
Adaptive Online Context-Sensitive Inlining

K i m H a z e l w o o d

H a r v a r d U n i v e r s i t y

C a m b r i d g e , M A

h a z e l w o o d @ e e c s . h a r v a r d . e d u

D a v i d G r o v e

I B M T.J. W a t s o n R e s e a r c h C e n t e r

Y o r k t o w n H e i g h t s , N Y

g r o v e d @ u s . i b m . c o m

Abstract

As current trends in software development move toward
more complex object-oriented programming, inlining has
become a vital optimization that provides substantial per-
formance improvements to C++ and Java programs. Yet,
the aggressiveness of the inlining algorithm must be care-
fully monitored to effectively balance performance and code
size. The state-of-the-art is to use profile information (as-
sociated with call edges) to guide inlining decisions. In the
presence of virtual method calls, profile information for one
call edge may not be sufficient for making effectual inlining
decisions. Therefore, we explore the use of profiling data
with additional levels of context sensitivity. In addition to
exploring fixed levels of context sensitivity, we explore sev-
eral adaptive schemes that attempt to find the ideal degree
of context sensitivity for each call site. Our techniques are
evaluated on the basis of runtime performance, code size and
dynamic compilation time. On average, we found that with
minimal impact on performance (+/-1%) context sensitivity
can enable 10% reductions in compiled code space and com-
pile time. Performance on individual programs varied from
-4.2% to 5.3% while reductions in compile time and code
space of up to 33.0% and 56.7% respectively were obtained.

1. Introduction

Procedure inlining is perhaps the most important opti-
mization for object-oriented programming languages such
as Java TM. The object-oriented programming style encour-
ages decomposing a program into a large number of rela-
tively small methods. Without aggressive inlining, this style
can severely impact application performance due to both the
direct costs of frequent procedure calls and the indirect costs
of missed optimization opportunities caused by restricting
the scope of optimization to such small program units.

Although procedure inlining can be very effective at re-
ducing both the direct and indirect performance impact of an
object-oriented programming style, it must be applied selec-
tively. Overly aggressive inlining can greatly increase com-
pile time and compiled code space, possibly even degrading

application performance. This is especially true in the con-
text of Java virtual machines, since compilation is typically
performed at runtime by a Just-In-Time (JIT) compiler. In
this dynamic context, the JIT must carefully balance the po-
tential benefits of inlining with the compile time and code
space costs.

One common technique to improve the quality of inlin-
ing decisions is to utilize profile information to identify fre-
quently executed call edges [8, 15, 13]. Focusing inlining
effort on the most frequently executed call sites increases
the odds of maximizing benefit and minimizing cost. An
additional benefit of profile-directed inlining is that it can
enable guarded inlining of the dominant target(s) of a vir-
tual dispatch when the distribution of receiver classes is
skewed [6, 15, 13].

Most Java virtual machines rely on context-insensitive
profile information to guide inlining decisions [3, 18, 23].
Previous work in offline profile-directed inlining has demon-
strated that context-sensitivity can increase the benefits and
reduce the costs of profile directed inlining [13]. In this pa-
per, we study the effectiveness of adaptive, online, context-
sensitive profile information to guide inlining decisions in
the Jikes TM Research Virtual Machine (Jikes RVM). The
main contributions of our work are:

• All profiling, decision making, and inlining are per-
formed online. In an online system, decisions must be
based on a limited history (program execution so far)
and the profiling mechanisms must be highly efficient.

• We describe and evaluate several schemes for adaptive,
context-sensitive profiling.

• We have implemented and empirically evaluated the de-
scribed system in Jikes RVM version 2.1.1. On average,
we found that with minimal impact on performance
(+/-1%) context sensitivity can enable 10% reductions
in compiled code space and compile time over Jikes
RVM's existing implementation of context-insensitive
profile-directed inlining. We plan to make our imple-
mentation available (open source) in a future release of
Jikes RVM.

The remainder of the paper is organized as follows.
Section 2 contrasts context-sensitive and context-insensitive

0-7695-1913-X/03 $17.00 © 2003 IEEE 253

profile information and provides a motivating example for
our work. Section 3 provides the implementation details by
describing the internals of the Jikes RVM adaptive optimiza-
tion system ~md highlighting the changes necessary for im-
plementing context-sensitive inlining. Section 4 describes a
number of adaptive policies for deciding the level of context
sensitivity to apply on a case-by-case basis. Experimental
results are analyzed in Section 5. Finally, Section 6 describes
the related work and Section 7 concludes.

2. Context Sensitivity Overview and Motivation

Systems that employ method inlining typically use profile
information to guide their inlining heuristics. In fact, most
Java Virtual Machines use profile information gathered at
runtime. However, the profile information collected at run-
time is at the granularity of a single call edge. This is typi-
cally referred to as context-insensitive edge profiling. Using
this profiling scheme, inlining decisions are made based on
the profile associated with the call edge between the callee
method (the inlining candidate) and the caller method (the
destination of the inlined code), with no additional informa-
tion about the manner in which the call site was reached.

Previous work on offline optimization of object-oriented
languages demonstrated that using context-sensitive trace
profiling can enable significant improvements in the effec-
tiveness of profile directed inlining [13]. The goal of our
work is to achieve these benefits online in a virtual machine.
The primary challenge of an online system is that all deci-
sions must be made without knowing the future: only the
profile information from the current execution of the pro-
gram so far is available. Furthermore, both the profiling
mechanism itself and the decision making process must be
highly efficient since both occur during program execution.

Context sensitivity implies tailoring an analysis or opti-
mization to specific times or locations during program ex-
ecution. By taking into account how the program arrived
at a particular point in the execution, the system can often
make more informed optimization decisions. For example,
by paying attention to certain actions leading up to a virtual
method call, we may be able to predict the target method that
will be invoked from the virtual call site. Figure 1 shows
a small program where context sensitivity can improve the
accuracy of the profile data. In this example, the m a i n
method sets up a simple hash table, inserts two elements,
then calls r u n T e s t , r u n T e s t then makes two calls to
the H a s h M a p . g e t method, which calls the h a s h C o d e
method on key . During the first call to H a s h M a p . g e t ,
this call invokes HyKey . h a s h C o d e , and during the sec-
ond call it invokes O b j e c t . h a s h C o d e .

Figure 2a shows a partial call graph of our sample pro-
gram. A context-insensitive edge profiling system collects
single call edges (i.e. method A calls method B) and asso-
ciates profile information with those edges. Therefore, all
inlining decisions that utilize the profile information will be

based on a single edge of call history. In our HashMap ex-
ample, any decision to inline the h a s h C o d e method into
the HashMap . g e t method will be based on the profile in-
formation shown in Figure 2b. Since the weight of the two
call edges indicates a 50/50 split, the the inlining system will
either (a) inline both versions of the h a s h C o d e method at
each call site, or (b) inline neither version. In this example,
the profile information delivered by the context-insensitive
profiling system is clearly misleading, resulting in a subop-
timal inlining decision.

On the other hand, a context-sensitive profiling system
would collect the profile shown in Figure 2c. From this fig-
ure, we can clearly see that all calls from Hash.Map. g e t
to h a s h C o d e that originated from the first call site in
runTest always evaluate to MyKey. hashCode. There-
fore, instead of inlining both version of h a s h C o d e at both
call sites, we will inline the correct version at each call site.
By more precisely predicting the target of the virtual call,
context sensitivity both reduces code space and compile time
and increases application performance. The call to e q u a l s
within HashMap. g e t also benefits from context sensitiv-
ity in exactly the same way. Although this particular pro-
gram may seem artificial, it illustrates a common situation
that arises in programs that make use of the standard Java
collection classes.

Context-sensitivity can also improve inlining results for
non-virtual calls. For example, a call site might be con-
trol dependent on the value of a parameter to its enclosing
method: in some contexts the call is always executed, in
others it is never executed. If the enclosing method is it-
self inlined into some of its callers, context-sensitive profile
information could help avoid uselessly inlining the target of
the call site in contexts where it will never be executed.

3. Implementation

The ideas described in this paper were implemented in the
Jikes RVM adaptive optimization system [3]. Figure 3 shows
the structure of the system, including our additions and mod-
ifications which are highlighted by dotted lines. This section
describes the previous system structure and the changes that
were necessary to implement context-sensitive inlining.

3.1. Inlining in the Optimizing Compiler

Previous work in Jikes RVM [2] developed a clean sep-
aration between the inlining mechanisms in the optimizing
compiler and the inlining policy that determines where and
how to apply inlining. The inlining policy is encapsulated in
an Inlining Oracle abstraction that the compiler consults for
each call site to determine which callees, if any, should be
inlined. For our experiments, we created a new implementa-
tion of this policy module based on an existing one that sup-
ported context-insensitive profile-directed inlining [3]. We
did not need to otherwise change the optimizing compiler.

254

class HashMapTest {
static int counter;
public static void maln(String[] args) {

Object kl = new MyKey(22);
Object k2 = new Object();
HashMap map = new HashMap();
map.put(kl, new Integer(l));
map.put(k2, new Integer(2));
runTest(kl, k2, map);

}
public static void runTest(object kl, Object k2, HashMap map) {

counter += ((Integer)map.get(kl)).intValue();
counter += ((Integer)map.get(k2)).intValue();

}
}

class MyKey {
int key;
MyKey(int k) { key = k; }
public int hashCode() { return key; }
public boolean equals(Object other) {

return other instanceof MyKey && ((MyKey)other).key == key;
}

}

class HashMap {

// simplified version of HashMap.get
public Object get(Object key) {

int index = (key.hashCode() & 0x7FFFFFFF) % elementData.length;
HashMapEntry entry = elementData[index];
while (entry != null) {

if (entry.key == key I] key.equals(entry.key)) return entry.value;
entry = entry.next;

}
return null;

}

Figure 1. An example of how context-sensitive profiling can improve the effectiveness of inlining for
methods of Java's collection classes. Context-insensitive profile-directed inlining will either inline both
Obj ect. hashCode and MyKey. hashCode into HashMap. get at both call sites in runTest or will inline
neither. Context-sensitive profile-directed inlining will inline MyKey. hashCode into HashMap. get at
the first call site in runTest and Object.hashCode into HashMap.get at the second call site in
runT e s t.

(a) (b) (c)

Figure 2. Call graph of HashMap example including profile weights. Part (a) shows the actual program
call graph. Part (b) shows the profile information that context-insensitive profiling would collect. Part
(c) shows the profile data that context-sensitive profiling would collect.

255

/~ [Base'Opt""lJ I I

",ilSample ~)'T-~ce" ~ / ~ Optimized [[Compilation

Z :: ' I
: ? " /

J i k e s R V M A d a p t i v e O p t i m i z a t i o n S y s t e m

Figure 3. Implementation of feedback-directed inlining in Jikes RVM

Jikes RVM classifies methods into four categories based
on an estimate of the size of the machine code that would
be generated when the method is inlined.t Tiny methods,
whose method body is estimated to be smaller than 2x the
number of instructions required for a method call, are un-
conditionally inlined if they can be statically bound with-
out a guard. Small methods, whose size ranges from 2-5x
larger than a method call, that can be statically bound (pos-
sibly with a guard) are inlined subject to code space expan-
sion and inlining depth heuristics. Medium-sized methods,
whose size range from 5-25x that of a call, are only candi-
dates for profile-directed inlining. Methods larger than 25x
a call are never inlined.

Profile data is used to augment these static heuristics in
three ways.

• To enable guarded inlining at call sites where the com-
bination of class analysis [16, 7], class hierarchy anal-
ysis [9, 12, 11] and pre-existence [10], was unable to
determine that a single target was possible at a virtual
or interface invocation.

• To inline a medium-sized method.

• To inline small methods when the normal limits on code
expansion and inlining depth have been exceeded.

3.2. Adaptive Inlining Subsystem Overview

The structure of the adaptive optimization system of Jikes
RVM [3] is shown in Figure 3. All dynamically compiled

IThe compiler adjusts this estimate to model the expected impact on
inlined code size of the dataflow properties computed for the call's actual
parameters. For example, if one of the parameters is a constant then the in-
lined size estimate is reduced to model the likely effects of constant folding.

methods are initially compiled by a non-optimizing baseline
compiler. The role of the adaptive optimization system is to
identify and selectively optimize program hot spots.

The controller is the decision-making component of the
adaptive optimization system. It reads the information in the
organizer event queue and uses an analytic model to decide
what new compilation steps should occur. When a method
is selected for recompilation, a compilation plan is created
that includes an Inlining Oracle object that encapsulates the
applicable inlining rules.

The controller 's compilation decisions are inserted into
the compilation queue to be read by the compilation thread.
This thread executes the controller's compilation plan and
installs the resulting new code into the executing program.

Profile intormation is gathered via timer-based sampling.
Sampling occurs on each virtual processor at a rate of ap-
proximately 100 samples per second. Samples are taken
by listeners, such as the method or edge listeners shown in
the figure. Each time it takes a sample, the method listener
records the currently executing method; this information is
used to identify hot methods. Each time a sample is taken in
a method prologue, the edge listener inspects the call stack
and records a tuple of the form

(caller, call.site, callee) (l)

representing the call edge that led to the CUtTently executing
method. This information is used to identify hot call edges
for inlining. The listeners insert this raw data into buffers to
be read by the various organizers. Periodically the organiz-
ers process the buffers and convert the raw profile data into
a form that can be easily understood and propagated through
the rest of the system.

256

Several organizers are fed by the two listeners. They in-
clude the hot methods organizer, the dynamic call graph or-
ganizer, and the AI missing edge organizer. 2 The hot meth-
ods organizer aggregates the samples taken by the method
listener; this data drives the controller's recompilation de-
cisions. The dynamic call graph organizer collates the raw
data collected from the edge listener to create a profile of
the call edge tuples of the program. This call graph infor-
mation is then passed on to the adaptive inlining organizer
where the edges are analyzed to generate a set of inlining
rules (edges that should be inlined if possible). The AI miss-
ing edge organizer periodically examines the current set of
hot optimized methods and inlining rules to determine if an
opportunity to inline a hot edge has been missed because the
edge became hot after the method was last compiled.

The decay organizer periodically decays the profile dy-
namic call graph to bias hot edge detection toward recently
sampled call edges. Thus, the decay organizer attempts to
ensure that the system can adapt to program phase shifts.

The AOS database is a central repository for recording
and querying various compilation decisions and events. One
use of this repository is by the inlining system to record re-
fusals by the optimizing compiler to inline particular call
edges. This information is used by the AI missing edge or-
ganizer to avoid recommending a method for recompilation
due to a hot call edge that the optimizing compiler has al-
ready refused to inline.

3.3. Implementation Details

This section describes our modifications to the adaptive
optimization system to support adaptive, context-sensitive
inlining. Figure 3 shows that we added an additional lis-
tener to the system, namely the trace listener. This new lis-
tener was introduced because a single call is insufficient for
context-sensitive inlining. While the edge listener collected
a set of tuples (as shown in Equation 1), the data gathered by
the trace listener is of varying size. The trace itself is a linear
sequence of calling methods that lead to the current call site.
The structure of the sample has the form

(caller1, cal l s i te l , . . . , eallern, cal ls i ten , callee) (2)

where n can be either a fixed or adaptive value as described
in Section 4.2-4.3. Each of these trace samples are inserted
into a buffer until the desired number of samples has been
reached, then the dynamic call graph organizer is notified.

The dynamic call graph organizer was extended to han-
dle the call stack trace structures produced by the trace lis-
tener. Dealing with varying levels of profile information was
a challenging problem, and several interesting issues arose.
Specifically,

• How do we match profile information for variable-
depth call traces? Should we group profile information

2AI is an abbreviation for Adaptive Inlining

f o r A ~ C ~ D 3 in with that f o r F ~ A ~ C ~ D?

• Some call traces may be deceiving because previously
inlined call sites will be "missing" from the stack
frame. How do we account for past inlining actions
when sampling the call stack?

Partial Context Matches The previous system employed
context-insensitive edge profiling, where edges were repre-
sented as tuples (Equation 1). Therefore, collecting profile
information was a simple matter of maintaining a hash ta-
ble for all tuples encountered during profiling, and updat-
ing counters associated with each tuple. As each new edge
sample was collected, the system searched the hash table for
an exact match of the tuple (inserting a new entry as neces-
sary) then incremented the edge count for the particular tu-
pie. Similarly, it was easy to determine whether profile data
was applicable to a given call site during compilation: either
the <caller, cal ls i te) portion of the tuple matched exactly or
it was not applicable.

Introducing variable-sized call traces into the profiling
system significantly complicated the data structure and the
search technique, introducing the notion of a partial trace
match. A partial trace match occurs when profile informa-
tion is collected on a call trace that happens to be a subset
(or superset) of an existing call trace in the profile data. The
question arises whether to allow partial matches and com-
bine the two profiles, or to instead maintain separate traces
in the profile data.

Our current solution is a hybrid approach. When profile
data is collected and hot traces are identified and codified as
inlining rules, we do not merge partial matches. However,
when the inline oracle is determining which inlining rules
are applicable to a candidate call site in a particular compi-
lation context it allows partial matches. If the compilation
context is <callerck, callsi teck, . . . , ca l l e rd , cal ls i tecl)
then all inlining rules with context
(callertj , ca l l s i te t j , . . . , cal ler t l , ca l l s i te t l) such that

Vi 1 < i < m i n (k , j) ,

callerci = callerti A callsi teci = callsi tet i (3)

are applicable. To determine which methods should be in-
lined at the call site, the oracle first constructs sets of target
methods of all applicable traces with identical contexts. All
methods in the intersection of these sets are identified as in-
lining candidates. Intuitively, if a callee method has been
frequently invoked from all traced contexts that are applica-
ble to the context being compiled, then we predict that it is
a good candidate for inlining, even if there is no hot trace
that exactly matches the compilation context. Allowing par-
tial matches is important because it is often the case that the
profile data has more (often irrelevant) context than is avail-
able at the call site being compiled.

3Throughout the paper, we use the symbol ~ to indicate a method call,
therefore A :=~ B denotes "method A calls method B"

257

Optimized Stack Frames Because of inlining, a single
optimized stack frame may actually represent an arbitrary
number of source level stack frames. For example, profile
information may be present for the call trace A ~ B =~ C,
but due to an online inlining decision, B may have been in-
lined into A. At this point, a naive trace listener might record
the trace sample A ~ C. This sample is misleading be-
cause it appears to be different from the profile data for
A ~ B ~ C, when in actuality, the two should be com-
bined.

Fortunately, Jikes RVM already supported mechanisms to
recover the source level view of optimized stack frames (re-
quired to support class loading, security managers, and de-
bugging). The trace listener was able to utilize these mecha-
nisms to correctly sample optimized stack frames.

4. Context-Sensitive Profiling Policies

While it seems logical that in many cases, more than one
edge of profile information may be helpful in making inlin-
ing decisions, we can also envision cases where too much
context sensitivity may degrade performance. Slowdown
may either result directly from the overhead of collecting
and analyzing context-sensitive profile data, or indirectly
from diluting profile information such that it takes longer for
the system to decide that a call is hot and should be consid-
ered for inlining. Our experimental results indicate that this
second effect, profile dilution, is actually quite important.
The AI organizer constructs inlining rules by examining all
edges/traces that contribute more than a threshold percent-
age of the total weight of the profile data. 4 As additional
levels of context sensitivity are added to the profile data, the
profile weight of a single context-insensitive call edge can
be distributed among an increasing number of traces. If the
weight is distributed unevenly, then this is useful because
context sensitivity is discriminating the important and unim-
portant instances of the call edge. However, if the weight is
distributed more or less evenly, then it will take the system
longer to arrive at exactly the same inlining decisions. For
this reason, it is important to locate the particular call sites
that will benefit from additional context sensitivity, then use
it selectively for those call sites. The following sections de-
scribe various schemes for finding the best amount of context
sensitivity. These policies are grouped into three categories:
ideal, fixed-level, and adaptive.

4.1. Ideal Sensitivity

For each dynamic invocation of a method, there is a no-
tion of the ideal amount of context sensitivity. This is the
point when the context in which a method is called no longer
matters. More specifically, it is the highest point in the dy-
namic call graph where actions are taken that affect the be-

41n o u r experiments, we used a threshold value of 1.5%

havior of the current method or call site. Finding this point
is in general undecidable.

One possible approach that might closely approximate
this ideal would be to analyze each method and identify call
sites that are data or control dependent on parameters to the
method. These call sites would then be flagged as requiring
additional context when sampled. As the listener sampled
the stack, it would continue to trace the stack until it encoun-
tered a call site that was not flagged as requinng additional
context.

4.2. Fixed-level Sensitivity

Just as in program analysis, the simplest context-
sensitivity policy is to set the context-sensitivity level of all
compiled methods to a fixed value [22]. We implemented
this policy and studied the performance of the system as we
varied the value from 2 to n. A context-sensitivity level of 2
means that profile information is collected for sequences of
two call edges. Thus, instead of associating a profile weight
with the call sequence C =-~ D, we would collect informa-
tion on the sequence A ~ C ~ D, and would distinguish
that from B ~ C ~ D.

4.3. Adaptive Sensitivity

However, as discussed earlier, too much context sensi-
tivity can be counterproductive. Furthermore, the desired
amount of context sensitivity varies from call site to call
site in the program. Thus, instead of using a fixed level of
context sensitivity throughout the program, it is desirable to
adaptively tailor the context-sensitivity policy for each call
site on a case-by-case basis. This section describes five such
adaptive policies. The first three are early-termination rules
for a basic fixed-level policy. The intuition behind these poli-
cies is that they may enable us to use a fixed-level policy with
a fairly large n value by ending the trace early (sampling
fewer than n levels) when it is obvious that the additional
levels will not be useful. The final two policies are hybrid
policies with multiple early-termination rules.

Parameterless Methods One heuristic we explored fo-
cuses on parameterless method calls. The premise is that
the context in which a caller method makes a call is incon-
sequential if there are no parameters to pass state from the
caller to the callee. While there are certainly exceptions,
such as global variables and the t h i s parameter, this may
be an inexpensive approximation to the ideal policy.

An obvious question is, How often will this early-
termination condition actually be triggered? To answer this,
we instrumented the trace listener to record the number of
stack frames it traversed as it took each sample. For our
benchmarks (described in Table 1), we found that 20% of
sampled callee methods are immediately parameterless and
would require no additional context sensitivity. We also dis-
covered that most sampled traces contain a parameterless

258

call within five levels of call stack (between 50% and 80%.)
This shows us that this scheme will often limit the amount
of context sensitivity to evaluate for our inlining decisions.

Class Methods In object-oriented languages, state may
be implicitly passed from caller to callee via the instance
fields (and type) of the t h i s parameter. It may be that this
state is more important than that passed by other parameters
to the call. Therefore we investigated an early termination
heuristic that ends the trace as soon as a class method call is
encountered. We discovered that in 50--80% of the cases, we
only traverse two edges in the call graph before encountering
the first class method call.

Large Methods The final early termination condition we
explored is quite different than the two previous ones. Rather
than focusing on the flow of state from caller to callee, it
instead focuses on a feature of the inlining system itself. As
mentioned in Section 3.1, the inlining system never inlines
large methods. Because of this, we may consider limiting
our profiling to one level above a large method in the call
chain, since a large method will never be inlined into a parent
method. From our benchmarks, we discovered that roughly
half of the time, we had to traverse four or more call edges
before encountering our first large method.

Hybrid Early-Termination Policies These three early ter-
mination polices can obviously be combined to form hybrid
policies. We implemented two of the possible combina-
tions: Parameterless Class Methods and Parameterless Large
Methods.

Adapt ively Resolving Impreeis ions Our final adaptive
policy takes a very different approach. It starts by collect-
ing context-insensitive profile information for all call sites.
As the profile data is processed, the dynamic call graph orga-
nizer identifies polymorphic virtual call sites that do not have
highly skewed distributions of callees. Without more precise
profile information it will not be feasible to inline the targets
of these call sites. Therefore, these call sites are flagged as
requiring additional levels of context sensitivity to identify
contexts in which they could become potential inlining can-
didates. This process continues until either the imprecisions
in the profile data are resolved or the system determines that
the call site is inherently too polymorphic. Plevyak's itera-
tive algorithm for call graph construction used a similar ap-
proach to context sensitivity in an offline setting [19].

We have not yet implemented this policy, but think that it
has promise. An open question is whether it is possible to do
this iteration online without incurring significant overhead or
delay before finally arriving at useful profile information.

5. Experimental Results

All experiments were performed using the Jikes Research
Virtual Machine version 2.1.1 on a Pentium-3 based Red
Hat Linux 7.2 workstation with 2.5 GB RAM. We used the

FastAdaptiveSemispace configuration of Jikes RVM, indi-
cating that the core virtual machine was compiled with all
assertions disabled by the optimizing compiler, that initially
all dynamically loaded methods are compiled by the non-
optimizing baseline compiler and the adaptive optimization
system is used to select a subset of the dynamically com-
piled methods for optimizing recompilation, and that the
basic semispace copying collector was used. The bench-
marks selected were the SPECjvm985 benchmark suite and
the SPECjbb2000 benchmark.

In this section, we explore the performance of six of our
context-sensitivity policies in terms of overall runtime per-
formance, size of the dynamically optimized code, and run-
time overhead of the adaptive optimization system. As inlin-
ing policies must carefully balance performance, code size
and compile time, we investigate and compare these values.

We explore the performance of the Fixed Sensitivity pol-
icy, while varying the sensitivity from 2 to 5 call edges. Then
we compare this performance to three adaptive policies -
Parameterless Methods, Class Methods, and Large Meth-
ods. For each of the adaptive (early-termination) policies,
we again vary the maximum sensitivity from 2 to 5. Finally
we explore two hybrid schemes - Parameterless Class Meth-
ods and Parameterless Large Methods.

Figure 4 depicts the wall-clock performance speedup of
each of the policies as a percentage improvement over the
existing context-insensitive inlining policy implemented in
Jikes RVM. Figure 5 illustrates the change in optimized code
size resulting from the profiling policies we implemented.
The most notable observation from these figures is nearly
all benchmarks benefited from a reduction in code size, with
minimal impact on runtime performance.

The performance impact of context sensitivity was
smaller than one might expect, partially because of the
benchmark suite. From previous experiments with the
context-insensitive inlining implementation in Jikes RVM,
we know that in most of the SPECjvm98 benchmarks,
context-insensitive profile data is sufficiently precise that dy-
namically, no guarded inlining of a virtual call completely
fails (none of the inlined methods matches and execution
reaches the fallback virtual invocation.) Therefore, for these
benchmarks we are only expecting context sensitivity to re-
duce code space and compile time, although it might enable
a slight performance gain by reducing the number of inline
guards executed before the correct inlined target is found.

One case where reducing inline guards has made an im-
pact on performance is in jess. Because jess has a

5These benchmarks were developed by the Standard Performance Eval-
uation Corporation [24]. The performance numbers reported in this paper
are the best run of 20 on each individual SPECjvm98 benchmark. These
runs do not conform to the official SPEC run rules, so our results do not
directly or indirectly represent a SPECjvm98 metric, and are not compa-
rable with a SPECjvm98 metric. Due to the use of timer-based sampling,
the adaptive optimization system is non-deterministic. Therefore a single
performance execution is not necessarily indicative of overall performance
trends.

259

(a) Non-Adaptive Context Sensitivity

s% . i

. . . . | ~ .

.5% .

(b) Parameterless Methods

s% .

I
4~

~ m n = 2 I M P - 3 o m ~ . 4 ¢3 mn=sl

(c) Class Methods

12 - - ~ ~

. s ' ~ .

(d) Large Methods

s ~ .

1_ 1 ~ - - ~'11 "%~ ~ ~ I ~-LI I~11 ~"~1~ E~

(11 m ~ I I t o u r 3 Dm~=4 a m ~ - ~]

(e) Hybrid 1 - Parameterless Class Methods

- s . , . .

(If) Hybrid 2 - Parameterless Large Methods

Figure 4. Wall-clock speedup of each of our implemented context-sensitive profiling policies. The y-
axis represents speedup as a percentage improvement over context-insensitive inlining as previously
implemented in Jikes RVM. The four bars for each policy represent the performance as the maximum
context sensitivity is varied from 2 to 5.

2 6 0

[mmu-2 Im~a33 Dm¢=(Om~=5 [

(a) Non-Adaptive Context Sensitivity

20~ .

(b) Parameterless Methods

(c)ClassMethods

~ m . . 2 B m . ~ a m . . , Bm'~==ss]

(d) Large Me!hods

i

J' '[i
!

(e) Hybrid 1 - Parameterless Class Methods

i__ i 1
.10~

(f) Hybrid 2 - Parameterless Large Methods

Figure 5. Code size changes resulting from each of our context-sensitive profiling policies. The y-axis
represents the percent increase in bytes of optimized machine code over context-insensitive inlining
as previously implemented in Jikes RVM. (Negative numbers are desirable.) The x-axis shows the
maximum context sensitivity allowed for each policy.

2 6 1

Benchmark Description
c ompr e s s Lempel-Ziv compression algorithm
j e s s Java expert shell system
db Memory-resident database exercises
j avac
mpegaudio
mtrt
jack

SPECjbb2000

JDK 1.0.2 Java compiler
Decompression of audio files
Two-thread raytracing algorithm
Java parser generator

simulated transaction processing [25]

Classes Methods
48 489

176 1101
41 510

176 1496
85 712
62 629
86 743

132 1778

Bytecodes
19,480
35,316
20,495
56,282
51,308
24,435
36,253

73,608

Table 1. Benchmark characteristics. For each benchmark, this table gives the number of classes
loaded and the number of methods and bytecodes dynamically compiled. The statistics include both
application code and library code loaded at runtime. The first seven rows comprise the suite of
SPECjvm98 benchmarks [24].

shorter execution duration than many of the other bench-
marks, small changes will result in a larger performance im-
pact. Interestingly, j e s s also experienced a code size de-
crease in almost every case, therefore, we can conclude that
context-sensitivity enabled better quality code in this bench-
mark.

On the other hand, when db experienced performance
improvements they were grouped with code size increases.
In this case, context sensitivity, enabled more inlining, result-
ing in a larger, but often faster, executable.

The results of the hybrid context-sensitivity policies are
interesting. The first hybrid policy, Parameterless Class
Methods, resulted in the most stable performance (nearly
always within 1% of context-insensitive inlining), and the
code size was similarly stable (less than 20% reduction.) The
second hybrid policy, Parameterless Large Methods, resulted
in much more dramatic behavior, yet is one of the few poli-
cies that resulted in a speedup on average.

The fact that the best speedup values for each benchmarks
resulted from differing levels of context sensitivity in the
non-adaptive policy confirms the intuition that no fixed level
of context sensitivity is best for all call sites, and motivates
the need for adaptive policies. The most notable observa-
tion from the runtime performance of the adaptive policies
(Figures 4b-40 is that overall benefits can be observed as
compared to the non-adaptive policy.

Figure 6 depicts the average percentage of execution time
spent in each component of the adaptive optimization system
using the various profiling policies. 6 As we compare each of
our policies to the baseline model (context-insensitive inlin-
ing - shown on the far left), we notice that the main dif-
ference is a significant (8-33%) reduction in the percentage
of execution time devoted to optimizing compilation. By
enabling a more focused set of inlining decisions, context-
sensitive profiling eliminates useless inlining and thus sig-

6The remaining percentages are a combination of actual program exe-
cution time and garbage collection.

nificantly reduces compile time. It is also important to note
that overhead of collecting and processing context-sensitive
profile data is negligible. Although in some cases the
context-sensitive system spends twice as much time in the
AI Organizer and AOS listeners than the context-insensitive
system, this overhead still represents less than 0.06% of total
execution time.

In summary, context-sensitive profiling can significantly
reduce optimized code space and compilation time while
maintaining comparable runtime performance.

6. Related Work

A number of previous systems have used profile informa-
tion to guide inlining decisions. In a typical system, context-
insensitive profile data is gathered offline during a separate
training run by executing an instrumented version of the ap-
plication on a (hopefully) representative input set. The pro-
file data is then fed into an optimizing compiler or whole
program optimization system and used to identify the most
desirable call sites to inline. Prototypical examples of sys-
tems using offline, context-insensitive profile data to guide
inlining decisions include [20, 17, 8, 5, 2]. Offline systems
can be quite effective, but are usually somewhat cumber-
some to use and can be vulnerable to mispredictions due to
variations in program behavior between the training and pro-
duction runs of the application.

Most high performance Java virtual machines use online
context-insensitive profile data to make inlining decisions.
Previous work in Jikes RVM [3] demonstrated that online
sampling of call edges could be used to drive profile-directed
inlining, resulting in average speedups of 11%. Our work
extends this system by sampling call traces instead of call
edges. Suganuma et al. studied profile-directed inlining in
the IBM DK [23]. Their system gathers context-insensitive
profile information by temporarily interposing instrumenta-
tion code between the caller and callee at hot call sites that

262

1.8%

1.5%

1.2%

~ 0 . 9 %

0

0.6%

0.3%

0%

1 ' 2 : 3 4 2 I 3 4 2 3 4 2 3 . 4 2 i 3 i 4 ~ 2 ' 3 4

cinsi f ixed paramLess class large hybrid1 i hybrid2

Figure 6. Percent of execution time spent in each component of the adaptive optimization system.
The x-axis indicates the profiling policy used, along with maximum context-sensitivity depth. The
y-axis indicates the percentage of time devoted to each component during execution. The baseline
comparison value is located on the left, labeled tins for context-insensitive profiling.

are potential inlining candidates. The HotSpotTMvirtual ma-
chine gathers context-insensitive receiver class distributions
during the initial interpretation of a method [18]. Unlike
Jikes RVM and the IBM DK, HotSpot only gathers call edge
data during initial interpretation of a method and thus is vul-
nerable to mispredictions if the application's calling patterns
are different during initialization and steady state "execution.

The Vortex optimizing compiler used offline context-
sensitive profile data to guide its inlining decisions [13].
Vortex demonstrated that making inlining decisions using
context-sensitive profile data can be quite valuable in opti-
mizing object-oriented programs: context-sensitive profile
data enabled speedups of up to 24% over context-insensitive
profile data for large Cecil programs. These results were the
inspiration for our work on adaptive context-sensitive inlin-
ing for Java programs. Like our system, Vortex's context
sensitivity was based on call chains. However, its context-
sensitivity policy was ad hoc: Vortex profiles optimized code
and exploits this fact to tag profile data with the context in-
formation available from previous inlining. Vortex also ben-
efits from being an offline system: profile data can be post
processed to remove useless context sensitivity and filter out
low probability edges.

The Self-93 system used online context-sensitive profile
data for inlining [15, 14]. Like Vortex, the context sensitiv-
ity in Self-93 was due to profiling optimized code, not to an
explicit context-sensitivity policy. The main differences be-
tween Self-93 and our work are: context sensitivity in Self-
93 was ad hoc rather than managed by explicit adaptive po-
lices, Self-93 gathered profile data via instrumentation in the
PIC dispatching code rather than via call stack sampling, and
no empirical assessment of the importance of context sensi-
tivity for inlining was performed.

Call chain based context sensitivity is a very common
practice in program analysis [21, 22]. Although context-
sensitive profiling is less common, previous work has de-
scribed several data structures for storing context-sensitive
profile data. Vortex introduced a call chain representation
for storing receiver class distributions that was optimized for
the kinds of queries made by its inlining algorithm [13]. Am-
mons et al. developed the calling-context tree as a compact
representation for context-sensitive profile data [1]. Later
work by Whaley [26] and Arnold and Sweeney [4] described
algorithms for constructing partial or approximate calling-
context trees by periodic stack sampling.

Our system currently uses a very simple trace represen-
tation for its profile data. So far, this has been adequate but
we are considenng moving to a more sophisticated repre-
sentation of the profile data that more efficiently supports
the operations of the inlining organizer and inline oracle.

7. Conclusions

In this paper, we evaluated the use of adaptive, context-
sensitive profile information for improving online method
inlining. We described the implementation details and is-
sues encountered as we incorporated our ideas into the Jikes
RVM adaptive optimization system. We also provided de-
tails about several adaptive heuristics which approximate
the ideal amount of context sensitivity, but in a manner
lightweight enough to be used online in a virtual machine.

Our techniques were evaluated using various criteria. We
assess the impact on overall runtime performance, code size,
and the raw overhead of our implementation on the entire
system. Our techniques were not simulated; they were im-
plemented in an actual virtual machine, thus our perfor-

263

mance numbers are actual wall-clock speedups that were
achieved with a minimal amount of system tuning. On aver-
age, we found that with minimal impact on performance (+/-
1%) context sensitivity can enable 10% reductions in com-
piled code space and compile time. Performance on individ-
ual programs varied from -4.2% to 5.3% while reductions
in compile time and code space of up to 33.0% and 56.7%
respectively were obtained.

We have also discovered that we have only begun to rec-
ognize the potential of adaptive context-sensitive inlining in
an online setting. As our techniques mature and we inves-
tigate larger and more object-oriented programs, we expect
context-sensitive inlining to be even more effective.

Acknowledgements

We would like to thank all of the contributors to Jikes
RVM for helping to build the infrastructure that enabled this
study. We thank Mike Hind and Vivek Sarkar for their input
and support of this research. We also thank Mike Smith for
his support of Kim Hazelwood's involvement. This research
was performed while Kim was a summer intern at Watson.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profil-
ing. In Proceedings of the ACM SIGPLAN'97 Conference on
Programming Language Design and Implementation (PLDI),
pages 85-96, Las Vegas, Nevada, 15-18 June 1997.

[2] M. Arnold, S. Fink, V. Sarkar, and P. Sweeney. A compar-
ative study of static and dynamic heuristics for inlining. In
ACM SIGPLAN Workshop on Dynamic and Adaptive Compi-
lation and Optimization, Jan. 2000.

[3] M. Arnold, D. Grove, S. Fink, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapefio JVM. In Proceedings
of the ACM S1GPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA
2000), Minneapolis, MN, Oct. 2000.

[4] M. Arnold and P. E Sweeney. Approximating the calling
context tree via sampling. Technical Report RC 21789, IBM
T.J. Watson Research Center, July 2000.

[5] A. Ayers, R. Gottlieb, and R. Schooler. Aggressive inlin-
ing. In Proceedings of the ACM SIGPLAN'97 Conference on
Programming Language Design and Implementation (PLDI),
pages 134--145, Las Vegas, Nevada, 15-18 June 1997.

[6] B. Calder and D. Grunwald. Reducing indirect function call
overhead in C++ programs. In 21st Annual ACM SIGACT-
SIGPLAN Symposium on the Principles of Programming
Languages, pages 397--408, Portland, OR, Jan. 1994.

[7] C. Chambers and D. Ungar. Iterative type analysis and ex-
tended message splitting: Optimizating dynamically-typed
object-oriented programs. In ACM Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions, pages 150-164, 1990.

[8] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu.
Profile-guided automatic inline expansion for C programs.

Software - Practice and Experience, 22(5):349-369, May
1992.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In 9th
European Conf. on Object-Oriented Programming, 1995.

[10] D. Detlefs and O. Agesen. Inlining of virtual methods.
In 13th European Conference on Object-Oriented Program-
ming, June 1999.

[11] A. Diwan, J. E. Moss, and K. S. McKinley. Simple and effec-
tive analysis of statically-typed object-oriented programs. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 292-305, Oct. 1996.

[12] M. F. Fernandez. Simple and effective link-time optimiza-
tion of Modula-3 programs. In Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language Design
and Implementation (PLDI), pages 103-115, La Jolla, Cali-
fornia, 18-21 June 1995.

[13] D. Grove, J. Dean, C. Garrett, and C. Chambers. Profile-
guided receiver class prediction. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 108-123, Oct. 1995.

[14] U. H61zle. Adaptive Optimization for Self." Reconciling High
Performance with Exploratory Programming. PhD thesis,
Stanford University, Aug. 1994.

[15] U. HOlzle and D. Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In SIGPLAN '94 Con-
ference on Programming Language Design and Implementa-
tion, pages 326-336, June 1994. SIGPLAN Notices, 29(6).

[16] R. Johnson. TS: An optimizing compiler for Smalltalk. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 18-26, 1988.

[17] W. mei W. Hwu and P. E Chang. Inline function expan-
sion for compiling C programs. In SIGPLAN '89 Conference
on Programming Language Design and Implementation, vol-
ume 24, pages 246-255, June 1989. SIGPLANNotices 24(6).

[18] M. Paleczny, C. Vick, and C. Click. The Java Hotspot(tm)
Server Compiler. In USENIX Java Virtual Machine Research
and Technology Symposium, pages 1 - 12, Apr 2001.

[19] J. Plevyak and A. A. Chien. Precise concrete type infer-
ence for object oriented languages. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 324-340, Oct. 1994.

[20] R.W. Scheifler. An analysis of inline substitution for a struc-
tured programming language. CACM, 20(9), Sep 1977.

[21] M. Sharir and A. Pnueli. Two approaches to interprocedu-
ral data flow analysis. In S. S. Muchnick and N. D. Jones,
editors, Program Flow Analysis: Theory and Applications,
chapter 7, pages 189-234. Prentice-Hall, 1981.

[22] O. Shivers. Control flow analysis in Scheme. In SIGPLAN
"88 Conference on Programming Language Design and Im-
plementation, pages 164-174, June 1988.

[23] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study
of method inlining for a java just-in-time compiler. In Usenix
Java Virtual Machine Research and Technology Symposium
(JVM'02), July 2002.

[24] The Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks. http://www.spec.org/osg/jvm98, 1998.

[25] The Standard Performance Evaluation Corporation. SPEC
JBB 2000. http://www.spec.org/osg/jbb2000, 2000.

[26] J. Whaley. A portable sampling-based profiler for Java virtual
machines. In 2000 Java Grande Conference, June 2000.

264

