We first identified the pre-GC dip in prior work [33]. How-
ever, at that time we did not have our vertical profiling in-
frastructure and therefore were unable to find the cause for
the dips.

We use a semispace GC in our configuration. The collector
uses adaptive heap resizing, which means that it can increase
or decrease the size of the heap based on the application’s
allocation behavior. At startup the heap size is set to a user-
specified initial value. When the application needs more
space, the garbage collector grows the heap up to a user-
specified maximum value. If the application needs less space
than the heap size, the garbage collector can also shrink the
heap. In this way an application takes only as much memory
as it needs from the operating system.

4.4.2 Findings

We found the pre-GC dip to be caused by page faults to
newly allocated pages. Since object allocation first uses ex-
isting memory before allocating from new memory obtained
from the operating system, the dip happens immediately be-
fore a GC (which is triggered when the application runs out
of memory).

4.4.3 Exploration

We started by using our tool to find metrics that corre-
lated with the IPC. The top two graphs in Figure 7 show
the IPC and a correlating OS-level metric, EeOff/Cyc. Ee-
Off/Cyc gives the fraction of cycles when CPU exceptions
are disabled (i.e., an interrupt handler is executing in the
OS kernel).

We see that exceptions are rarely disabled (0.2% of the
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cycles) except during the pre-GC dip, when exceptions are
disabled for 7% to 19% of the cycles.

EeOff/Cyc

MmapCalls

AllocBytes

B N . o - -

Figure 7: Behavior of Hsql’s Main and Worker
Threads over Time

We initially thought that the pre-GC dips must be due to
allocation patterns: after all, it is more likely that GC will
be triggered in periods of intense allocation. To see if this
was the case, we added the AllocBytes software performance
monitor to capture the number of bytes allocated in Java.

We found that the rate of allocation was actually lower
during dips than during normal behavior. Moreover, if the
pre-GC dip was caused by a high rate of allocation, one
would expect the dip to continue after the GC ended; we
did not see that to be the case.

We continued our investigation to find the connection be-
tween garbage collection (on the JVM level) and exception
handling (on the OS level). We added new performance
monitors to record transitions from Java code to native code
(the only ways through which the execution could invoke
an OS system call). We found that one system call, mmap,
correlated with the pre-GC dips. The third graph of Fig-
ure 7 gives data for the MmapCalls counter, which counts
the number of mmap calls. We see that there are no calls to
mmap except during the GC dip. Moreover, we found (using
the MmapBytes monitor) that all calls to mmap map exactly
1 MB.

Table 5 summarizes the values of relevant performance
monitors. Each row gives the data for one dip. The “GC”
column identifies the GC for which the row reports pre-GC



l GC [ AllocBytes(M) [ MmapCalls [ MmapBytes(M) [ AllocB/MmapB [ MmapPages [ EeOff(M) [ EeOff/MmapPages ‘
1 44.2 45 45 0.98 11,520 298.3 25,894
2 41.7 42 42 0.99 10,752 272.9 25,381
3 3.3 3 3 1.11 768 22.9 29,818
4 5.4 5 5 1.09 1,280 35.2 27,500
5 7.8 8 8 0.98 2,048 48.9 23,877
6 8.6 9 9 0.95 2,304 53.9 23,394
7 9.3 9 9 1.03 2,304 59.7 25911
8 10.9 10 10 1.09 2,560 70.2 27,422
9 11.3 11 11 1.02 2,816 72.5 25,746

10 11.1 11 11 1.01 2,816 73.2 25,994
11 11.4 11 11 1.04 2,816 70.9 25,178
12 10.8 11 11 0.98 2,816 69.9 24,822
13 10.9 11 11 0.99 2,816 70.9 25,178
14 1.2 11 11 1.01 2.816 73.0 25,923
15 11.3 12 12 0.95 3,072 75.4 24,544

Table 5: Information about Pre-GC Dips in Hsql

dip numbers. Even though GCs 1 and 2 do not have a visible
dip, we observe a considerable number of mmap calls before
these GCs. Thus, we conclude that even though there is no
visible dip before GCs 1 and 2, it is because the dip is much
wider and in fact includes the entire execution before these
GCs.

For GCs after the first two, we see that there are about
10 calls to mmap during each GC dip. From our visualizer
we determined that mmap calls do not take longer than a
single time slice, which corresponds to a single point in the
IPC graphs. How, then, can 10 calls to mmap cause such a
considerable dip in IPC? An mmap call occurs every fourth
time slice during a dip but every time slice in a dip has a
bad IPC.

We hypothesized that the pre-GC dips were related to
adaptive heap resizing. When the garbage collector wishes
to increase the size of the heap, it does not immediately go
out and get the space. Instead, the allocator of the garbage
collector obtains the space (via mmap) when the application
actually needs it. Of course, once the space is allocated,
the first accesses to pages in it will cause page faults. Those
page faults are handled in an interrupt handler in the kernel,
which has a considerably different IPC than the application.
The pre-GC dip is much longer before the first two GCs
because the application has not yet accessed any memory at
the start of the run and thus all accesses before the second
GC can potentially cause page faults.
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Figure 8: Correlation of Dips Before GC

Figure 8 provides evidence for our hypothesis. The left
scatter plot illustrates the correlation between AllocBytes
and MmapBytes over the 13 dips plus the full periods be-
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fore the first two GCs. Not only are the two metrics almost
perfectly correlated (correlation coefficient 0.9995), but the
scatter plot shows that the application allocates almost ex-
actly the number of bytes that are also mmapped during the
dip. Thus, the JVM calls mmap to keep pace with the allo-
cation requests of the application. Second, Table 5 shows
that MmapPages and EeOff are probably also correlated.
We verify this using the right scatter plot in Figure 8. We
see that the number of cycles spent in the exception dis-
abled state during a dip is linear in the number of mmapped
pages (MmapPages)®. In fact we can see in column Fe-
Off/MmapPages that we spend approximately 25,000 cycles
for each mmapped page in an interrupt handler. Thus we con-
clude that the page faults due to mmapped pages cause the
processor to execute a considerable amount of cycles in the
page fault handler, which in turn impacts the IPC.

4.4.4 Perturbation Analysis

This case study examines the Cyc, InstCmpl and EeOff
HPMs. The end-to-end perturbation for HPMs is within
the standard deviation of the executions without HPMs. In
particular, end-to-end perturbation is 0.23% for Cyc, 0.26%
for InstCmpl, and 0.74% for EeOff, which is less than the
standard deviation for executions without HPMs: 0.39% for
Cyc, 0.41% for InstCmpl, and 1.02% for EeOff. Overhead
caused by HPMs and preGC dips are not temporarily cor-
related. We were able to visually correlate the dips in IPC
and bursts of EeOff before GC with and without SPMs. Fi-
nally, the MmapCalls, MmapBytes and AllocBytes SPMs do
not impact each other.

We conclude that hypotheses that we derive from vertical
profiling also hold for hsql without vertical profiling.

4.45 Validation

To validate our finding that the dip in IPC before GC is
caused by page faults due to the mmaps needed for adaptive
heap growth, we reran hsql with Jikes RVM’s adaptive heap
resizing turned off. We found that the run without adaptive
heap resizing did not exhibit the dips in IPC or the bursts
of mmaps, thus validating our explanation.

5The metric MmapPages is computed by dividing the mmaped
bytes (MmapBytes) by the size of a page (4 kB).



45 Periodic Pattern in bs

From Figure 3 we see that db exhibits periodic behavior.
The IPC of a typical period starts at 0.338, then rises to
0.568, and finally drops back to 0.338. Based on a visual
inspection of the graph we counted more than 60 periods.
This section uses vertical profiling to explain why db exhibits
periodic behavior.

4.5.1 Background

db uses a java.util.Vector of Entry class instances to
store its database. The Entry class has an instance vari-
able of type java.util.Vector that stores the fields of the
database record. Before performing a major operation on
the database (e.g., sort or remove), db copies the vector
that contains all the records of the database to an array.

db uses shell sort, an O(n?) algorithm, to sort the array
representation of the database. Shell sort divides up the
database into sets and uses insertion sort on each set. The
first iteration of shell sort uses sets of size 2, the second uses
sets of size 4, and so on, until the last iteration uses a set size
that includes the entire database. The elements in a set are
not adjacent in the database (except for the last iteration);
instead, shell sort interleaves the elements of all the sets.
For example, in the first iteration for a database of size n,
the first set has elements at index 0 and n/2 — 1, the second
set has elements at index 1 and n/2 etc.

4.5.2 Findings

Our exploration revealed that the periodic patterns in the
IPC graph correspond to the 67 shell sorts in the db run.
When the set size for the shell sort is small, the entire set
fits in the L2 cache, yielding good IPC. Moreover, since the
number of times shell sort touches each element increases
with the size of the set, as long as the set fits in the cache,
the IPC improves with increasing set size. When the set size
exceeds 2178 entries, a set is too large to fit in the L2 cache,
thus causing a drop in the IPC.

4.5.3 Exploration

Since the number of periods that we counted manually
was the same as the number of times db sorts the database
(Table 1) we immediately suspected that each period cor-
responded to a sort. We used the Performance Explorer to
determine if there was a correlation between the IPC and
any of the other existing performance monitors. We found
an immediate high correlation (correlation coefficient -0.916)
with a performance monitor at the processor level: L2 cache
miss rate. We also determined that the L2 cache miss rate
varied from 0.1 misses per 100 completed instructions at the
troughs to 0.8 misses per 100 completed instructions at the
peaks. Given that L2 cache misses are often expensive this
swing in the L2 miss rate can account for the swing in the
IPC.

While the processor-level performance monitor told us
that L2 misses were responsible for the swings in the IPC, we
still did not know what phenomenon actually caused the be-
havior. Moreover, we did not even know whether the troughs
or the peaks signaled the start of a sort. To answer these
questions, we added an application level performance moni-
tor, SetSize, that keeps track of the set size of the shell sort.
Figure 9 presents the signals for three metrics: IPC, loga(set
size), and L2 cache miss rate.
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Rather than presenting the signals for the entire duration
of the run, Figure 9 zooms in on one part of the run.

We noted three interesting phenomena. First, once the set
size exceeds about 2178, the IPC starts to drop. This phe-
nomenon occurs because once the set size increases beyond
2178, it is too large to fit in the 1.5MB L2 cache. To access
a single entry in the database, shell sort needs to perform
six loads to entry specific data, with each load being to a
different object (there are other loads also, for example, ones
needed to perform array bounds checks but those are likely
to have good locality in the cache and thus not relevant to
this discussion): (i) load a reference to the entry object by
indexing into the array of Entry instances; (ii) load a ref-
erence to the Vector inside the Entry instance; (iii) Load
reference to the Object array inside Vector; (iv) load the
element of the Object array to obtain a reference to the key
on which to sort; (v) load the Char array that contains the
contents of the key (which is a String); (vi) load contents of
the key to use in the comparisons (this may actually be more
than one load but most likely most of these loads will be to
the same cache line). Load (i) is always to the same array,
however, because of the nature of shell sort it is typically
to elements that are far apart (e.g. element 0 followed by
element n/2—1). Loads (ii) — (vi) are to distinct objects. In
other words, there will be little spatial locality between two
references to the same set. Given this and the 128-byte L2
line size on the POWER4, a 1.6MB° L2 cache will be large
enough to hold a set of size 2178 even if there is no spatial
locality between two references to the same set. The next
larger set size (which will be about twice the size) will not
fit in the 1.5MB L2 cache. Thus, when shell sort increases
the set size beyond 2178, its working set does not fit in the
L2 cache, which degrades performance.

The second phenomenon we observe is that for set sizes
ranging from 2 to 2178, the IPC increases as the set size
increases. This phenomenon occurs because as the set size
increases, shell sort has more temporal locality. For exam-
ple, with a set size of 2, shell sort loads each element in
the set only once. With a set size of 4, shell sort loads the
first two elements thrice, the third element twice, and the
fourth element once. Thus, as long as the set fits in the
cache, the ever-increasing temporal locality leads to better
performance.

The third phenomenon is that, contrary to what we ex-
pected, the shell sort does not start at either the trough or at
the peak of the IPC curve. Instead it starts at a point that
occurs immediately before the trough (circled in Figure 9).
This happens because each sort is preceded by a phase that
copies the contents of the vector that stores all the records
in the database to an array. This phase has good locality
because it reads sequentially from one data structure and
writes sequentially into another data structure.

4.5.4 Perturbation Analysis

This case study examines the Cyc, InstCmpl, and L2Misses
HPMs. The end-to-end perturbation for HPMs is either
within or close to the standard deviation of the executions
without HPMs. In particular, end-to-end perturbation is
2.77% for Cyc and 0.11% for InstCmpl, which is less than
the standard deviation for executions without HPMs: 2.92%
for Cyc, 0.23% for InstCmpl. Whereas, L2Misses HPM has
only slightly more perturbation at 7.49% than its standard

62178 -6 - 128 = 1,672, 704
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Figure 9: Behavior of Db over Time

deviation at 5.97%. Tracing and periodic pattern are not
correlated. We were able to visually correlate the IPC and
L2Misses patterns with and without SPMs. The SetSize ap-
plication SPM is not impacted by any other SPMs.

We conclude that vertical profiling does not invalidate the
hypothesis that we derived.

45.5 Validation

We determined, using vertical profiling, that the IPC of
a shell sort in db depends on whether the set it is sorting
fits in the L2 cache. To validate this explanation, we man-
ually performed object inlining (moving a referenced object
into the referring object) on db’s main data structures. We
expected that object inlining would enable larger sets to fit
in the cache because it reduces the number of accesses to
distinct objects in favor of more accesses to some objects.
If object inlining halves the memory required to hold a set,
then the IPC curve should start to drop at one higher set
size than before.

After object inlining we found that for some of the sorts
IPC did not start to drop until the set size reached about
5081 entries (as opposed to 2178 entries before). We believe
that we did not see this phenomenon for all sorts because:
(i) Object inlining reduced the memory required to hold a
set by less than a factor of two. Since db performs insertions
and deletions between sorts the set sizes used in two differ-
ent sorts may be different and thus different sorts will have
slightly different behavior; (ii) Our sampling frequency was
not high enough to take at least one sample for every change
in set size. In other words, if we did not have a sample at set
size of 5081 we could not confirm that the IPC did indeed
start to drop at 5081.

Overall, the object inlining optimization, guided by ver-
tical profiling, decreased db’s run time by 66%. Part of this
decrease is due to better cache locality (as discussed above)
while part is due to a reduction in the number of instructions
(after object inlining, one needs fewer pointer dereferences).

Thus, the above data supports our explanation for db’s
behavior.

5. LESSONS LEARNED

Our five case studies exhibited different causes of signif-
icant performance impacts. We found that not only can
performance be directly affected by the algorithms of the
application, but also can other, less obvious causes, on dif-
ferent levels of the system, lead to significant performance
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changes. We have used a vertical profiler and a performance
analysis tool to find the causes of such performance phenom-
ena. This section summarizes the lessons we have learned
while applying our tools and techniques.

5.1 Layers

We mentioned in the introduction that for a full under-
standing of system behavior one needs to profile the system
on multiple layers. Here we show what layers we actually
had to observe for our case studies. Table 6 lists, for each
case study, what monitors we used on what layer.

We can see that we needed information from multiple lay-
ers for each case study. For example, we could not have
explained the Gradual Increase without the LsuFlush moni-
tor that observes the hardware layer, and the MonitorEnter
monitor observing the virtual machine layer.

The classification of a monitor into a layer depends on
the context. In Table 6 we list the EeOff monitor in the
operating system layer, even though EeOff is implemented
as a hardware performance monitor. This is because we
assigned monitors to layers based on what behavior they
observe, not on the location of the instrumentation.

Table 6 also shows that we needed to use both, hardware
and software performance monitors. It would not have been
possible to observe the flushing of the LSU without the Lsu-
Flush hardware performance monitor. And it would not have
been possible to count the number of entries into synchro-
nized code without the MonitorEnter software performance
monitor.

But sometimes it is possible to monitor the same behavior
with both, a hardware and a software monitor. For example
the EeOff, measuring the time spent with CPU exceptions
disabled, is equivalent to a software performance monitor
that measures the time spent in interrupt handlers (e.g. by
instrumenting the entry and exit of those handlers). In such
a situation it is beneficial to use the hardware performance
monitor, because it causes less perturbation.

5.2 Approach

We have been using two different but complementary tech-
niques in our explorations of the causes of performance prob-
lems: browsing and searching.

5.2.1 Browsing

Whenever we were not sure about what the cause of the
problem might be, browsing through the signals of all avail-
able performance metrics helped us find new hints. We
thus depended on the set of available metrics to cover as
many subsystems (and thus as many causes) as possible. In
our previous work on using hardware performance counters
to understand Java performance, browsing only through all
available hardware performance metrics helped us find the
initial hints for the dip before GC (the EeOff/Cyc metric)
and the gradual increase (the LsuFlush/Cyc metric) patterns.
The browsing process can be improved by semi-automatic
support for detecting correlated signals, but there are some
issues that prevent complete automation of this process (see
Subsection 5.4).

5.2.2 Searching

Whenever we had a hypothesis, we needed to search for
a performance metric we could use to test the hypothesis.
Since we had a hypothesis, we knew what information we



Case Study || Gradual Increase Sudden Increase Scalability Dip Before GC | Periodic Pattern
Layer in 7bb in compress in mirt, jbb, hsql | in hsql in db
Application SetSize
Framework
Java Libraries
Virtual Machine OptMonitorEnter TopOfStackMethodld | LockYieldCount | AllocBytes
UnoptMonitorEnter | OptimizedMethodId LockYieldTypeld
Native Libraries
Operating System EeOff
MmapCalls
MmapBytes
Hardware Cyc Cyc Cyc Cyc Cyc
InstCmpl InstCmpl InstCmpl InstCmpl
LsuFlush L2Misses

Table 6: Case Studies, Layers and Monitors

needed to test it. But often that information was not di-
rectly available as a performance metric. Sometimes we
could solve this problem by creating a computed metric (e.g.
in our approximation of the percentage of the time spent in
executing unoptimized code using MonitorEnter counters).
At other times it was necessary to add a new software per-
formance monitor (e.g. in observing the shell sort set size
in Db). This requires a extensible system where the addi-
tion of a new counter is a simple and straightforward task.
In contrast, there is no option for adding hardware perfor-
mance counters, short of influencing the design of future
microprocessors.

5.3 Perturbation

A vertical profiler needs to add instrumentations to the
executed code in order to update its software performance
monitors. Depending on the frequencies of those updates,
the perturbation caused by these additional instructions can
become significant. It is impossible to evaluate the pertur-
bation outside the context of a specific exploration. There
are too many possible combinations of software performance
monitors that can be enabled and disabled. Furthermore,
for some explorations there is a need to create additional
application-specific monitors. We have found that an ex-
ploration based on a vertical profile needs to be backed by
a perturbation analysis. Our approach is to first complete
the exploration, without any concern for perturbation. Once
we have found the root cause of a performance phenomenon,
we then verify that the results have not been influenced by
perturbation.

5.4 Correlation

The key issue in finding the cause of a performance phe-
nomenon is correlation. This can be correlation between a
performance metric and source code (e.g. program point X
causes many i-cache misses), between performance metrics
on different levels (e.g. high allocation rate leads to bad d-
cache performance), or between performance metrics on the
same level (e.g. high pipeline flush rate leads to bad IPC).

Correlation can be done visually (e.g. by comparing two
time charts or by looking at a scatter plot) or statistically
(e.g. by computing the cross correlation coefficient [30]).
Statistical correlation requires a set of two dimensional data
points, where each dimension corresponds to one metric. In
our case studies we have correlated different entities (differ-
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ent kinds of data points): samples (time slices) and patterns.
In the temporal correlation we used for the gradual increase
of IPC , we correlated two metrics across all samples in a
sample list. In the pattern correlation we used for the dips
before GC, we correlated two metrics across all instances
of a pattern (e.g. pre-GC dip). Another option would be
to do benchmark correlation, where we would correlate two
metrics across all benchmarks.

We have identified several issues when using statistical
correlation in our case studies. Sometimes the visual in-
spection of the two data sets would lead to the conclusion
that they are highly correlated, even though the (linear)
cross correlation coefficient is very small. Here we present a
short summary of each of them.

5.4.1 Low Event Frequency

Given that we have a sequence of values for two metrics,
we can apply a simple statistic such as Pearson’s cross cor-
relation coefficient r to determine how well those two met-
rics correlate. This approach works well for metrics with
event frequencies that are much higher than the sampling
frequency used to generate the sequence of values. If the
event frequency (e.g. for SysMMapCalls) is close to the sam-
pling frequency, or even lower, then the two signals resemble
those of Figure 10, and the cross correlation coefficient does
not indicate any significant correlation.

Figure 10: Correlation with Low Event Frequency
(r =0.388)

Figure 11 shows the distribution of event frequencies of
the 240 performance counters that were incremented at least
once in a jbb run with 120000 transactions and one ware-
house thread. Each bar represents a performance counter
(hardware or software), and its height represents the number
of events that counter observed over the whole benchmark.
The leftmost bar represents the InstDisp counter (67 billion




instructions dispatched), and the second bar from the left
is the Cyc counter (46 billion cycles). We can see that we
have counters with event frequencies distributed all over the
frequency spectrum, from more than once per cycle, to once
per 10 billion cycles. We also have 22 performance coun-
ters that were never incremented throughout this run (not
shown in the figure).

Total count
=)
2

Performance counters (sorted by total count;

Figure 11: Overall Monitor Values of Jbb

Figure 12 shows the distribution of event frequencies for
each of four levels of the system: hardware, operating sys-
tem, native libraries, and virtual machine. We can see that
on each level the total values of the monitors are distributed
over a large range. Even on the VM level we can still ob-
serve monitors that represent very high frequency events,
and even on the hardware level we can see monitors for very
rare events.
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Figure 12: Overall Monitor Values of Jbb, by Level

5.4.2 Non-linear Relationships

The cross correlation coefficient is a measure of the linear-
ity of a relationship between two signals. If the two signals
are not linearly related (e.g. if one of them is an exponen-
tial function of the other), the cross correlation coefficient
will potentially indicate no significant correlation. Thus it
is important to correlate only metrics that have a mostly
linear relationship. If the relationship between two metrics
is suspected to be nonlinear, and if there is a hypothesis of
what the function of the relationship is, then it can help to
transform the metrics before correlation (e.g. to take the
logarithm of one of the metrics).
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5.4.3 Leverage Points

A further problem is the influence of extreme data points
on the correlation coefficient. It is a well-known fact in
statistics, that a single so-called leverage point [30] can highly
influence correlation, as seen in Figure 13. The two se-
quences of values seem to be very well correlated, except
for the last data point (the leverage point). But the corre-
lation coefficient r is only 0.268. With the leverage point
removed, the correlation coefficient increases to 0.929.

o 2N W A o

01 2 3 4 5 6

Figure 13: Correlation with Leverage Point (r
0.268)

We have primarily found such leverage points due to the
inconsistent duration of our samples. Even though Jikes
RVM’s scheduler preempts threads every 10 ms, some of
our samples represent very long time slices (e.g. the garbage
collection appears as one time slice, since it cannot be inter-
rupted), while others represent very short time slices (some
system threads that periodically wake up to perform a very
small amount of work and then yield, or time slices in multi-
threaded programs experiencing heavy lock contention and
thus premature yields). In shorter samples an effect with
a small absolute magnitude can have a large impact on a
relative metric (see sub-subsection 5.4.5). Our solution was
to filter out such time slices, if they significantly but inap-
propriately affected the correlation coefficient.

5.4.4 Direction of Causality

When investigating performance phenomena, we are gen-
erally interested in finding the cause of bad performance.
Using our infrastructure, we can find out whether two sig-
nals are correlated. But the infrastructure does not tell us
which signal is the cause, and which signal is the effect, or
whether there is a causal relationship at all. We have ob-
served cases where the IPC goes down when the cache miss
rate goes up (which probably means that the frequent cache
misses stalled the CPU). But we have also observed the op-
posite, where the IPC goes down and when the cache miss
rate goes down (which probably means that something else
caused the bad IPC, and the bad IPC caused fewer cache
misses during the same amount of time).

We have found that in correlating the IPC with some other
metric, the magnitude and the direction of the change in
the other metric can indicate the direction of causality. If
both IPC and the other metric change by about the same
percentage and in the same direction, and the other metric
is a measure of work, this often indicates that the IPC is the
cause for the change in the other metric (less work can be
done because less instructions are completed per cycle). If
the change in IPC is moderate, but the change in the other
metric is extreme and in the opposite direction, this can
indicate that the other metric is the cause for the change in
the IPC (an extreme amount of extra work had to be done,
and thus less instructions could be completed per cycle).



5.4.5 Absolute Magnitude of Metrics in a Ratio

It can be misleading to correlate a computed metric, like
LdMissL1/LdRefL1 (L1 data cache load miss rate), with some
other metric. The miss rate could be very high, up to 1.0,
but the number of load references might be so low (maybe
just 1) that the influence on any other metric is negligible.
Thus a high correlation between two metric does not neces-
sarily entail a cause-effect relationship.

6. RELATED WORK

This section surveys work related to vertical profiling.
This includes work on gathering performance monitor data,
profiling Java workloads, performance visualization, and sta-
tistical approaches to performance analysis.

6.1 Gathering Performance Monitor Data

Several library packages provide access to hardware per-

formance monitor information, including the HPM toolkit [12],

PAPI [7], PCL [5], and OProfile [27]. These libraries provide
facilities to instrument programs, record hardware counter
data, and analyze the results. The Digital Continuous Pro-
filing Infrastructure provides a powerful set of tools to ana-
lyze and collect hardware performance counter data on Al-
pha processors [3]. VTune [36] and SpeedShop [39] are sim-
ilar tools from Intel and SGI, respectively. Microsoft’s Win-
dows Management Instrumentation (WMI) [25] provides a
framework for gathering software performance counter data
over time. IBM’s Performance Inspector [34] is a collection
of profiling tools. It includes a patch to the Linux kernel
providing a trace facility and hooks to record scheduling,
interrupt, and other kernel events.

Our work differs in that we are gathering information
about several levels of hardware and software simultane-
ously. We show in our case studies that this data is use-
ful and often necessary for finding the root cause of a per-
formance issue in a complex multilayered system. And we
provide insight into the problems associated in correlating
performance metrics across different levels.

6.2 Profiling Java Workloads

The Java Virtual Machine Profiler Interface (JVMPI) de-
fines a general purpose mechanism to obtain profile data
from a Java VM [35]. JVMPI supports CPU time pro-
filing (using statistical sampling or code instrumentation)
for threads and methods, heap profiling, and monitor con-
tention profiling. Our work differs in that we are interested
in infrastructure that is capable of measuring the architec-
tural level performance of Java applications as well as the
software level performance. Furthermore, our performance
monitors can also measure effects that are not observable by
using the JVMPI.

Java middleware and server applications are an important
class of emerging workloads. Existing research uses simula-
tion and/or hardware performance counters to characterize
these workloads. Cain et al. [8] evaluate the performance of
a Java implementation of the TPC-W benchmark and com-
pare the results to SPECweb99 and SPECjbb2000. Shuf et
al. [32] analyze the memory performance of SPECjvm98 and
pBOB on an IBM PowerPC processor using simulation and
hardware performance counters. Luo and John [22] evalu-
ate SPECjbb2000 and VolanoMark on a Pentium III pro-
cessor using the Intel hardware performance counters. Se-
shadri, John, and Mericas [31] use hardware performance
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counters to characterize the performance of SPECjbb2000
and VolanoMark running on two PowerPC architectures.
Karlsson et al. [20] characterize the memory performance
of Java server applications using real hardware and a simu-
lator. They measure the performance of SPECjbb2000 and
ECPerf on a 16-processor Sun Enterprise 6000 server. Other
studies focus on behavior impacting specific subsystems, like
Dieckmann et al. [13], who investigate memory performance
metrics of interest for garbage collection designers. These
studies generally focus on the overall characteristics of the
workloads. We are interested in the causes of temporal per-
formance phenomena, we present a system to gather the
necessary information, and we introduce techniques for cor-
relating performance information across different levels of a
system.

Dufour et al. [14] introduce a set of architecture- and vir-
tual machine-independent Java bytecode-level metrics for
describing the dynamic characteristics of Java applications.
Their metrics give an objective measure of aspects such as
array or pointer intensiveness, degree of polymorphism, allo-
cation density, degree of concurrency, and synchronization.
Our work analyzes workload characteristics on the architec-
tural level, and combines it with performance information
from multiple software levels. While their work focuses on
abstracting away from the hardware, we focus on connecting
software behavior back to hardware performance.

6.3 Performance Visualization

A large body of work exists on performance visualization.
Kimelman et al. [21] introduce PV, a performance visual-
izer focused on presenting temporal information from vari-
ous levels of the system. PV shows only a subsection of the
whole trace, but it allows scrolling through the whole trace,
thereby continually updating the subsection currently visu-
alized. Mellor-Crummey et al. [24] present HPCView, a per-
formance visualization tool together with a toolkit to gather
hardware performance counter traces. They use sampling
to attribute performance events to instructions, and then
hierarchically aggregate the counts, following the loop nest-
ing structure of the program. Their focus is on attributing
performance counts to source code areas. Miller et al. [26]
present Paradyn, a performance measurement infrastructure
for parallel and distributed programs. Paradyn uses dy-
namic instrumentation to count events or to time fragments
of code. It can add or remove instrumentations on request,
reducing the profiling overhead. Metrics in Paradyn corre-
spond to everything that can be counted or timed through
instrumentations. The original Paradyn does not support
multithreading, but Xu et al. [38] introduce extensions to
Paradyn to support the instrumentation of multithreaded
applications. Zaki et al. [40] introduce an infrastructure to
gather traces of message-passing programs running on par-
allel distributed systems. They describe Jumpshot, a trace
visualization tool, which is capable of displaying traces of
programs running on a large number of processors for a
long time. They visualize different (possibly nested) pro-
gram states, and communication activity between processes
running on different nodes. The newer version by Wu et
al. [37] is also capable of correctly tracing multithreaded
programs. Pablo, introduced by Reed et al. [29], is another
performance analysis infrastructure focusing on parallel dis-
tributed systems. It supports interactive source code in-
strumentation, provides data reduction through adaptively



switching to aggregation when tracing becomes too expen-
sive, and introduces the idea of clustering for trace data re-
duction. DeRose et al. [11] describe SvPablo (Source View
Pablo), loosely based on the Pablo infrastructure, which sup-
ports both interactive and automatic software instrumenta-
tion and hardware performance counters, to gather aggre-
gate performance data. They visualize this data for C and
Fortran programs by attributing the metric values to specific
source code lines.

Our work combines the virtues of these tools. We sample
an extensive set of hardware performance monitors, combine
this with software performance monitors injected at many
levels of the software system, including in a virtual machine,
and use our performance analysis tool to detect correlations,
and ultimately cause-effect relations between performance
phenomena across multiple levels.

6.4 Statistical Performance Analysis

Recent work uses statistical techniques to analyze per-
formance counter data. Eeckhout et al. [15] analyze the
hardware performance of Java programs. They use principal
component analysis to reduce the dimensionality of the data
from 34 performance counters to 4 principal components.
Then they use hierarchical clustering to group workloads
with similar behaviors. They gather only aggregate per-
formance counts, and they divide all performance counter
values by the number of clock cycles. Ahn and Vetter [1]
hand-instrument several code regions in a set of applica-
tions. They gather data from 23 performance counters for
three benchmarks on two different parallel machines with
16 and 68 nodes. Then they analyze that data using dif-
ferent clustering algorithms and factor analysis, focusing on
parallelism and load balancing.

In our case studies we have found that the straightforward
application of statistical techniques that rely on linear rela-
tionships between phenomena (such as cross correlation) did
not help us in discovering cause-effect relationships in com-
plex non-linear systems. We heavily relied on visualizations
of the captured performance metrics over time, on identi-
fying data points that were not related to the phenomena
under investigation but due to their high leverage influenced
the statistical computation, before verifying a correlation us-
ing statistics.

7. CONCLUSIONS

This paper introduces vertical profiling, an approach for
understanding performance phenomena in modern systems.
This approach captures behavioral information about mul-
tiple layers of a system and correlates that information to
find the causes of performance phenomena. We have built
an infrastructure to capture, visualize, and correlate verti-
cal profiles which we have applied to five case studies. Each
case study represents some performance anomaly that we
explained using vertical profiling. The case studies demon-
strate that vertical profiling is an effective method for un-
derstanding the behavior of Java applications.

To explain each performance anomaly, we used the fol-
lowing methodology. First, we performed a perturbation
analysis to confirm that the performance anomaly actually
existed. In other words, we confirmed that the performance
anomaly was not an artifact of vertical profiling. Second, we
used our visualizer to find correlations (both visually and
using statistical metrics) between the anomalous behavior
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and other metrics. Third, we followed the leads uncovered
by the correlation to identify a potential explanation for the
anomaly. Fourth, we performed a validation to make sure
that we had indeed uncovered the correct reason for the
performance anomaly.

In the future, we intend to look at ways to further auto-
mate our methodology.

To our knowledge this is the first work that has system-
atically used vertical profiling for performance analysis.
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