
Is it a Tree, a DAG, or a Cyclic Graph?

A Shape Analysis for Heap-Directed Pointers in C *

Rakesh C4hiya and Laurie J. Hendren

School of Colmputer Science, McGill University

Montr6al, Qu6bec, CANADA H3A 2A7

{ghiya,hendren}ocs ,mcgill. ca

Abstract

This paper reports on the design and implementa-

tion of a practical shape analysis for C. The pur-

pose of the analysis is to aid in the disambiguation of

heap-allocated data structures by estimating the shape

(‘Ike, DA G, or Cyclic Graph) of the data structure ac-

cessible from each heap-directed pointer. This shape

information can be used to improve dependence test-

ing and in parallelization, and to guide the choice of

more complex heap analyses.

The method has been implemented as a context-

sensitive interprocedural analysis in the McCAT conl-

piler. Experimental results and observations are given

for 16 benchmark programs. These results show that

the analysis gives accurate and useful results for an

important group of applications.

1 Introduction and Related

Work

Pointer analyses are of critical importance for optinliz-

ing/parallelizing compilers that support languages like

C, C++ and FORTRAN90. The pointer analysis prob-

lem can be divided into two distinct subproblems: (i)

analyzing pointers that point to statically-allocated ob-

jects (typically on the stack), and (ii) analyzing point-

ers that point to dynamically-allocated objects (typi-

cally in the heap). Pointers to stack objects are usu-

ally obtained using the address-of (&a) operator, while

*This work supported by NSERC, FCAR, and the EPPP
project (financed by Industry Canada, Alex Parallel Conlput-

ers, Digital Equipment Canada, IBM Canada and the Centre de

recherche inforrnatique de Mcmtr6al).

Permission to make digitallhard copies of all or part of thk material for
personal or claasroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantsge, the copy-
right notice, tbe title of the publication and ita date appear, and notice is
given rha~ copyright is by permission of the ACM, Inc. To copy otherwise,
to repubhsh, to post on servers or to redistribute to tista, requnes specific
permission and/or fee.

POPL ’96, St. Petersburg FLA USA
@1996 ACM ()..89791_769_3 /95/()l ..$3.50

pointers to heap-objects are obtained using a memory

allocating function like malloc (). Henceforth we will

refer to these analyses respectively as stack analysis

and heap analysis.

A considerable amount of work has been done in both

of these areas. Initially, the focus was on heap analysis

alone, for languages like Lisp and Scheme or for toy im-

perative languages that did not include all of the com-

plexities of C [3, 4, 5, 12, 17, 18, 19,20,22,23,27, 30].

A recent trend has been to actually implement pointer

analyses in real C and FORTRAN90 compilers, and

to examine if practical and useful solutions can be

obtained. The most recently proposed (and imple-

mented) approaches [1, 6, 26, 29, 32, 33], mostly fo-

cus on the stack problem and only give conservative

estimates for the heap problem. These approaches ex-

ploit the fact that pointer targets on the stack always

possess a compile-time name. Using this property stack

pointer relationships are accurately captured as points-

to pairs [6] of the form (p, x) (denoting pointer variable

p points to the data object x), or alternatively as alias

pairs [26] of the form (*p, x) (denoting *p and x are

aliased).

Unfortunately heap objects do not have any fixed

name during their lifetime, as they are dynamically

allocated and are inherently anonymous. Hence var-

ious schemes are used to name them: naming them ac-

cording to the place (statement) in the program where

they are allocated [3, 26, 29] or further qualifying these

names with procedure strings to distinguish between

objects allocated at the same statement but along dif-

ferent calling chains [1, 33]. These naming schemes can

give the same name to completely unrelated heap ob-

jects, and hence tend to provide conservative results,

and they cannot compute shape information.

Instead of adapting heap analysis to an abstraction

actually designed for stack analysis (by naming heap

objects), our approach is to decouple the two analy-
ses and provide heap analyses that approximate rela-

tionships and attributes of heap-directed pointers. In

our McCAT compiler we first perform a stack analy-

sis called points-to analysis [6, 8] that resolves pointer

relationships on the stack. It uses one abstract lo-

cation called heap for all heap locations and reports

all heap-directed pointers to be pointing to it. De-

pending on the characteristics of the program under

analysis, we can then apply the appropriate heap anal-

ysis which gives more precise information about the

relationships between heap-directed pointers. For pro-

grams with few uses of the heap, the level-O or points-

to analysis is enough. For programs that use a number

of dynamically-allocated arrays and/or non-recursive

structures, the level-l or connection analysis is used

which identifies if two heap-directed pointers point, to

the same structure [10, 11]. Scientific applications writ-

ten in C typically exhibit this feature, as they use a

number of disjoint dynamically-allocated arrays.

This paper focuses on the /evcL2 heap analysis:

shape analysis. The goal of shape analysis is to esti-

mate the shape of the data structure accessible from a

given heap-directed pointer: is it tree-like, DAG-like

or a general graph containing cycles? More specif-

ically, our focus is on identifying unaliased tree-like

and acyclic DAG-like data structures built by the pro-

gram, and provide conservative estimates otherwise.

Shape analysis is designed for programs that primarily

use recursive data structures, or a combination of ar-

rays and recursive data structures. Shape information

can be gainfully exploited to parallelize such programs

[12, 17,22, 24], or to apply optimizing transformations

like loop unrolling [15] and software pipelining [16] on

them.

Much of the previous work on heap analysis also pri-

marily focused on some variation of the ploblem of

shape estimation [3, 5, 17, 19, 21, 23, 28, 30]. In gem

eral, all of these approaches use a more complex ab-

straction than the one given in this paper, and as a

result they may find a more precise answer. Rather

than look for a complex abstraction, our approach is

to start with simple abstractions that can be inlple-

mented in real compilers and examine the usefulness of

these simple abstractions with respect to a set of rep-

resentative benchmark programs. Thus, the main con-

tribution of our work is the design and implementation

of practzcal abstractions to perform shape analysis for

an important class of C programs. We believe we are

the first to implement such a method in an optinliz-

ing/parallelizing C, compiler and collect empirical re-

sults for real C programs. Our results indicate that our

shape analysis provides accurate results for programs

that build tree-like and DAC,-like data structures in a

compositional manner.

The rest of the paper is organized as follows. In

Section 2 we give a high-level overview of the analy-

sis rules assuming a simple model where stack-directed

pointers and heap-directed pointers are clearly sepa-

rated. The method has been fully implemented in the

McCAT compiler as a context-sensitive interprocedu-

ral analysis for C programs. In Section 3 we give a

brief overview of our implementation of this method

and discuss the most pertinent features. We present

some empirical data in Section 4, to evaluate the cost

and effectiveness of shape analysis. Conclusions and

some future directions are given in Section 5.

2 Analysis Rules

The shape analysis is actually composed of three store-

/ess [4] abstractions that work together and are com-

puted together for each program point. For each heap-

directed pointer, we approximate the attribute shape,

and for each pair of heap-directed pointers we approx-

imate the direction and interference relationships be-

tween them. These three abstractions are defined for-

mally as follows.

Definition 2.1 Gtven any heap-directed pointer p, the

shape attribute p. shape is Tree, if in the data struc-

ture accessible from p there is a unique (possibly empty)

(access) path between any two nodes (heap objects) be-

longtng to d. It is considered to be DAG (dtrected

acyclic graph), if there can be more than one path be-

tween any two nodes an this data structure, but there is

no path from a node to itself (i. e, ii is acyclic). If ibis

data structure contatns a node having a path to itself,

p. shape ts considered to be Cycle. Note that, as lists

are a spectal case of tree data structures, their shape is

also considered as Tree.

Definition 2.2 Given any two heap-dtrected pointers

p and q, direction matrix D captures the followtng re-

lattonshlps between them:

o II [p, q] = I : An access path possibly exists in the

heap, from the heap object pointed to by pointer p,

to the heap object potnted to by pointer q. In this

case, we szmply state that pointer p has a path to

pointer q.

e I) [p, q] = o : No access path extsts from the heap

object poznted to by p, to the heap object pointed

to by q.

Definition 2.3 Gzven any two heap-directed pointers

p and q, interference matrix I captures the following

relattonslups between ihem:

e I Cp, q] = I : A common heap object can be pos-

sibly accessed, starting from poznters p and q. In

thus case, we state that p and q can interfere.

e I Ip, q] = O : No common heap object can be ac-

cessed, starting from pointers p and q. In this

case, we state that p and q do not interfere.

Direction relationships are used to actually estimate

the shape attributes, while interference relationships

are used for safely calculating direction relationships.

2

s w----- \t)

\

\
R:

I AL w“ -i-

.(~-y -~ -

i e---------------
u ---- ----- --
r -------- -.

n’.

h

‘jLRR~~

(a) Heap Structure

P q r s t ~, P q r s t u,

P 1 1 0 0 0 0 P 1 1 0 0 0 0
q o 1 0 0 0 0 ,q 1 1 0 0 0 0
r o 0 1 0 (1 o r o 0 1 1 0 1

s o 0 1 1 1 0 s o 0 1 1 1 1

t o 0 0 0 1 0 t o 0 0 1 1 0
u o 0 1 0 0 1 u o 0 1 1 0 1

(b) Direction Matrix (c) Interference Matrix

Figure 1: Example Direction and Interference Matrices

2.1 Illustrative Examples

We illustrate the direction and interference abstrac-

tions in Figure 1. Part (a) shows the heap structure

at a program point, while parts (b) and (c) show the

direction and interference matrices for it.

In Figure 1, an access path exists from pointer p to

q, and also from pointer s to t, so the entries D [p, q]

and D [s, t] are set to one. No access path exists from

pointer q to p, or from pointer r to t, so the entries

D Cq, pl and D [r, t] are set to zero. Further, no path

exists from pointer s to u and vice versa, so both the

entries D [s, u] and D Cu, s] are set to zero. However

starting from both u and s the heap object pointed to

by r can be accessed. To indicate this, the interference

matrix entries I [s, u] and I [u,s] are set to one. This

example also illustrates that: (i) direction ~elationships

are not symmetric, (ii) interference relationships are

symmetric, and (iii) interference relationships form a

superset of direction relationships. The second prop-

erty is used to reduce the storage requirement for the

interference matrix by half, in the actual implenlenta-

tion. The third property follows from the fact that if

an access path exists from pointer p to q, then they

can also both access the object pointed to by q.

We now demonstrate how direction relationships

help estimate the shape of heap data structures. In

Figure 2, initially we have both p. shape and q. shape

as Tree. Further D [q, p] is one, as there exists a path

from q to p through the next link. The statement

p->prev = q, sets up a path from p to q through the

prev link. From direction matrix information we know

that a path already existed from q to p, and now a

path is being set also from p to q. Thus we can deduce

the creation of a cycle between heap objects pointed to

by p and q. Thus, after the statement, D [p, q] = 1,

D[q,p] = 1, p. shape = Cycle and q. shape = Cycle.

It should be noted that for a heap-directed pointer p,

p. shape only abstracts the shape of the data structure

accessible from p and not the overall shape of the data

structure pointed to by p. For example, in Figure 3,

the overall shape of the data structure pointed to by

p and q is DA G. However, if only the part of the data

structure accessible from p or q is considered, its shape

is Tree. So we have both p. shape and q. shape as Tree.

Knowledge about the shape of the data structure ac-

cessible from a heap-directed pointer, provides crucial

information for disambiguating heap accesses originat-

ing from it. For a pointer p, if p. shape is Tree, then any

two accesses of the form p->f and p–>g will always lead

to disjoint subpieces of the tree (assuming f and g are

distinct fields). If p. shape is DA G, then two distinct

field accesses p->f->f and p->g can lead to a com-

r I

lav.-/ ‘R.-q /~
next

P

A4

p->prev = q next prev
\

\
P \

. ~.
J-4

J

Figure 2: Example Demonstrating Shape Estimation

y. Additionally, we have the attribute matrix A, where

~la.P \

.“

\

Figure 3: Estimating Shape with uccesszbthiy Criterion

mon heap object, as in Figure 4. However, if a dag-like

structure is traversed using a sequence of links, every

subsequence visits a distinct node. This information

can be used to disambiguate heap accesses in different

iterations of a loop, or different recursive calls, travers-

ing such a data structure. Finally, if p. shape happens

to be Cycle, we have effectively no information to dis-

ambiguate heap accesses originating from p.

Thus, the goal of shape analysis is to identify tree-

like and dag-like data structures, and to retain this

information as long as possible, during the analysis,

We now present the rules to calculate direction and

interference matrix abstractions, and to estimate shape

information using them.

2.2 Analysis of Basic Statements

The McCAT compiler translates input C programs
into a structured and compositional intermediate form

called SIMPLE [31] . Using this form, there are eight

basic statements that can access or modify heap data

structures as listed in Figure 5(a). Variables p and

q and the field f are of pointer type, variable k is of

integer type, and op denotes the + and - operations.

The overall structure of the analysis is shown in Fig-

ure 5(b). Given the direction and interference matrices

D and I at program point x, before the given statement,

we compute the matrices Dn and 171 at program point

for a pointer p, A [p] gives its shape attribute. The

attribute matrix after the statement is represented aa

A,,.

For each statement, we compute the sets of direc-

tion and interference relationships it kills and gener-

ates. Using these sets, the new matrices Dn and In are

computed as shown in Figure 5(c). Note that the ele-

ments in the gen and kill sets are denoted as D(p ,q) for

direction relationships, and I(p ,q) for interference rela-

tionships. Thus a gen set of the form{ D(x,y), D(y,z) },

indicates that the corresponding entries in the output

direction matrix (Dn [x,y] and D,, [y,z]) should be set to

one. We also compute the set of pointers H$, whose

shape attribute can be modified by the given state-

ment. Another attribute matrix Ac is used to store the

changed attribute of pointers belonging to the set H..

The attribute matrix A,, is then computed using the

matrices A and AC as shown in Figure 5(c).

Let H be the set of pointers whose relation-

ships/attributes are abstracted by matrices D, I and

A. Assume that these pointers can only point to heap

objects or to NULL. Further assume that updating an

interference matrix entry I [p ,q], implies identically up-

dating the entry I[q,p]. This assumption is rendered

valid due to the symmetric nature of interference rela-

tionships.

The actual analysis rules can be divided into three

groups: (1) allocations, (2) pointer assignments, and

(3) structure updates. In the following subsections we

discuss the three rules.

2.2.1 Allocating new heap cells

p = malloco : Pointer p points to a newly allocated

heap object. All its existing relationships get killed.

Pointer p now has an empty path to itself and and it

also interferes with itself. This statement can change

the attributes of only pointer p. Since the newly allo-

cated object pointed to by p has no incoming or out-

going links, its shape attribute is Tree. This can be

4

P ~. . ..@f-JJ-–-p-p

Figure 4: Acyclicity of Dag Data Structures

Allocations

l.p = malloco;

Potnter Assignments

2.p=q;

3. p = q->f;

4.p = k(q->f);

5.p=qopk;

6. p = NULL;

Structure lJpdate.s

7. p->f = q;

8. p->f = NULL;

Build the new matrzces

V r,s E H, D~[r,s] = D[r,s], I~[r,s] = I[r,s]

b’s c H, An[s] = A[s]

Delete killed relationships

V entries D(r,s) E D.kill=et, Dn [r,s] = O

V entries I(r,s) E I-kill-set, In[r,s] = O

Add generated relationships

V entries D(r,s) c D.gen-set, Dn [r)s] = 1

V entries I(r,s) c I-gen.s.et, In[r,s] = 1

Update shape attributes of affected pointers

Compute H, and Ac

V s E H,, /ln[S] = &[s]

(a) Basic statements I (b) Analysis Structure I (c) General Form of Analysis Rules

summarized with the following rule.

Fi,gure5: The Overall Structureo ftheAnalysis

D_kill-set={D(p,s) [s EHAD[p,s]}u

{ D(s,p) I S E H A D[s,p] }

I_kill._set = { I(p,s) I s E H A I[p,s] }

D_gen_set={D(p,p)} I-gen-set={I(p,p)}

H, = {p} AC[p]= Tree

Note that having D(p,p) in thegen set here simply

implies that p presently points to a heap object. It

does not imply that a cyclic data structure becomes

accessible fromp after this statement. In that, case, we

would also have AC[p] = Cycle.

2.2.2 Pointer assignnwnts

The next five basic heap statements (p = q,p = q->f,

p = &(q->f), p = q op kandp = NULL) updatethe

stack-resident pointer p, and make it point to a new

heap object. They kill all existing relationships ofp,

and can only change the shape attribute of pointer p.

So the kill set and the set H, for all these statements,

are same as that for the statement p = malloc (). Be-

low, we present the rules to calculate the gen set and

the matrix Ac for these five statements,

p=q: Pointer p now points to the same heap object

as q. It simply inherits the relationships and the shape

attribute of pointer q. III case q presently points to

NULL, p would also point to NULL after the statement.

So we have D(p,p) and I(p,p) in the gen set, only if

D[q,q] and I[q,q] are presently set to one (implying that

q does not point to NULL). We have the following overall

rule for the statement p = q.

D-gen-set-from = { D(s,p)] s G H A s # p A D[s,q] }

D-genset-to = { D(p,s) [s c H A s # p A D[q,s] } U

{ D(p,p) I D[q,q] }

I-.gen_set = { I(p,s) I s ~ H A s # p A I[q,s] } U

{ I(p,p) I I[q,ql }

D-gen_set == D_gen-set.from U D_gen_set.to

H, = { p } AC[p] = A[q]

For purposes of our analysis we consider a pointer

pointing to a specific field or at a specific offset of a

heap object, to be pointing to the object itself. With

K

this assumption, the statements p = &(q->f) ancl p =

q op k are equivalent to the statement p = q for shape

analysis and are analyzed using the same rule.

The statement p = NULL kills all relationships of p

and does not generate any new relationships. Since p

points to NULL after the statement, shape attribute is

not relevant to it. As a default case, it is set as Tree.

P = Iq->f : This statement makes pointer p point to

the heap object accessible from pointer q through the

link f, as shown in Figure 6.1 It generates following

types of relationships: (i) new direction relationships

because of pointer p having a path from/to other point-

ers, and (ii) new interference relationships with respect,

to pointer p.

From Relationships :

After the statement p = q->f, p will have a path

from all pointers that presently have a path to q (u,

v and q in Figure 6). Further, p can potentially also

have a path from: (i) pointers to which q has a path

to (pointer 1 in Figure 6), and (ii) pointers which in-

terfere with q (pointer t in Figure 6). It is because

of the second possibility that we abstract interference

relationships. Note that due to these two possibilities,

a number of spurious relationships can be generated.

For example in Figure 6, we will generate the spuri-

ous relationships D(r,p) and D(s, p), as q also has a

path to r and p, besides I. As all pointers q has paths

from/to, also interfere with q, the set of ~rom direction

relationships can be stated as follows.

D.gen_set.from = { D(s,p) I s E H A s # p A I[s,q] }

To Relationships : Pointer p will have a path to

all pointers q has a path to via the link f. ~Fronl the

direction matrix, we can find all the pointers q has a

path to, but cannot identify the pointers q has a path

to via a specific link. So we conservatively assume p

to be having a path to aii the pointers q has a path

to. In Figure 6, after the statement, p is reported to

be having paths to pointers 1, r and s, where the path

from p to s is spurious.

Note that q has a path to itself, so according to the

above assumption p should also be reported to have a

path to q after the statement. Ho\vever, if the data

structure accessible from q is acyclic (i.e. A[q] = Tree

or Dag), p cannot have a path bacli to q. Iu Figure 6,

A[q] is Tree, hence p is not, reported to be having a

path to q.

Thus, the set of fo direction relatioushil]s can be

summarized as:

1In this Figure, for sake of clarit y we have simply labelecf each
node with the stack-resident pointer that points to it, imteacl of
explicitly representing the stack.

D-gen-set-to = { D(p,s) \ s 6 H A s

D[q,s] } U { D(p,q)

U { D(p,p) I D[q,q]

The overall D-gen-set is obtained

from and to sets.

#q As+p A

I A[q] = Cycle}

}

by unioning the

Interference Relationships : After the statement,

pointer p can potentially interfere with all the pointers

q presently interferes with. So we have the following

set of newly generated interference relationships:

I-gell-set == { I(p,s) \ s 6 H A s # p A I[q,s] } U

{ I(p,p) I I[q,q] }

Despite potentially introducing several spurious re-

lationships, this statement does not affect the shape

of the data structure accessible from q. It only gives

a new name to one of the heap objects belonging to

this data structure. Since the data structure accessible

from p is a subpiece of the data structure accessible

from q, it is safe to assign p the shape attribute of q,

giving the following attribute matrix AC:

AC[p] = A[q]

It is possible that A[q] is Cycle, while the shape of

the structure accessible from q via the f link is Tree.

However, we cannot detect this from the information

available, and must conservatively say that An [p] is a

Cycle. But if A[q] is Tree, we do not lose the tree at-

tribute, and if it is Dag we still preserve the acyclic

property of the data structure accessible from p. Note

that if we simply deduce the shape attribute of p from

its direction relationships after the statement, we may

lose its Tree or Dag attribute. Thus, separately ab-

stracting the shape attribute proves to be critical in

identifying tree-like and dag-like data structures.

2.2.3 Structure Updates

Structure updates are of the form p->f = NULL and

p->f = q. These are the “nasty” statements for shape

analysis in imperative programs because such state-

ments can drastically change the shape and connectiv-

ity of heap structures. The goal is to get accurate kill

and gen information without using an overly complex

abstraction. The choice we have made in this prac-

tical technique is to use our simple abstractions and

live with overly conservative gen and kill sets for these

types of statements. However, using a combination of

our three abstractions, we are still able to perform ac-

curate shape estimation in many important cases. We

discuss the analysis of the two statements in detail be-

low.

6

‘Q ‘P ‘Q ‘P

Figure 6: Analyzing Basic Heap Statement p = q->f

p->f = NULL : This statement breaks the link f enla-

nating from the heap object pointed to by p. After the

statement, p should no longer have paths to pointers,

it presently has paths to exclusively via the link f. As

already discussed, this information cannot, be obtained

from direction/interference matrices. So no relation-

ships can be killed. Further, the statement does Ilot

generate any new relationships.

The shape attribute of pointer p may change, if this

statement disconnects the subpiece of the data struc-

ture, due to which A[p] is Dag or Cycle. But the di-

rection/interference information does not suffice to de-

tect such cases, and we err conservatively leaving the

attributes unchanged. Note that due to the lack of

precise kill information for this statement, if a tree-like

structure temporarily becomes dag-like or cyclic, and

becomes a tree again (e.g. when swapping the children

of a tree), our analysis would cent inue to report its

shape as Dag or Cycle.

p->f = q : This statement first breaks the link f, and

then resets it thereby linking the heap object pointed

to by p, to the heap object pointed to by q, as shown in

Figure 7. As already discussed, the relationships killed

on breaking the link f, cannot be obtained with the

information available. However, resetting the link f

results in generating some new relationships and nlod-

ifying the attributes of several pointers, as discussed

below.

All pointers having a path to p (including p itself),

will now have a path to q via the link f. Further, these

pointers will have paths to all pointers q has paths to.

In Figure 7, pointers u, v and p will have paths to

pointers q, r and s after the statement. Thus, the set

of direction relationships generated cau be summarized

as follows:

D.gen-set = { D(r,s) I r,s ~ H A D[r,p] A D[q,s] }

In Figure 7, pointer q interferes with pointer t, be-

fore the statement. After the statement, pointers u,

v and p will also interfere with t. This demonstrates

that all pointers having a path to p, can potentially

interfere with all pointers q interferes with. Thus we

get the following set of new interference relationships:

I-gen-set = { I(r,s) I r,s 6 H A D[r,p] A I[q,s] }

This statement can considerably affect the shape at-

tribute of pointers, which have direction relationships

with pointers p and q. We can have the following situ-

ations, depending on the current attributes and direc-

tion relationships of pointers p and q:

Pointer q already has a path to p (D[q,p] = 1) : After

the statement p->f = q, p will also have a path back

to q. Thus, a cycle will be generated between p and q.

We have already illustrated this case in Figure 2. Fur-

ther, this cycle will also be accessible from all point-

ers that presently have a path to p or q (including p

and q themselves), and the shape attribute of all these

pointers will become Cycle. We summarize this case as

follows:

H, = { S I S G H A (D[s,q] V D[s,p]) }

V s E Hs, D[q,p] =+ Ac[s] = Cycle

If the above situation does not arise, we have the

following possibilities:

A[q] = Tree : In this case another tree-like structure

becomes accessible from all the pointers that presently

have a path top. If the data structures pointed to by p

and q are initially completely disjoint, then the state-

ment simply connects a tree substructure to the data

structure pointed to by p and does not affect the shape

attribute of any pointer. Figure 7 illustrates this case.

Otherwise the shape attribute of pointers that initially

have a path to p and also interfere with q, becomes Dag

(if it is presently Tree). Pointers u and v in Figure 8

fall in this category. Finally, if the shape attribute of

such a pointer is already Dag or Cycle, it remains un-

changecl. In other words, the shape attribute of these

7

‘Q ‘P ‘Q ‘P ‘Q ‘P’j/
fg

P

v
f

‘

OP

t

fg

‘(3?$

s

1

Figure 7: Analyzing Basic Heap Statement p->f = q

Figure 8: Direction Relationships Impacting Shape Attribute

pointers, becomes the merge of their current attribute

and the Dag attribute, where the merge operator w for

the shape attribute is defined as follows:

This case can be formally summarized as follows:

Hs = {S Is C H A (I[s,q] A D[s,p]) }

V s c Hs, ((7 D[q,p]) A (A[ql = Tree)) +

A.[s] = A[s] M Dag

A[q] # Tree : In this case, the shape attribute of all

pointers that have path to p is merged with the shape

attribute of q. This is required because the data struc-

ture accessible from q, will also become accessible from

all these pointers after the statement. 1~’e summarize

the case as follows:

H,={s[sc HA D[s,P]}

V s e H,, ((~ D[q,p]) A (A[q] # Tree)) 5

A.[s] = A[s] w A[q]

LFrom the rules presented above, it can be noticed

that a considerable number of spurious direction and

interference relationships can be introduced during the

analysis. However, empirical results presented in Sec-

tion 4, indicate that our analysis provides effective

shape information for a broad range of programs in

an efficient manner.

3 Implemen~in~ ~1-mpe Analysis

in the McCAT C Compiler

Shape analysis has been implemented aa a context-

sensitive interprocedural analysis in the McCAT op-
timizing/parallelizing C compiler. It is a flow-sensitive

analysis and collects program-point-specific informa-

tion. The analysis is performed on the SIMPLE in-

termediate representation which is a simplified, com-

positional subset of C [7, 13, 31]. Shape analysis is

performed after points-to analysis [6, 8] and focuses

only on the subset of pointers reported to be pointing

to heap by points-to analysis. This reduces the stor-

age requirements for the abstractions, and makes the

implementation easier as well as more efficient. The

8

overall analysis framework is similar to that used for

points-to analysis. It should be noted, however, that

other dataflow frameworks could also use the basic

abstraction and rules presented in the previous sec-

tion. Our particular implementation is structured as

a simple analysis for each basic statement of the form

presented in Section 2, a compositional rule for each

control construct, and a context-sensitive approach for

handling procedure calls.

While presenting the basic analysis rules in Section

2.2, we did not consider the presence of stack-directed

pointers. However, we take them into account in the

actual implementation, and this requires some addi-

tional checks. The subtle point is that references of

the form p->f may refer to the stack, the heap, or to

both the stack and heap. For example, in one calling

context, p may point to a stack-allocated object, that

has a name, while in another calling context, p may

point to a heap-allocated object. Consider a statement

of the form p->f = q. If p points to a stack-allocated

object with the name x, then the appropriate analysis

rule is x. f = q, whereas if p points to a heap-allocated

object, the appropriate rule is p->f = q. Thus, our im-

plementation first uses points-to information to resolve

all references of the form p->f into a set of possible

stack and heap locations, and then applies the appro-

priate simple shape analysis rules, merging the results

of all the outputs.

Our strategy for handling control constructs is illus-

trated in Figure 9, which gives the analysis rule for

the while statement. It also defines the merge opera-

tors for our three abstractions. The merge operator for

the direction and interference relationships is simply

the logical OR (V) operation, as they are both possi-

ble (or may) relationships. The merge operator x for

the shape attribute has already been defined in Section

2.2.3. Also note that we consider the loop condition as

a simple assignment, when feasible. For example, when

it involves a pointer equality test like (p == NULL) or

(P ‘= @

To accurately handle procedure calls, we use the

interprocedural analysis framework built by points-to

analysis [6, 8, 14]. It provides us the complete invoca-

tion graph of the program which is constructed by a

simple depth-first traversal of the invocation structure

of the program. Since the invocation structure is not

known statically for recursive and indirect calls, they

are handled in a special manner. Recursive calls are

represented by special pairs of recursive and approxi-

mate nodes, where the approximate node represents all

possible unrolling of recursion. Indirect calls through

function pointers are represented by nodes indicating

the possible set of functions invocable from the given

call-site (resolved during points-to analysis).

Based on the above framework, we use the context-

sensitive interprocedural strategy depicted in Fig-

/ * DII, A : Input matrices, H : Set of pointers

* abstracted, ign : Current invocation graph node */

fun process-while(cond, body, D, I, A, H,ign) =

do

prevD = D; prevI = I; prevA = A;

[D1,I1,A1] = process-basic-strnt(ccmd,D,I,A,H);

[D2,12,A2] = process_stmt(body, Dl,Il,Al,H,ign);

D = Merge(D,D2); I = Merge(I,12);

A = Merge(A,A2);

while ((D != prevD) and (I != prevI) 10

and (A != prevA));

return([D,I,A]);

Merge(D,Dl) ~ V r,s c H, D[r,s] = D[r,s] V Dl[r,s]

Merge(I,Il) ~ V r,s c H, I[r,s] = I[r,s] V Il[r,s]

Merge(A,Al) a V s E H, A[s] = A[s] M Al[s]

Figure 9: Analyzing a while Statement

ure 10. Complete rules for our interprocedural analysis

scheme are described in [11]. Here we briefly discuss

only the most pertinent issues. The general idea is that,

first, the three matrices (for direction, interference and

attribute abstractions) at the call-site are mapped to

prepare the input matrices for the called procedure.

Next, the body of the procedure is analyzed with these

input matrices, and the output matrices obtained are

unmapped and returned to the call-site. With this ap-

proach, every time a procedure call is analyzed for some

call-chain, there exists a unique invocation graph node

corresponding to it. Recursive calls are handled via an

iuterprocedural fixed-point computation, using the spe-

cial recursive and approximate nodes in the invocation

graph. Indirect calls are handled by separately analyz-

ing each invocable procedure from the given call-site,

and then merging all outputs.

F;f>l

Function

Anal ysis

Unmap Process

Figure 10: The Interprocedural

g(x) ;

{

}

Strategy

The main issue related with map and unmap pro-

cesses, is identifying the set of pointers whose at-

tributes/relationships can be modified by the proce-

dure call. This set includes pointers which are: (i)

global in scope, (ii) not in the scope of the callee but are

accessible via m indirect reference (Invisible variables),

and (iii) not at all accessible in the callee, but have a

direction/interference relationship with some pointer

accessible in the callee (tnaccesszble variables). Spe-

cial symbolic names must be generated to represent, all

invisible and inaccessible variables and capt,ure their

attributes/relationships in the calling context

Points-to analysis already generates symbollc names

for znvzsible variables, and we simply reuse them For

Inaccessible variables we generate two symbolic names

for each parameter or global that is related to some

inaccessible variable(s). If the name of the parameter

or global variable is x, then we use the name O–x to

represent all inaccessible pointers that have paths to x,

and the name O+x to represent all inaccessible pointers

that have paths from x or interfere with x. For each

procedure call a mapping is stored between names in

the calling context and names in the called context

(globals, parameters and symbolic names), and is used

while unmupptng. Completed escriptiouofthe rules for

map and unmup processes can be fouudin [11].

Finally, inorder to get the full context-sensitivity at

a reduced price, we have implemented a simple memo-

rization scheme. Every time we finish analyzing a proce-

dure call, we store the currently computed pairs of in-

put and output matrices, in the invocation graph node

corresponding to it. When this call is re-analyzed along

this call-chain, we simply use the stored output from

its invocation node, if the current input is identical to

the stored input. We are also currently exploring other

techniques to optimize our interprocedural algorithm,

which include: (i) excluding the functions from the in-

vocation graph, which neither update nor access heap-

directed pointer variables, (ii) building the invocation

graph in a lazy manner, as the demand for different

invocation contexts arises during the analysis [9], and

(iii) performing more extensive memorization by trying

to memoize all calls to a procedure (except the first

one) irrespective of the call-chain they appear on

4 Experimental Results

4.1 Benchmarks

We have collected a number of small and medium sized

benchmarks from a variety of sources. Table 1 summa-

rizes the characteristics of the benchmark programs.

The first section gives the source lines including com-

ments, counted using the wc utility, and the number

of statements in the SIMPLE intermediate representa-

tion (this number gives a good estimate of program size

from the analysis point of view). The second section

gives the minimum, maximum and average number of

variables abstracted by the direction/interference m~]-

trices over all functions in the program (this includes

symbolic variables introduced by OUI’ analysis). These

numbers indicate the size of the abstractions and the

memory requirements of the analysis for a given pro-

gram. Note that the average varies from 7 (sianford)

to 83 (szm), which is quite reasonable with respect, to

space requirements (we use bit matrices). The third

section gives the total number of indirect references

in the program, and the number of indirect references

where the dereferenced pointer can point to a stack lo-

cation] to a heap location and to both a stack and a

heap location (this typically happens when a formal

parameter receives a stack-directed pointer in one in-

vocation of the function and a heap-directed pointer in

another). All the benchmarks in Table 1 have substan-

tial number of indirect references, with majority of the

indirect references refering to heap locations (except

for the two benchmarks: assembler and loader). Thus

the given benchmark set is well suited for evaluating a

heap analysis for C.

4.2 Results

We estimate the effectiveness of shape analysis for this

set, using the following measurements (Table 2(a)):

Refs: The number of heap-related indirect references

in the benchmark.

T, D, C : These three columns respectively give the

number of heap-related indirect references in the

program, where the dereferenced pointer, say p,

points to a tree-like, dag-like or cyclic data struc-

ture: i.e. A[p] = Tree, DAG or Cycle, where A is

the attribute matrix at the given program point.

The multi-columns labeled *a/ (*a) . b and a [i] (where

a itself is a heap-directed pointer) in Table 2(a), sep-

arately give the above measurements for indirect ref-

erences of the respective form.2 The multi-column la-

beled Overall gives the overall statistics for the given

program. Further, in Table 2(b) we compare the ac-

tual shape of data structure(s) a program builds with

that reported by the analysis and we observe if the

shape information would be useful in improving de-

pendence information and/or parallelization. Both ta-

bles have the programs divided into 2 groups. The top

group corresponds to programs that build tree-like data

structures, and are thus good candidates for our shape

analysis. In 9 of these 11 programs, we can determine

that the structures are in fact Trees and this informa-

tion is useful. In the remaining 2 programs, reverse

and s im, we conservatively find that the structures are

DA GS, so our shape information is only slightly use-

ful. The bottom group of programs build structures

that are inherently dag-like or graph-like, and so even

zNote that an access of the form x = a[i] is simply consid-

ered a pointer reference (and not an indirect reference) when

a [i] is a pointer, but a itself is not a pointer. Indirect refer-

ences of the form x = * (a [i]) are counted as indirect references

of the form *a because of our simplification which expresses this

as { temp = a[i] ; x = *temp; }. For this reason, benchmarks

using arrays of pointers may not always have indirect references

of type a[i].

10

Program Source SIh’IPLE Min Max Avg Ind To To Stack/

Lines Stints vars vars vars Refs Stack Heap Heap

bintree 351 342 4 23 10 50 10 40 0

xref 153 l~g 20 40 24 31 0 31 0

misr 277 235 2 10 8 47 39 35 27

chomp 430 476
PO

27 22 127 45 82 0

stanford 885 880 4 14 7 28 0 28 0

hash 257 110 4 6 11 14 7 7 0

power 681 641 16 23 18 180 29 151 0

reverse 123 49 9 18 12 16 0 16 0

assembler 3361 3071 22 36 24 718 666 52 0

loader 1539 1055 13 28 17 170 106 64 0

sim 1422 1760 76 111 83 374 34 340 0

paraffins 381 180 6 31 21 37 2 35 0

blocks2 876 1070 56 82 61 373 98 275 0

nbody 2204 703 24 36 27 134 24 116 6

sparse 2859 1495 24 60 32 468 3 465 0

pug 2400 2089 !Jp
153 48 822 147 688 13

Table 1: Benchmark Characteristics

when our shape analysis gives correct, shape (4 of the 5

programs), the shape information is not really clet ailed

enough for improving dependence testing and/or paral-

lelization. The shape information is useful, however, as

a way of automatically determining that, a higher-level

heap analysis should be applied.

4.3 Observations

Based on the data presented in Tables 2(a) and 2(b),

and our examination of the benchmark programs, we

make the following observations.

If a program builds a tree-like data structure in such

a manner, that a new node is always appended at the

beginning/end of the existing structure, then shape

analysis always successfully infers the shape of this data

structure as Tree. This happens because in this case the

data structure does not even temporarily lose its tree

attribute. In our benchmark set, bzafree, .rrcf, stanford

and chomp build binary trees by appending the new

node to a leaf node, while hash, mtsr, loader and M-

sem bier build linked lists by appending a new item at

the beginning/end of the list. The shape attribute for

these programs is accurately estimated.

If a tree or dag-like data structure is built (or nlod-

ified) by inserting new nodes between existing nodes,

shape analysis provides conservative estimates and re-

ports the shape to be dag-like or cyclic. The following

code fragment illustrates this case:

Si : vld_nvde–>f = q;

S2: ner.r_node = newNode () ;

S3: new-node->f = q;

S4: old_node-M = new_node;

Just before statement S4 both oldnode and neunode

have a path to q. Statement S4 kills the path from

oldnode to q (which is via the link f), and sets a

path from oldnode to newnode. Our analysis can-

not detect the kill information, and finds oldnode to

have an additional path to q via newmode (which is

now actually the only path). So it reports its shape at-

tribute as DA G. If further insertions are done into this

apparently dag-like structure, analysis becomes overly

conservative and reports its final shape attribute as Cy-

cle. This case applies to benchmarks sire, blocks2 and

nbodg.

If a data structure temporarily becomes dag-like or

cyclic and then becomes tree-like again, shape analysis

cannot detect this, and continues to report its shape as

dag-like or cyclic. The benchmark reverse that recur-

sively swaps a binary tree represents this case.

Shape analysis abstracts all pointers from an array of

pointers, say a[lo] , as one pointer a. So the relation-

ships and attribute of this pointer, represent the merge

of the relationships and attributes of all the pointers it

denotes (all pointers a [i]). If the shape attribute of

such a pointer is reported to be Tree, one is guaran-

teed that all array indices point to tree-like structures,

completely disjoint from each other (if the structures

pointed to by two array indices, say a [i] and a[jl

share a node, the shape attribute for a is reported as

D.4 G or Cycle).

In our benchmark set, hash uses an array of pointers

to linked lists, and power implements a power network

tree [2, !25] witl~ its root having an array of pointers to

disjoint subtrees. We get the shape attribute of these

arrays as Tree. For example, the simplified version of

the loop that builds the power tree is as follows:

11

Program *a/ (*a). b a[i] Overall

Refs T D c Refs T D c Refs T D c

bintree 36 36 0 0 4 4 0 0 40 40 0 0

xref 29 29 0 0
~

2 0 0 31 31 0 0

misr 35 35 0 0 0 0 0 0 35 35 0 0

chomp 56 56 0 0 26 26 0 0 82 82 0 0

stanforcl 28 28 0 0 0 0 0 0 28 28 0 0

hash 7 -7 0 0 u o 0 0 7 7 0 0

power 147 147 0 0 4 4 0 0 151 151 0 0

reverse 16 11 5 u o 0 0 0 16 11 5 0

assembler 45 45 0 0 7 7 0 0 52 52 0 0

loader 55 55 0 0 9 9 0 0 64 64 0 0

sim 96 29 67 0 244 221 23 0 340 250 90 0

paraffins 26 8 18 0 9 3 6 0 35 11 24 0

bloclw2 119 16 37 66 156 64 43 49 275 80 80 115

nbody 74 22 0 52 42 14 0 28 116 36 0 80

sparse 384 14 0 370 0 0 0 0 384 14 0 370

pug 514 16 0 498 174 1 0 173 688 17 0 671

(a) Enlpiricz+l h~e~isurements for Shape Analysis

Program Actual Data Structure(s) Built, Shape Shape Shape Info.

Reported Correct Useful

bintree A binary tree Tree yes yes

xref A binary tree with a linked list hanging from each node Tree yes yes

misr A linked list Tree yes yes

chomp A game tree and a linked list Tree yes yes

stanford A binary tree for tree-sort Tree yes yes

hash A hash table using an arrayof linkedlists Tree yes yes

power A tree implementing a power net]vork Tree yes yes

reverse A binary tree which is recursively s~rapped DA G no slightly

assembler A linked list Tree yes yes

loader A linked list Tree yes yes

sim An array of linked lists DA G no slightly

paraffins 3 arrays of interconnected linked lists (DAG) DA G yes slightly

blocks2 A constraint graph data structure (DAG) DA G/Cycle partially slightly

nbody A leaf-linked octree (DAG) Cycle no no

sparse Sparse matrix using linked lists (cyclic) Cycle yes no

pug A COIml>le.X CYCliC structure cycle yes no

(b) Accuracy and t]sefulness of Shape Information

Tab]e 2: Experimental Results

12

t = (struct root*) malloco;

for (i = O ; i <=N; i = i+ ~)

{ temp-1= (i * 10);

1 = build-lateral(temp_l,20);

temp-2 = (* t).feeders;

temp_2[il = 1;

1

In the above loop, the functiouc allbui.ld-lateral

returns a tree in each iteration, which is then connected

to the tth index of the pointer array temp-z. Since in

each iteration a disjoint tree is connected, the overall

shape of the pointer array temp-2 is deduced as Trte.

Further, most of the computation in this benchmark,

is performed in a loop which iterates o~er this array.

The important segment of this loop in the simpl~jic d

format is as follows:

for (i=O; i<=N; i=i+ 1)

{ temp_O = (* r).feeders;

1 = temp-O[il;

theta_R = (* r).theta_R;

theta_I = (* r).theta_I;

a = Compute_Lateral(l,theta-R,theta_I ,

theta_R,theta.-I) ;

. . .
}

For this loop, we know from shape information

that in each iteration pointer 1 points to a disjoint

tree, which is then operated upon by the function

compute~ateral. Thus this loop can be effectively

parallelized provided there are no dependencies due

to other variables (there are none in this case). This

demonstrates how shape analysis can provide critical

inforrnatiou for dependence aualysis and parallel iza-

tiou.

The benchmark pizrafins also uses arrays of pointers

to linked lists. However these lists share some Hodes,

and consequently the shape gets reported as D.-l G. The

benchmarks sparse and pug use inherently cyclic data

structures with back pointers. So majority of inclirect

references for them fall in the Cycle category. The ones

in the Tree category represent newly allocated nodes,

before they are connected to the main data structure

of the program.

Besides shape information, direction and interferenc(~

relationships can also be useful on their own. For ex-

ample, to identify if data structures accessible from two

pointers say p and q share a node, one needs to sinl-

ply check if the interference matrix entry I [p, q] is set

to one. Similarly, direction matrix information can aid

the programmer in safely deallocating melnory. At, a

call-site like free (p), if any (live) pointer can have

a path to p, then it may not he a safe deallocation.

We are currently exploring the effectiveness of’ diYec-

tiou and interference inforlnation, for these slid othel

applications.

4.4 Interprocedural Measurements

Shape analysis is a context-sensitive interprocedural

analysis. In Table 3, we present the invocation graph

characteristics of the benchmarks. The first three

columns in this table, give the total number of func-

tions actually called in the program, the total number

of call-sites in the program, and the total number of

nodes in its invocation graph. The last three columns

give the nurnberofrecursive and approximate nodes,

and the number of nodes per call-site.

In Table 4 we present some dynamic interprocedu-

rzd measurements for shape analysis. The first three

columns give the total number of procedure calls an-

alyzed, the number of procedure calls that get mem-

oized, and the actual number of procedure calls that

get analyzed. The last three colurnnsgivethe average

number of procedure calls actually analyzed (given in

the column labeled Act) per function, per call-site and

per invocation graph node. These averages arecalcu-

lated by dividing the number in the Act column, with

the appropriate nulnber from the first three columns in

Table 3.

Program fns call ig I Rec I App I nodesj

sites call-site

bintree 17 31 32 2 4 1.03

mef 8 14 15 2 4 1.07

misr 5 7 7 0 0 1.00

chomp 20 47 98 7 7 2.09

stanford 8 12 13 2 4 1.08

hash 5 8 8 0 0 1.00

power 18 31 53 6 6 1.71

reverse 5 10 11 2 4 1.10

assembler 52 263 642 0 0 2.44

loader 30 82 125 2 2 1.52

sin) 14 Q6 44 2 8 1.70

pa~affhs 7 6 7 0 0 1.16

blocks? ~o 28 28 1 2 1.00

ubody 34 67 118 2 2 1.76

spa~se 28 76 121 0 0 1.59

pug 41 69 101 0 0 1.46

Table3: Static Interprocedural Measurements

There are several interesting observations to be made

from the results in Tables 3 and 4. The first is that

for these benchmarks, the size of the invocation graph

does not, explode, and we can do a complete context-

sensit,ive analysis with reasonable cost. There are, how-

ever, other benchmarks that do have very large invoca-

tion graphs, so we are exploring more aggressive memo-

rization techniques for handling these programs, as dis-

cussed in Section 3. It is also interesting to note that

a large number of procedure calls get memoized, even

with our simple scheme, that only reuses output values

when the same invocation node is visited with aprevi-

ously computedinput. Finally, it can be observed from

Table 3 that majorityof the benchmarks, have recur-

13

Program Calls Analyzed Avf AYC A\’i

Tot Mem Act

bintree 59 12 47 ~,~~ 1.51 1.-17

xref 60 13 47 5.88 3.36 3.13
!1 1 [11 1 1

misr 7 010 1.40 1.00 1.00
II 1 1 11 1 1

chomp 390 196 194 II 9.70 4.13 I 1.98

stanford 36 6 30 3.75 2.50 2.31
1[I 1 [1 1 1

hash 11 1 10 2.00 1.25 1.25,[I I 11 1 1

power 112 \ 49 I 63 3.50 2.03 1.19

reverse 5? 16 36 7,2(J 3.60 ~,~~

paraffins 9 0 9 l,~lj 1.50 l,jg

nbody 252 42 210 6.17 3.13 1,78

assembler 1057 221 836 16.08 3.18 1.30

Table4: Dyllalllic Illterproced~lral hIeasuremr]lts

sive and approximate invocation graph nodes. SIuC.e

most of these programs use recursive data structures,

they also employ recursion as the control structure to

traverse and modify them. This implies that to be

useful, any shape aualysis must handle interprocedural

analysis, and it must handle recursive programs iu a

safe and accurate marmer,

5 Conclusions and Future Work

In this paper we have preseuted an analysis that al.>-

proximate the shape of dynamic data structures in

C programs. Shape analysis is part of a hierarchy of

pointer analyses implemented in the Mc(3AT C c,onl-

piler, and it is directed at programs that use simple

recursive data structures that are built composition

ally. The analysis has been completely implemented

and tested on 16 benchmark programs. The experi-

mental results show that it does provide accurate re-

sults for the those programs that build simple data

structures. Thus, for programs building lists, trees,

and arrays of lists or trees, we can often providt; useful

information for optimization and parallelizatiou.

For programs that make major structural changes to

the data structure, our shape abstraction is uot pow-

erful enough to give accurate results, although the re-

sults will be safe. Other aualyses can haudle solne of

these cases [3, 5, 17, 30], but they are substantially

more complicated and more difficult, to implement iu

real compilers. Our approach is to use the cheapest

and simplest analysis possible for each program under

consideration, Thus, if the program fits into the target

class for our shape analysis, we will uot apply a 111oM

expensive or complex analysis.

We plan to extend our shape analysis to create the

level-3 analysis in our hierarchy by enriching the direc-

tion abstraction to keep information about the first link

on the path (a partial implementation of path matri-

ces [17]) and by using a more complex attribute matrix

that abstracts tbe shape of the data structure with re-

spect to certain links. It is hoped that this analysis

will be able to handle structures like leaf-linked trees,

trees with parent pointers, and to also improve upon

the accuracy of the information in the face of structural

updates by giving better kill information.

Based on the positive results from the experiments

presented in this paper, we also plan to apply all of our

heap analyses to larger programs and to continue our

development of more efficient interprocedural strate-

gies,

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

J. Choi, M. Burke, and P. Carini. Efficient

flow-sensitive interprocedural computation of pointer-

induced aliases and side-effects. In Conference Record

of the Twentieth Annual ACM SIGPLAN-SIGACT

Symposzurn on Principles of Programming Languages,

pages 232-245, January 1993.

A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J.

Hendren. Supporting dynamic data structures on

distribated-mernory machines. A CM Transactions on

Programming Languages und Systems, 17(2):231-263,

March 1995.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis

of pointers and structures. In Proceedings of the SIG-

PLAN ’90 Conference on Programming Language De-

sign and implementation, pages 296–310, June 1990.

A. Deutsch. A storeless model of aliasing and its ab-

stractions using finite representations of right-regular

equivalence relations. In Proceedings of the 1992 ln-

ternationol Conference on Computer Languages, pages

2–13, April 1992. IEEE Computer Society Press.

A, Deutsch. Interprocedural may-alias analysis for

pointers: Beyond k-limiting. In Proceedings of the

.4 CM SIGPLA N ’94 Conference on Programming Lan-

guage Deszgn and Implementation, pages 230–241,

June 1!)94.

M. Emami, R. (lhiyaj and L. J. Hendren. Context-

sensitive iuterprocedural points-to analysis in the pres-

ence of function pointers. In Proceedings of the ACM
SIGPL.4 N ’94 Conference on Programming Language

Deszgn and Implementation, pages 242-256, June

1994.

A. M. Erosa and L. J. Hendren. Taming control flow:

A structured approach to eliminating goto statements.

In Proceedings of the 19.$14International Conference on

~29–240, May 1994.[:onlPtlter Languages, Pages -

VI. Emami. A practical interprocedural alias analysis

fol au optimizing/parallelizing C compiler. Master’s

thesis, McGill University, July 1993.

14

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[’1]

E. Gagnon. A fast-forward and lazy points-to analysis,

ACAPS P~oject Report 19$)5,622 B,03, hIc(iill (lnl\Jer-

sity, May 1995.

R. Ghiya and L. J. Henrlren, Connection analysis:

A practical interprocedural heap analysis for C. In

Proceedings of the Etght Workshop on Lungucrgesund

Compilers for Parallel Cotllptlting,Allgt{st 1995.

R. Ghiya. Practical techniques for interprocedural

heap analysis. Master’s thesis, School of Computer

Science, McGill University, May 1995.

W. L. Harrison III. The interprocedural analysis and

automatic parallelization of Scheme progralns, Lwp

and Symbolzc Computatzors, 2(3/4):179–396, 1989,

L. Heudren, C. Douawa, hI. Emami, Cr. Gao, Jus-

tiani, and B, Sriciharau. Desiguillg the klccAT conL-

piler based on a family of structured interlllediat,e rep-

resentations. In Proceedings oj the 5thInternc{tr’o~~al

Workshop on Languages and Compders for Parallel

Computing, number 757in Lecture NotesinConll>ute~

Science, pages 406–420, August 1[)92. Springer-t;ellag.

Published in 1993.

L. J. Heudren, M. Emami, R. Ghiya, and C. \~er-

brugge. A practical context-sensitive interprocednral

analysis framework for C compilers, .4 C,4PS Technical

Memo 72, School of ComputerScience, illc(;illITni\e~-

sity, July 1993.

L. J. Hendren and G. R. Gao. Designing piogrammiug

languages for analyzability: A fresh look at pointer

data structures. In Proceedings of the 1992 I!lterna-

tional Conference on Computer Languages jpages?42-

251, April 1992. IEEE Computer Society Press.

L. J. Hendren, J. E. Hummel, and A. Nicolau. Ab-

stractions for recursive pointer data structures: In~-

proving the analysis and transformation of imperative

programs. In Proceedings of the .4CM SIG’PL.4N ’92

Conference on progr’anzm~ng Language De.s&gn ctnd II)(,.

plernerstation, pages 249–260, June 1992.

L. J. Hendren and A. Nicolau. Paralleliziug programs

with recursive data structures. IEEE Tran.sactlons on

Parallei and Distrzbated Sgstems, 1(1)::15- 17, .lanuary

1990.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence anal-

ysis for pointer variables. In Proceedings of the SIG’-

PLAN ’89 Cortfevence on Programming L[lnguageDe -

stgn and Implementation, pages 28–40, June 1989.

N. D. Jones and S. S. Muchnick. Program Flow .4 nal~-

sis, Theorg and Applications, chapter 4, Flow Analysis

and Optimization of LISP-like Structures, pages IL)2–

131. Prentice-Hall, 1981.

N. D. Jones and S. S. M uchnick. A flexible approach to

interprocedural data flow analysis and progralus \vit h

recursive data structures. In C~onference Record of

the Ninth Annual ACM SgmposIunl on Pr(nczples of

Programming Languages, pages 66-74. .January 1982.

ACM SIGACT and SIGPLAN.

N. Klarlund ancl M. Schwartzbach. C+raph types.

In Conference Record of the Twentieth An naal A (7h1

[~Q

p~]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[:33]

SIGPL.4 N-SIGA CT .$gmpostum on Principles of Pro-

gramming Languages, pages 196–205, January 1993.

J. R, Larus. Compiling Lisp programs for parallel exe-

cution. Lisp and Symbolic Computation, 4:29–99, 1991.

J. R. Larus and P. N. Hilfiuger. Detecting conflicts

between structure accesses. In Proceedings of the SIG-

PL.4 N ’88 Conference on Programming Language De-

stgn and Implementation, pages 21–34, June 1988.

J. R. Larus and P. N. Hilfinger. Restructuring Lisp

programs for concurrent execution. In Proceedings of

the .4 CM/SIGPLA N PPEA LS 1988 — Parallel Pro-
gramming: Experience with Applications, Languages

ancl Systems, pages 100–110, July 1988.

S. Lummetta, L. hlurphy, X. Li, D, Culler, and

1. Khalil. Decentralized optimal power pricing. In Pro-

ceechngs of Supercomputtrrg 93, pages 243–249, Novem-

ber 1993.

W. A. Landi and B. G. Ryder. A safe approximate

algorithm for interprocedural pointer aliasing, In Pro-

ceedings of the ACM SIGPLA N ‘9.2 Conference on

Programming Language Desi~n and Implementation,

pages 235–248, June 1992.

J. Plevyak, A. Chien, and V. Karamcheti. Analysis of

dynamic structures for eflicient parallel execution. In

Proceedings of the 6th International Workshop on Lan-

guages and Compilers for Parallel Computing, number

768 in Lecture Notes in Computer Science, pages 37-

56, August 1993. Springer-Verlag. Published in 1994.

T. Reps. Shape analysis as a generalized path problem.

In Proceedings of the ACM SIGPLAN Symposium on

Partial Evaluation and Semantics-Based Program Ma-

nipulcdion (PEPM), pages 1–11, June 1995.

E. Ruf. Context-insensitive alias analysis reconsidered.

In Proceedings of the ACM SIGPLA N ’95 Conference

on Programming Language Design and Implementat-

ion, pages 13-22, June 1995,

M, Sagiv, T. Reps, and R. Wilhelm. Solving shape-

analysis problems in languages with destructive updat-

ing. In Conference Record of the Twenty Third Annual

ACM SIGPLAN-SIGA CT Symposium on Principles of

Programming Languages, January 1996.

B. Sridharan. An analysis framework for the McCAT

compiler. Master’s thesis, McGill University, Septem-

ber 1992.

B. Steensgaard. Points-to analysis in almost linear

time. In Conference Record of the Twenty Third An-

nual .4 Cilf SIGPL.4 N-SIGA CT Symposium on Princi-

ples of Programming Languages, January 1996.

R. P. Wilson and M. S. Lam. Efficient context-sensitive

pointer analysis for C programs. In Proceedings of the

ACM SIGPLA N ’95 Conference on Programming Lan-

guuge Design and Implementation, pages 1–12, June
1995,

15

