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ABSTRACT 
Recently, a number of thread-based prefetching techniques have 
been proposed. These techniques aim at improving the latency of 
single-threaded applications by leveraging multithreading 
resources to perform memory prefetching via speculative prefetch 
threads. Software-based speculative precomputation (SSP) is one 
such technique, proposed for multithreaded Itanium models. SSP 
does not require expensive hardware support—instead it relies on 
the compiler to adapt binaries to perform prefetching on 
otherwise idle hardware thread contexts at run time. This paper 
presents a post-pass compilation tool for generating SSP-
enhanced binaries. The tool is able to: (1) analyze a single-
threaded application to generate prefetch threads; (2) identify and 
embed trigger points in the original binary; and (3) produce a new 
binary that has the prefetch threads attached. The execution of the 
new binary spawns the speculative prefetch threads, which are 
executed concurrently with the main thread. Our results indicate 
that for a set of pointer-intensive benchmarks, the prefetching 
performed by the speculative threads achieves an average of 87% 
speedup on an in-order processor and 5% speedup on an out-of-
order processor. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compiler, optimization, 
code generation, memory management. 

General Terms 
Measurement, Performance, Design, Experimentation, Algorithms. 

Keywords 
Long-range thread-based prefetching, pointer, slicing, slack, chaining 
speculative precomputation, speculation, prediction, scheduling, post-
pass, dependence reduction, loop rotation, delay minimization, triggering. 

1. INTRODUCTION 
Memory latency has become a critical bottleneck in achieving 
high performance on modern processors. Today, many large 
applications are memory intensive, as both their data working set 
and the complexity to predict their memory accesses increase.  
Despite continued advances in cache design and development of 
new prefetching techniques, the memory latency problem persists 

and escalates especially with pointer-intensive applications, 
which tend to defy conventional stride-based prefetching 
techniques. One solution is to overlap memory stalls in one 
program with the execution of useful instructions from another 
program, as done in emerging simultaneous multithreading 
(SMT) processor architectures [10][15][22][28]. In addition to 
improving multitasking throughput, SMT has also been used to 
improve the performance of single-threaded applications by 
leveraging speculative threads to perform cache prefetches on 
behalf of the main (or non-speculative) thread [25]. A speculative 
thread executes code to precompute memory addresses and issue 
prefetches. Instead of using a complex address pattern predictor, 
this pre-execution approach uses the program itself as a predictor 
to prefetch for a pointer-intensive program accurately and 
efficiently.  

Various forms of such thread-based prefetching have been 
proposed recently.  Examples include Collins et al.’s speculative 
precomputation [7], Luk’s software controlled pre-execution 
[21], Roth and Sohi’s data driven multithreading [25], and Zilles 
and Sohi’s speculative slices [34]. These studies demonstrated the 
performance potential of thread-based prefetching by assuming 
the availability of hardware and/or compiler support. In this 
paper, we introduce an automated tool for transforming 
application code in order to attach prefetch threads in the binary. 
The aim of this paper is to demonstrate the feasibility of 
automatically generating binaries for thread-based prefetching 
and the effectiveness of the resulting binaries. To our knowledge, 
this work is the first to automate the entire process of extracting 
dependent instructions leading to target operations, identifying 
proper spawning points and managing inter-thread 
communication to ensure timely pre-execution.   

Our tool is post-pass because it does not modify the normal 
compilation steps, but rather is invoked after the compilation 
process. The tool is based on the speculative precomputation 
(SP) paradigm for future ItaniumTM processors [16]. SP utilizes 
hardware thread contexts to execute precomputation slices (p-
slices), which consist of instructions that compute the memory 
addresses for prefetching [7]. Speculative threads can be spawned 
by one of two events: a basic trigger, which occurs when a 
designated trigger instruction in the non-speculative thread is 
retired, or a chaining trigger, by which one speculative thread 
explicitly spawns another. Collins et al. demonstrated that long-
range prefetching using chaining triggers is the key to high 
performance via speculative precomputation [7]. As a proof of 
concept, they manually find the chaining triggers in the binary. 
Collins et al. later proposed dynamic speculative precomputation, 
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which shows the implementation of an all-hardware approach [6]. 
In contrast, our work uses the SMT model without expensive 
hardware support and relies on the post-pass compilation to 
generate p-slices and to place triggers judiciously. Instead of 
constructing p-slices dynamically, the post-pass tool examines 
code regions and extracts p-slices statically with profiling 
feedback. To maximize the concurrent usage of available memory 
bandwidth, the chaining triggers inside the p-slices are scheduled 
early across multiple threads. We also traverse the dependence 
graph to identify and embed basic triggers in the main thread’s 
code.  

We show that the tool is effective for a set of seven pointer-
intensive benchmarks with exploitable parallelism among the 
prefetches in the speculative threads and memory accesses in the 
main thread. The algorithms employed in the tool effectively 
schedule the p-slices and triggers so that speculative threads can 
run ahead of the main thread to perform effective prefetches. The 
tool improves the performance by 87% on an in-order processor 
and by 5% on an out-of-order processor. SSP provides a greater 
benefit for the former, because the latter already hide some 
memory stall cycles. Finally, it is also important to examine 
whether the automated results match the results from hand 
adaptation in finding slices and locating triggers. We show that 
the former loses at most 20% of the performance on the in-order 
processor and 27% on the out-of-order processor, compared with 
the two hand-tuned binaries available from our previous work 
using the same machine model [31]. 

The rest of the paper is organized as follows. Section 2 describes 
the SSP paradigm and highlights the design of two research 
Itanium machine models and a high-level overview of our tool. 
We describe the post-pass compilation algorithm and evaluate the 
resulting binaries in Sections 3 and 4, respectively. Section 5 
discusses the related work and Section 6 concludes the paper. 

2. SOFTWARE-BASED SPECULATIVE 
PRECOMPUTATION 
In speculative precomputation, a run-time event (either a basic or 
a chaining trigger) invokes the execution of a p-slice as a 
speculative thread. The thread precomputes and prefetches the 
address accessed by a load that misses the cache frequently, 
hereafter called a delinquent load. Once the trigger is reached, the 
load is expected to appear later in the instruction stream of the 
main thread, hence the speculatively executed p-slice can reduce 
the cache misses in the main thread. In general, any long-latency 
operation can be viewed as a delinquent operation and become a 
potential candidate to benefit from speculative precomputation. 
SSP uses the otherwise idle hardware thread contexts to execute 
p-slices. The post-pass tool ensures that no store instructions are 
included in the precomputation. The speculative execution of p-
slices does not alter the architecture state of the main thread. 
Consequently, the integration [25] of results from speculative 
threads into the main thread becomes unnecessary. Although 
prefetching wrong addresses may hurt performance, the SSP 
paradigm does not require p-slice computation to satisfy the 
correctness constraints, since the precomputation is prevented 
from modifying the main thread’s architecture states. Thus, SSP 
enables many optimizations in the speculative threads by 
separating the performance issue from the correctness issue.  

SSP assumes no expensive hardware support. It uses (1) existing 
lightweight exception-recovery mechanisms in Itanium [26] to 
spawn a thread and (2) existing memory buffers in the processor 
to transfer the live-in values from a parent thread to its child 
thread, as detailed in Section 3.4.2. Thus, the machine does not 
need to have special flash-copying hardware between register 
files of the two thread contexts. SSP relies on the software tool to 
generate p-slices and code for transferring live-in values from the 
main thread. In the following sections, we first describe our 
Itanium machine models and then the post-pass compilation tool 
that adapts binaries for SSP. 

2.1 Research Itanium Models 
We investigate both in-order execution and out-of-order 
execution Itanium machine models. The in-order model uses a 
12-stage pipeline that resembles a two-bundle wide Itanium [26], 
with each bundle consisting of three instructions. Both models 
provide an SMT mechanism with four hardware thread contexts. 
Compared to the baseline in-order model, the out-of-order (OOO) 
model assumes four additional front-end pipe stages to account 
for the extra OOO complexity, such as register renaming and 
instruction scheduling stages. The expansion queue in the in-
order machine is per-thread 16-bundle long. In contrast, the OOO 
model has a per-thread 255-entry reorder buffer and an 18-entry  
reservation station. Table 1 specifies cache and memory latency 
information, along with processor details. To account for future 
processor generations, the models are designed with higher 
memory latencies than current product generations. 

Table 1. Modeled Research Itanium Processor 

Threading SMT processor with 4 hardware thread contexts. 
Pipelining In-order: 12-stage pipeline. OOO: 16-stage pipeline. 
Fetch per cycle 2 bundles from 1 thread or 1 bundle each from 2 threads 
Branch predict. 2k-entry GSHARE. 256-entry 4-way associative BTB. 
Issue per cycle 2 bundles from 1 thread or 1 bundle each from 2 threads 
Function units 4 int. units, 2 FP units, 3 branch units, 2 memory port 
Register files 
per thread 

128 integer registers, 128 FP registers, 64 predicate 
registers, 8 branch registers, 128 control registers. 

Cache structure 

L1 (separate I & D): 16KB each. 4-way. 2-cycle latency. 
L2 (shared cache): 256KB. 4-way. 14-cycle latency. 
L3 (shared cache): 3072KB. 12-way. 30-cycle latency. 
Fill buffer: 16 entries. All caches have 64-byte lines. 

Memory 230-cycle latency. TLB Miss Penalty: 30 cycles. 

Spawning a speculative thread involves allocating a hardware 
thread context for the thread, and providing to the thread context 
the address of the first instruction of the speculative thread. If a 
free hardware context is not available, then the spawn request is 
ignored. We use the lightweight exception-recovery mechanism 
to raise an exception when a free hardware context is available for 
thread spawning. To implement live-in buffers for inter-thread 
communication, we utilize the backing store of the Register Stack 
Engine on the Itanium processor family [26]. Our software tool 
adds code to copy necessary live-in values into this on-chip 
buffer, which is shared by both threads. The values can then be 
copied to the register file in the newly spawned thread, 
eliminating the possibility of inter-thread hazards where a register 
may be overwritten before a child thread has read it. In our 
experiment, the number of live-in values is relatively small as 
described in Section 4. 
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2.2 Post-Pass Compilation Tool 
In contrast to dynamic speculative precomputation [6], SSP uses 
software to identify p-slices and trigger points prior to run time. 
The tool adapts the binaries to enhance them to achieve 
performance speedups. Figure 1 shows the tool flow of the 
system. To minimize changes to the normal compilation process, 
we encapsulate the tool in a post-pass phase. Partly because of 
this strategy, this encapsulation allows us to reuse the same tool 
in a future binary translation tool when the source code is not 
available.  

The first compilation pass generates the regular binary. In the 
second pass, we use the profiling information collected from 
running the original binary to enhance the binary for SSP. The 
post-pass tool first reads in the compiler intermediate 
representation (IR) and the control flow graph (CFG). This 
representation is also used by the code generator at the code 
emission stage where the IR exactly matches the hardware 
instructions in the binary [4]. Each CFG node is also annotated 
with run-time frequency information. 

Since we target only delinquent loads, our tool needs to first 
identify them in the program. For many programs, only a small 
number of static loads are responsible for the vast majority of 
cache misses. The tool uses the cache profiles from the simulator 
to identify the top delinquent loads that contribute to at least 90% 
of the cache misses. Figure 2 shows that the tool successfully 
locates the loads that greatly impact performance for both in-
order and OOO research models. These programs are from the 
SPEC CPU2000 [14], and Olden benchmarks suites [5]. In 
Figure 2, the first bar in each category shows the speedup 
assuming a perfect memory subsystem where all loads hit in the 
L1 cache. The phenomenal speedups confirm that these are 
memory-intensive programs. The second bar in each category 
represents the speedup when the delinquent loads are assumed to 
always hit in the L1 cache. This information also provides us the 
upper bound on what the post-pass tool can achieve. In most 
cases, eliminating performance losses from only the delinquent 
loads yields much of the speedup achievable by zero-miss-latency 
memory. Figure 2 also shows that, compared with the in-order 
model, the OOO model has less room for improvement via SSP.  

After delinquent load identification, the tool computes the 
program slice of identified loads’ memory addresses, defined as 

the set of instructions that contribute to the computation of the 
address for the speculative thread to execute before issuing the 
memory prefetch. Slicing can reduce the code to only the 
instructions relevant to the computation of an address. Using 
slicing and profiling, the tool extracts a minimal sequence of 
instructions to produce the addresses of delinquent loads, and 
schedules the slice to ensure timely prefetches. 

Finally, the tool locates the desirable triggering points in the main 
thread for spawning the p-slices in order to minimize the 
communication (i.e., the number of live-in values) between the 
threads, while ensuring enough prefetching distance. During code 
generation, the tool inserts code in the original binary that 
invokes the p-slices. Also, once the p-slices are built, they are 
compiled with live-in copying code and appended after the 
function in which the trigger resides in the program binary. Since 
our SSP tool targets hardware without the flash-copy mechanism, 
it also performs live-in analysis to generate code to copy live-in 
values. The detailed post-pass algorithm for SSP is presented in 
the following section. 

3. POST-PASS ALGORITHMS FOR SSP 
The post-pass tool adapts the binary so that the speculative thread 
prefetches the data of the delinquent load with large enough 
slack, which is defined as the execution distance between the 
main thread and the speculative thread. Specifically, the slack of a 
thread-based prefetch is defined as: 

slack(load,prefetch)=timestampmain(load)–timestampspec(prefetch), 

where timestampmain(load) and timestampspec(prefetch) denote the 
time when the targeted load is executed in the main thread and 
when the prefetch is executed in the speculative thread, 
respectively. The above mathematical definition is ideal and 
indeed is likely to vary each time the trigger and the load are 
encountered. In practice, our SSP tool employs a heuristic in the 
following sections to estimate this slack value. Positive slack 
values are desirable, because they indicate the speculative thread 
executes the instructions ahead of the main thread. The goal of 
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Figure 1. Tool flow for generating SSP-enhanced binaries 
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our algorithm is to find slices that contain large enough slack, but 
not too large. Having too much slack may cause adverse cache 
interference, or the prefetched data may be replaced by the time 
the main thread encounters the delinquent load.  

We first present the slicing tool and scheduling algorithm in 
Sections 3.1, and 3.2. Section 3.3 describes the identification of 
all the trigger points in the main thread’s binary for launching the 
slice computation. Finally, Section 3.4 describes how the tool 
generates the new binary including p-slices and code for copying 
their live-in values from the main thread. 

3.1 Slicing for Speculative Precomputation 
To generate p-slices, the post-pass tool first reads in the program 
representation and identifies the delinquent loads. The tool 
employs cache profile data from the simulator to determine the 
set of loads that contributes to the majority of cache misses. 
Typically, only a small number of static loads are selected. Next, 
the tool applies program slicing to each load address to reduce the 
code to only the instructions relevant to the load’s address 
computation. 

The slice selection process determines the content for speculative 
precomputation. A common technique for computing program 
slices is to transitively follow all of the control and data 
dependence edges originating from the reference being sliced. 
But this notion of slicing, originally proposed by Weiser [32], 
may result in large slices. Specifically, this original context-
insensitive algorithm may suffer from inaccuracy due to 
unrealizable paths [18] because they compute the slice as the 
union of all the statements in all paths that reach the reference 
without matching in- and out-parameter bindings. To solve this 
imprecision problem, the slicing algorithm proposed in [20] 
defines a context-sensitive slice of a reference r with respect to a 
calling context C as: 
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In the equation, let C = [c1 , …, cn] be the call sites currently on 
the call stack maintained by the post-pass tool, with cn being the 
one on the top of the call stack, and F be the subset of the formal 
parameters of the procedure upon which r depends on. The 
function contextmap(f,c) returns the actual parameter passed to a 
formal variable f at call site c. Slice(r,φ) represents the set of 
instructions found by transitively traversing the dependence edges 
backwards within the procedure in which r is located and its 
callees. In summary, the computation of a context-specific slice 
only builds the slice up the chain of calls on the call stack, which 
reduces the size of the slice. Our slicing tool also ignores loop-
carried anti dependences and output dependences in order to 
produce smaller slices. 

3.1.1 Region-Based Slicing 
A slice with large slack ensures the corresponding speculative 
thread runs early enough to prefetch timely. On the other hand, 
unnecessary expansion of slack may cause prefetched data to be 
evicted from cache before its use. In this paper, we propose a 
region-based slicing method that allows us to increase the slack 
value incrementally from one code region to its outer ones, to 

find slices with large enough slack to avoid untimely prefetches, 
but small enough slack to avoid early eviction. A region 
represents a loop, a loop body, or a procedure in the program. 
Derived using CFG information, a region graph is a hierarchical 
program representation that uses edges to connect a parent region 
to its child regions, that is, from callers to callees, and from an 
outer scope to an inner scope. In addition, we build a dependence 
graph that contains both control and data dependence edges. For 
each delinquent load identified, we locate the backward slice of 
the load address in the dependence graph, starting from the 
innermost region in which this load occurs. The demand-driven 
slice computation accepts a request on a delinquent load’s 
address and uses a primarily recursive descent algorithm region 
by region until the slack of precomputing the address is large 
enough. We will use the simplified code excerpt from the 
function primal_bea_map() in the mcf benchmark from 
SPEC CPU2000 [14] as an example to illustrate the algorithms in 
this paper. Figure 3 shows the code excerpt and a corresponding 
slice in the loop region. A solid arrow denotes a data dependence, 
and a dashed arrow denotes a control dependence. Note that there 
are no false loop-carried dependences in this figure. By finding 
the slice of the address of the delinquent load “t->tail-> 
potential”, SSP executes fewer instructions than the main 
thread does. Because many instructions in the loop body are not 
present in the slice, the region-based slicing achieves enough 
slack and selects this region for precomputation. The region 
selection is detailed in Section 3.4.1. 

When the current region being examined is a loop or a procedure 
with recursive procedure calls, this region may introduce 
recurrences in the equation to compute the slice of a reference r. 
To allow the reuse of previous slices, a slice summary is recorded 
to exploit redundancy in slice computation [20]. We resolve 
recurrences encountered when computing a slice summary by 
using an iterative algorithm that is guaranteed to reach a fixed 
point. The algorithm locates the recurrences by using a stack to 
track the slice summaries of the references being constructed. If a 
new slice summary to be computed is already on the stack, a 
recurrence is detected and the algorithm simply uses the 
approximate slice summary already built. If the approximate 
summary is used in the computation of another summary, we 
deem that the latter depends on the former. All such dependence 
relationships are recorded. When the approximate slice summary 
is finalized, its dependent summaries are placed on a worklist. 
The algorithm finds the fixed point solution by iteratively 
removing a slice summary from the worklist, recomputing it, and 
adding new dependents on the worklist if the result changes. The 
fixed point computation terminates when the worklist is empty. 
The fixed point solution is guaranteed to terminate because the 
number of static instructions in a program is finite. 

(a) Simplified excerpt. load(u->
potential) is a delinquent load.

(b) Slice of the address of the delinquent load in
the loop region. Arrows are dependence edges.

branch if arc < K

prefetch(u->potential)

u = load(t->tail)

t = arc

arc = t + nr_group

A:

B:

C:

D:

E:

do {
A:      t = arc;

...
B:      u = load(t->tail);
C:      load(u->potential);

...
D:      arc = t + nr_group;
E:    } while (arc < K);

(a) Simplified excerpt. load(u->
potential) is a delinquent load.

(b) Slice of the address of the delinquent load in
the loop region. Arrows are dependence edges.

branch if arc < K

prefetch(u->potential)

u = load(t->tail)

t = arc

arc = t + nr_group

A:

B:

C:

D:

E:

do {
A:      t = arc;

...
B:      u = load(t->tail);
C:      load(u->potential);

...
D:      arc = t + nr_group;
E:    } while (arc < K);

 
Figure 3. Simplified code example from mcf and a slice. 
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3.1.2 Speculative Slicing 
Another source of enhancing the likelihood of timely prefetch is 
from removing unprofitable instructions from a given p-slice. To 
achieve that, we use speculation techniques to reduce the size of a 
slice. Since the SSP threads do not alter the architecture state, 
unlike traditional speculation mechanisms, we do not have to 
generate recovery code when a mis-speculation is encountered. 
Although reducing the size using speculation techniques is prone 
to lower the accuracy of address computation, we exploit profile 
information to maintain a reasonable tradeoff between the size 
and accuracy of slices. 

Empirical results have shown that pure static slicing may 
introduce a large number of unnecessary instructions in the slice 
due to the lack of run-time information [19]. However, pure 
dynamic slicing [2] can often be prohibitively expensive. We use 
a hybrid slicing [13] approach to improve precision while 
maintaining efficiency. This approach, called control-flow 
speculative slicing, alleviates the imprecision problem of static 
slicing by exploiting block profiling and dynamic call graphs. 
This control flow information is used to filter out unexecuted 
paths and unrealized calls. In our experience, the quality and 
efficiency of static analysis drops rapidly if the code being 
analyzed contains indirect calls that we cannot resolve. To tackle 
this issue, we instrument all the indirect procedural calls to 
capture the call graph during profiling, and provide the result 
back to the slicing algorithm. The slicing tool currently does not 
use data speculation information to trim the slices, since the static 
disambiguator in the compiler has proven to be effective [11]. 

In summary, both region-based slicing and speculative slicing 
perform slice-pruning operations [20]. That is, after the slack 
value becomes large enough, region-based slicing prunes the 
traversals of the dependence edges to avoid prefetching the data 
too early. Similarly, speculative slicing prunes the slice 
computation at those nodes that are unlikely to yield effective 
speculative precomputation. Slice-pruning is key for SSP, 
because a precise slicing tool may not produce useful slices if the 
precomputation does not result in timely prefetches. 

3.2 Scheduling the Slice 
As defined in Section 3.1, a slice was simply considered a set of 
instructions. In this section, we describe the generation of an 
execution slice. Using the slice of the code in Figure 3 as an 
example, we show a corresponding execution slice in Figure 4. 
Scheduling and synchronization determine when and which 
instructions in the slices are assigned to the available thread 
contexts. Our algorithm aims at scheduling enough slack for the 
prefetches. For each targeted code region, the scheduling 
algorithm considers two precomputation models: chaining 
speculative precomputation (chaining SP) and basic speculative 
precomputation. Chaining SP in this context means using one 
precomputation thread to spawn another precomputation thread. 

In this work, both threads execute identical code and are 
collectively referred to as chaining threads. Chaining SP allows 
parallelism among the chained thread invocations. Scheduling for 
chaining SP is often the key to create enough slack, because the 
spawning inside the speculative threads enables long-range 
prefetching without incurring the spawning overhead on the main 
thread. In contrast, basic SP uses only one speculative thread. The 
scheduling algorithms for both SP models are presented in 
Section 3.2.1 and 3.2.2, respectively. 

3.2.1 Scheduling for Chaining SP 
Although parallelism is not a necessary condition for chaining SP 
to produce enough slacks, increased thread-level parallelism in 
the chaining threads is important as its existence can be exploited 
to produce much larger slack between the prefetches and the main 
thread. Hence, given a p-slice generated by the slicing tool in 
Section 3.1, our algorithm constructs a do-across prefetching loop 
whose iterations are executed in parallel by the chaining threads. 
This parallel execution is constrained by the fine-grained 
synchronization between the threads, because a do-across loop 
may contain loop-carried dependences. To increase thread-level 
parallelism, the algorithm first reduces the number of 
dependences (described in Section 3.2.1.1) and then minimizes 
the delays among the threads for the given set of dependences 
(described in Section 3.2.1.2). A chaining thread can be setup to 
iterate over multiple iterations or targets for multiple regions. For 
simplicity, the tool currently uses one chaining thread to target 
one iteration in a loop region of the main thread. Our scheduling 
algorithm is also applicable to speculative multithreading, since 
that paradigm needs to address a very similar delay minimization 
problem [9]. 

Note that the scheduling algorithm requires latency information 
in combination with the dependence graph. The latency of a 
memory operation is determined by cache profiling, and the 
machine model provides latency estimates for other instructions. 
The latency information is annotated on a dependence graph 
edge. A slice and the annotated dependence edges between the 
nodes in the slice form the dependence graph of the slice, as 
shown in Figure 3(b). Using the region graph information, the 
instructions in a region are scheduled together. Currently we do 
not move instructions across region boundaries. 

3.2.1.1  Dependence Reduction 
In addition to removing loop-carried false dependences, we 
develop two optimizations for dependence reduction, loop 
rotation and condition prediction. The parallelism of chaining SP 
is highly sensitive to actual code sequence in the slice for a loop 
iteration. For example, if the first instruction of a chaining thread 
depends on the last instruction of the previous chaining thread, no 
amount of thread scheduling efforts can improve further as the 
thread executions are serialized. However, it is possible to 
prevent SSP thread serialization by reordering the SSP code. We 
are able to reorder this code without affecting the main thread 
since, unlike traditional parallelization, our main thread and 
speculative threads execute different code. Loop rotation reduces 
loop-carried dependence from the bottom of the slice in one 
iteration to the top of the slice in the next iteration. The algorithm 
greedily finds the new loop boundary that converts many 
backward loop-carried dependences into true intra-iteration 
dependences. The algorithm enforces the property that new 

do {
A:      t = arc;
B:      u = load(t->tail);
C:      prefetch(u->potential);
D:      arc = t + nr_group;
E:   } while (arc < K);

 
Figure 4. An execution slice for the code in Figure 3. 
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boundary does not introduce new loop-carried dependences. 
Loop-carried anti dependences and output dependences are 
ignored when scheduling the chaining SP code. By shifting the 
loop boundary, we may expose more parallelism for chaining SP. 

The second optimization is to use the prediction techniques on 
some conditional expressions in the slice. For instance, spawning 
chaining threads often occurs when the loop contains a 
delinquent load, because the load misses many times during the 
program execution. The spawn condition becomes highly 
predictable. Thus, we use the prediction when the parallelism is 
little, or the delinquent load occurs before the spawning. The 
computation of the chaining spawn condition usually incurs loop-
carried dependences; hence by using prediction, the delay among 
the threads is oftentimes reduced. The prediction breaks the 
dependences leading to the spawn condition after predicting the 
spawn condition. After such removal of dependences, more 
instructions can be executed after the spawning point instead of 
before the point. This results in higher thread-level parallelism. 

3.2.1.2 Delay Minimization 
The key for an efficient schedule is to minimize the delay of the 
consecutive chaining threads when there is any inter-slice 
dependence. Minimizing the delays results in larger slack values. 
Cytron showed that the delay-minimizing scheduling problem is 
NP-complete, even for simpler loop parallelization problems that 
assume no loop-independent dependences exist [9]. Hence 
Cytron proposed a two-phase scheduling heuristics, which first 
partitions the dependence graph and then reorders the nodes in 
each partition according to their priority value. Specifically, the 
first phase in [9] partitions the graph by level-sorting the 
instructions considering only the forward dependences. The 
second phase computes the node priority by subtracting the 
maximal edge latency among the incoming backward edges from 
the maximal edge latency among the outgoing backward edges 
from the node. Our algorithm is two-phase as well: graph 
partitioning followed by list scheduling on the resulting acyclic 
graph. While Cytron used adjacent edges to compute the node’s 
priority, we use the maximum node height in the dependence 
graph of the slice as the priority value of a node. The two phases 
are presented in Section 3.2.1.2.1 and 3.2.1.2.2, respectively. 

3.2.1.2.1 Graph Partitioning 
We use the strongly connected components (SCC) algorithm in 
[24] to partition a dependence graph. In a strongly connected 
subgraph, there exists a path from a node to any other nodes in 
the same subgraph. The SCC is defined as the maximal strongly 
connected subgraph. A degenerate SCC contains only one 
instruction node. Furthermore, we form SCC’s without 
considering any false loop-carried dependences. In comparison, 
Cytron’s partitioning phase is relatively restrictive since all loop-
carried forward dependences are enforced to produce code 
schedule. Any occurrence of non-degenerate SCC in the 
dependence graph consists of one or more dependence cycles, 
which implies the existence of loop-carried dependences. A 
speculative thread executing a loop iteration must resolve the 
loop carried dependence in a dependence cycle in order for the 
next chaining thread to start executing the same dependence cycle 
in the next iteration. Hence the span of the dependence cycle 
should be minimized. To achieve this, our heuristics schedules all 

instructions in an SCC first before scheduling instructions in 
another SCC.  

Figure 5(a) shows the SCC’s in the slice’s dependence graph in 
Figure 3(c). The three instructions, A, D, and E, in Figure 3 are 
merged into one SCC node in Figure 5. Each of the load 
instructions, B and C, forms a degenerate SCC node, because it is 
not part of any dependence cycles. Node B and C do not compute 
live-in values for the next chaining thread. Since the partitioning 
uses SCC’s to tighten the dependence cycles into one SCC, the 
algorithm can then schedule the chaining thread to first execute 
the non-degenerate SCC in Figure 5, spawn the next chaining 
thread, and then execute the two degenerate SCC’s in Figure 5. 
This partitioning is important for the Itanium, because when the 
load instruction B in Figure 3 misses in cache, executing 
instruction C, which depends on the outcome of instruction B, 
will stall an in-order processor while waiting for the miss being 
serviced. Chaining SP triggers several speculative threads to 
overlap multiple prefetches. To overlap the miss cycles in the 
code in Figure 3, chaining SP forms several instances of a pointer 
dereference and executes the chaining threads in parallel, as 
shown in Figure 5(a). 

3.2.1.2.2 Scheduling an Acyclic Graph 
The resulting partitioned graph is a directed acyclic graph (DAG) 
and thus can be scheduled by list scheduling algorithm. We select 
the forward cycle scheduling with maximum cumulative cost 
heuristics. As the heuristics accumulates the cost, or latency, for 
each path, the node with longer latency to the leaf nodes of the 
slice has a higher priority. If two nodes have the same cost, the 
node with the lower instruction address in the original binary has 
a higher priority. Finally, the instructions within each non-
degenerate SCC are list scheduled by ignoring all the loop-carried 
dependence edges. The resulting code is shown in Figure 5(b). 
Node B and C have smaller node heights than the non-degenerate 
SCC does and are assigned lower priority.  

As shown in Figure 5, we partition the slice into a critical sub-
slice and a non-critical sub-slice. The term critical sub-slice 
denotes the set of SCC nodes before the spawn point. The 
remaining nodes on the DAG become the non-critical sub-slice. 
The instructions in the former are often in a long dependence 
chain due to the chaining effect. The non-degenerate SCC in 
Figure 5(a) is identified as the critical instructions. On the other 
hand, no future instructions depend on the non-critical sub-slice, 
which does not compute the live-in values for the next chaining 
thread. 
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Although heuristics are needed for this NP-complete problem [9], 
it is important to investigate whether the output of the algorithm 
is comparable to the optimal schedule. Cooper et al. showed that 
if the available instruction-level parallelism (ILP) is very small, 
the forward scheduling with maximum dependence height 
heuristics performs very well on real codes and there is little 
opportunity for improving its performance further [8]. The 
available ILP is computed as the length of the worst possible 
schedule divided by the length of the best possible schedule. This 
is equivalent to the ratio of the sum of the latencies of all 
operations in the dependence graph to the critical path length. 
Our tool automatically computes the available ILP from the 
dependence graph. We observe that the dependence chains 
leading to the delinquent loads do not exhibit much instruction-
level parallelism. Thus, simply using the height of a node in the 
dependence graph is a reasonable metric for assigning priority 
values.  

For chaining SP, we compute the slack of a slice at the i-th 
iteration of the generated do-across prefetching loop for the 
region as: 

slackcsp(i)=(height(region)-height(critical sub-slice) 
                  -latency(copy live-in’s and spawn)) * i 

The function height computes the height of the dependence graph 
for a region or for a slice by finding the maximum of the node 
heights in a region or a slice. The above equation assumes that 
there are enough hardware threads. We model the communication 
overhead (copying live-in’s) as a factor in decreasing the slack. 

3.2.1.2.3 Synchronizations across the Threads 
After a slice is scheduled by the two phases above, we need to 
insert synchronizations in the resulting do-across prefetching loop 
due to the remaining loop-carried dependences. The partitioning 
algorithm via SCC facilitates efficient synchronization, because 
the nodes in the same dependence cycle are tightened into one 
SCC. Synchronization placements determine the degree of the 
thread-level parallelism and the synchronization overhead. For 
instance, if we have more than one non-degenerate SCC nodes, 
assuming no synchronization cost, synchronizing across threads 
after the execution of each non-degenerate SCC may result in 
shorter delays across the threads than synchronizing once after all 
the non-degenerate SCC’s have been executed. However, the 
former scheme requires more instances of handshaking and the 
implementation of faster synchronization hardware primitives 
than the latter. To minimize both the synchronization overhead 
and the hardware support, the tool currently allows one point-to-
point communication between the threads. Thus, we synchronize 
only once after all the non-degenerate SCC’s have been executed. 
As a result, we pass all the live-in values at the spawn point. 

3.2.2 Scheduling for Basic SP 
Basic SP does not allow a speculative thread to spawn another 
thread. The advantage of using basic SP is that it saves the thread 
spawning and communication overhead. However, basic SP uses 
only one sequential speculative thread and thus may stall if the 
thread encounters a data dependence after the delinquent load on 
an in-order execution machine. Figure 6(a) shows the sequential 
execution of the loop iterations for the slice in Figure 3. Because 
the slice contains pointer dereferences, the speculative thread 
stalls at the second load when the first load misses in the cache. 

This reduces the memory parallelism across different loop 
iterations using basic SP.  

The instructions in Figure 3 are list scheduled by ignoring all the 
loop-carried dependence. The resulting code for basic SP is 
shown in Figure 6(b). For basic SP, the slack value at the i-th 
iteration of the generated prefetching loop for the region is 
computed as: 

slackbsp(i)=(height(region)-height(slice)) *  i 

Contrasting the two equations that compute the slack show that 
basic SP saves more thread spawning overhead, while chaining 
SP can provide a higher slack value when a non-critical sub-slice 
incurs high latency. The basic SP for a loop region is illustrated 
in Figure 6. If the region is a loop body, basic SP uses a 
speculative thread to execute one iteration (loop body) and in 
each iteration of the loop, the main thread triggers new 
speculative thread for the next iteration, as done in [7]. 

3.3 Slice Triggering for SSP 
After we find the slice inside a region, locating good trigger 
points in the main thread would ensure enough slack while 
minimizing the communication between the main thread and the 
speculative thread. The set of triggers should form a cut set on the 
control flow graph to ensure that each execution path leading to 
the delinquent load has only one trigger point. As infrequent 
edges are filtered out in a pre-pass, the optimal solution is to find 
the minimum total cost of the cut weighted by the frequency, Σi (fi 
* ci), where fi and ci are the frequency and the triggering cost of 
the edge i, described below. Given the set of costs associated with 
the edges, if we map the problem to the max-flow min-cut 
problem by representing cost as capacity [12], the complexity for 
finding the optimal cut is polynomial to the product of the 
number of the edges and the number of the nodes. However, 
computing the precise cost is difficult in practice. As a result, our 
traversal on the dependence graph for finding a trigger point is 
conservative. During the traversal, we compute the slack of the 
slice by subtracting the dependence height of the slice from the 
length of program schedule in the main thread. 

With basic SP, the communication between the main thread and 
the speculative thread would slow down the main thread. The 
main thread needs to allocate the live-in buffer (LIB) and copy 
the live-in values to the buffer. Thus, we model the copying 
overhead as decreasing the slack with a higher cost. Minimizing 
the live-in copying takes precedence over increasing the slack 
value. In addition, we maintain control dominance information 
intra-procedurally and terminate the traversal at the procedural 
boundaries. With such information, we only consider the nodes 

D

E

A

(a) Basic SP. Thin arrows are loop-
independent dependence edges.

B:

C:

An SSP
thread
runs
from one

iteration
to next.

D

E

A

B:

C:

do {
A:      t = arc;
B:      u = load(t->tail);
C:      prefetch(u->potential);
D:      arc = t + nr_group;
E:    } while (arc < K);

thread_kill_self();

(b) The automatically generated
prefetching loop for Basic SP

load

load

load

load

D

E

A

(a) Basic SP. Thin arrows are loop-
independent dependence edges.

B:

C:

An SSP
thread
runs
from one

iteration
to next.

D

E

A

B:

C:

do {
A:      t = arc;
B:      u = load(t->tail);
C:      prefetch(u->potential);
D:      arc = t + nr_group;
E:    } while (arc < K);

thread_kill_self();

(b) The automatically generated
prefetching loop for Basic SP

load

load

load

load

 
Figure 6. Basic SP for the code in Figure 3 

123



that control-dominate the delinquent loads as potential trigger 
points and prune the slicing when the slack value is too high. If 
the slack value increase remains low after some traversal, we 
would prune the slicing as well. This is because continuing the 
slicing would include too many nodes while the slack value 
remains the same. Finally, the tool would first place the trigger 
after the instruction that produces the last live-in to the slice, and 
then move the trigger points to the immediate control dominant 
nodes if the slack value of the immediate dominant node remains 
the same. Note that the trigger points do not need to be in the 
dependence graph of the slice. By moving the triggers to a control 
dominance point, several triggers may be combined and thus 
reduce the number of trigger placements. 

3.4 SSP-Enabled Code Generation 
Finally, the post-pass tool selects the region and the 
precomputation model for a delinquent load and then generates 
the new binary with the p-slices attached.  

3.4.1 Selecting Regions and Precomputation Models 
If there is no overlap among the execution of different threads, 
conventional do-across parallelization may yield no speedups. 
However, parallelizing an application for SSP may still produce 
enough slack between the main thread and the speculative thread 
when there is no parallelism. Thus, instead of the degree of 
parallelism, we use the number of reduced miss cycles and the 
slack as our optimization targets. The region-based traversal starts 
with the innermost region where the delinquent load occurs and 
finds the first region in which the reduced miss cycles for basic or 
chaining SP is greater than a threshold value. The value is 
calculated as the product of the cutoff percentage and the miss 
cycles from cache profiling. We experiment with different 
percentage values and discover that the resulting performance is 
not highly sensitive to the percentage as long as it is reasonably 
selected. To avoid a slice becoming too big that often leads to 
wrong address calculations, we also stop the traversal of the 
region graph when it is nested several levels deep. The traversal 
also stops when the outermost region is reached. If none of the 
regions reduce the miss cycles beyond the threshold percentage, 
we pick the region with the largest percentage of miss cycles. 
However, when the reduced miss cycles are about the same for 
two regions, we prefer the inner one to the outer. 

For a given region, we assign one to be its trip count (or the 
number of iterations) if the region is not a loop. For a loop 
region, the trip counts are derived from block profiling if 
available; otherwise, they are estimated. If the trip count is small 
or the slack value for basic SP is larger than that for chaining SP, 
we use slackbsp in Section 3.2.2 to compute the slacksp function 
below. Otherwise, chaining SP is used. Reduced miss cycle count 
for a region is computed by summing over all the iterations the 
number of miss cycles reduced in each iteration. 

reduced_misscycle=Σi  min(miss_cycle_per_iteration, slacksp(i)) 

We record the decision to use chaining or basic SP for each 
region traversed and the slack values. Thus, the final code may 
have nested chaining SP.  Finally, different slices are combined if 
they share nodes in the dependence graph. 

3.4.2 Generating the Binary   
After the selection above, we insert the trigger instructions and 
generate slices in the binary. The trigger instruction is to bind a 
spawned thread to a free hardware context. The thread spawning 
is done via the existing lightweight exception-recovery 
mechanism in the Itanium architecture. This mechanism uses the 
speculation check instructions to determine if an exception 
should be raised for mis-speculation recovery. We take advantage 
of this feature by introducing a new check instruction, chk.c, 
for available context check. The trigger instruction, chk.c, 
raises an exception if free hardware context is available for 
spawning. Otherwise, chk.c behaves like a nop. Figure 7 
shows that the tool adapts the binary by replacing a single nop 
instruction with a chk.c instruction and by appending to the 
function the slice code  as the exception recovery code.  

As shown in Figure 7, each spawn instance consists of two 
blocks, the stub block and the slice block. The stub block is 
executed by the main thread as the recovery code for a chk.c 
instruction. The stub code copies the live-in values to the live-in 
buffer and issues an instruction to spawn the speculative thread at 
its end. The main thread resumes its normal execution after 
executing the stub block as its recovery code. At the same time, 
the spawned thread begins executing the slice block, which 
contains code to copy live in values from the live-in buffer to the 
thread’s register file. The code layout for two thread spawns and 
their individual trigger instructions are illustrated in the Figure 7. 
The tool can form a slice block by extracting instructions from 
various procedures. Finally, to implement a live-in buffer that the 
main thread and the speculative thread can both access, we use 
the on-chip memory buffer, which is the spill area for the backing 
store of the Register Stack Engine on the Itanium processor 
family, as the live-in buffer [26]. 

4. EXPERIMENTS AND ANALYSIS 
In this section, we begin with a description of the simulation 
environment and the benchmark suites. We then present the 
performance data. 

4.1 Experimental Framework 
The experiments are carried out on SMTSIM/IPFsim, a version of 
SMTSIM simulator [27] adapted to work with Intel’s Itanium 
simulation environment [29]. This infrastructure is execution-
driven and cycle-accurate. It supports a variety of single-threaded 
and multi-threaded Itanium research processor models, including 
in-order pipeline, out-of-order pipeline, and SMT. It enables 
comprehensive performance study of several speculative 
precomputation machine models.  
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All benchmarks studied in this paper are compiled with the Intel 
compiler [4][17] using the advanced instruction-level parallelism 
techniques such as aggressive use of speculation and prefetching. 
To ensure that the baseline binaries achieve the best that our 
compiler can deliver, we use the peak options including profile-
guided optimizations and prefetching. While the automated tool 
leverages production compiler infrastructure [4], it is currently 
for research investigation only and is not yet intended as a new 
feature in the production compiler. The tool targets the pointer-
intensive applications in the Olden suite [5] and the SPEC 
CPU2000 suite [14]. The Olden benchmarks consist of the 
pointer-intensive codes that are known to suffer frequent L2 and 
L3 cache misses. Em3d solves electromagnetic propagation in 
three dimensions. Health models Colombian health care system. 
Mst computes the minimum-spanning tree of a graph. Finally, 
treeadd performs depth-first search on a balanced B-tree. To 
study prefetching for both depth-first and breadth-first traversals, 
we enhance the program to perform both. Thus, two versions are 
used: treeadd.df for the depth-first traversal of a balanced B-tree 
and treeadd.bf for the breadth-first counterpart. From the SPEC 
CPU2000 suite, we use memory-intensive applications such as 
mcf and vpr that miss the L2 and L3 cache often. These two 
benchmarks exhibit an average of about four-times speedup when 
we assume zero-miss-penalty memory on an in-order model, as 
shown in Figure 2. Mcf is a combinatorial optimization program. 
Vpr performs FPGA circuit placement and routing. For 12 SPEC 
CPU2000 programs, Aamodt et al. [1] have shown that the 
average number of stores per slice is only 0.87 and the average 
slice includes only 22.5 instructions even when following load-
store dependences using perfect disambiguation and extracting 
slices over a window of 256 committed instructions from the 
main thread. Hence they demonstrate that these programs do not 
update the dynamic data structures very heavily while executing 
delinquent loads, and that in any case, exploitable parallelism 
exists between the prefetch threads and the main thread. 

4.2 Slice Characteristics  
As shown in Table 2, the post-pass tool successfully locates 
several static slices to target a small number of selected 
delinquent loads. The column labeled “Interproc slices” indicates 
the number of p-slices that are interprocedural. We find that 
interprocedural slices contribute to larger slack value and hence 
higher performance. Furthermore, the slice-pruning methods such 
as speculative slicing and region-based slicing, effectively 
extracts short sequence of instructions to produce the address for 
a delinquent load. Finally, the last column in Table 2 shows that 
the average number of live-in values for the slices identified 
above is relatively small.  

The tool automatically selects basic or chaining SP for a given 
region. The benchmark treeadd.df uses basic SP. Most loops in 
the benchmark suite use chaining SP. We find that chaining SP 
produces bigger slacks and achieves long-range prefetching. The 
performance impact of the scheduling is presented in the next 
section. 

4.3 Performance of SSP-Enhanced Binaries 
This section presents the speedups gained by SSP on both in-
order and OOO processors, over the baseline in-order processor. 
In Figure 8, the three bars associated with each application denote 
the speedup of SSP on the in-order machine, that of the OOO 
machine, and that of SSP on the OOO machine, respectively. The 
baseline is the in-order processor without the precomputation 
threads. SSP achieves an average speedup of 87% over the 
baseline in-order processor on the seven pointer-intensive 
benchmarks. Although our machine can only issue one bundle 
from each of the two threads per clock cycle, SSP achieves at 
least 2x speedups for em3d, health, and treeadd.bf on the in-order 
processor. This demonstrates an advantage of the SSP model over 
traditional parallelization that relies on partitioning data or 
computation: In the SSP model, one instruction executed by the 
speculative thread may save more than one clock cycle for the 
main thread if the instruction is executed early. A single prefetch 
instruction executed 230 cycles ahead of the main thread may 
save 230 cycles if the data had only been in the main memory. 
SSP is effective for in-order processors especially because the in-
order pipeline stalls when an instruction attempts to use the 
destination register of an outstanding load miss. The first bar for 
each benchmark in Figure 8 shows that the post-pass tool 
effectively enhances the binary to use multithreading for 
preventing such pipeline stalls in the main thread’s execution. 

Even though SSP only targets the delinquent loads, its 
performance for health approaches that of the OOO execution, 
which attempts to cover all misses. However, we observe that the 
OOO processor can on average achieve 175% speedup over the 
baseline in-order processor. The reason is that OOO can execute 
beyond dependent instructions and tolerate many L1 cache misses 
on memory-intensive applications. The SSP tool achieves an 
average of 5% speedup on the OOO processor. 

Benchmark Slices 
(#) 

Interproc 
slices (#) 

Average 
size 

Average # 
live-in 

em3d 8 0 10.3 2.8 
health 2 1 9.0 3.5 
mst 4 1 28.3 4.8 
treeadd.df 3 0 11.3 3.0 
treeadd.bf 2 0 12.5 4.5 
mcf 5 0 14.0 4.4 
vpr 6 0 13.5 4.0 

Table 2. Slice characteristics 
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4.4 Dynamic Statistics for SSP-Enhanced 
Binaries 
To evaluate the effectiveness of our tool in detail, we measure the 
cache miss reduction for the benchmark programs. Figure 9 
shows the percentage breakdown of which level of the memory 
hierarchy is accessed. The height of any bar in the figure is the L1 
cache miss rate. In the figure, the four configurations for each 
benchmark are presented in the following order: the baseline in-
order model, the in-order model with SSP, the OOO model, and 
the OOO mode with SSP. All the partial misses in the figure 
denote the percentage of accesses to cache lines which were 
already in transit to L1 cache due to accesses by prior loads from 
the main thread or from a prefetch. 

Figure 9 shows that on the in-order model, most of the reduction 
of cache misses happens in the lower cache levels, which are 
categorized in the bottom portions of the bars in the figure. Thus, 
the chaining SP schedules many long-range prefetches and hence 
reduces many L3 and L2 cache misses. Chaining threads can 
achieve these long-range prefetches because even if one thread 
stalls due to the in-order execution, many chaining threads can 
still run ahead and prefetch data. Traditional intra-thread 
prefetching techniques cannot overcome this stall problem on the 
in-order model. Although some benchmarks cause more L1 cache 
misses on the OOO model than on the in-order model, the former 
model executes the benchmarks faster than the latter. This is 
because the OOO model overlaps many cache misses with 
program execution. Furthermore, because OOO hides cache 
misses better, and relies less on thread-based prefetching, SSP 
reduces fewer misses on the OOO model than on the in-order 
model. 

Even if a slice computes the load address correctly, the prefetch is 
useless if it is untimely. The reduction in cache misses in Figure 9 
shows not only that the slices compute many addresses correctly 
but also that the scheduling algorithm generates many timely 
prefetches. The number of wrong addresses generated by 
speculative slicing is small for these benchmarks.  

4.4.1 Cache Latency Reduction by SSP 
To further understand the speedups, we show in Figure 10 the 
detailed cycle breakdown for SSP on both an in-order and OOO 
model. All data are normalized to the execution cycle count of the 
baseline in-order processor. This reveals how much miss penalty 
SSP manages to reduce at different levels of cache hierarchy. The 
height of each bar in the figure denotes the cycle counts, 
normalized to the cycle count of the baseline in-order processor. 
As shown in Figure 10, the total cycles are partitioned into six 
categories: L3, L2, L1, Cache+Exec, Exec, and Other. The first 
three, shown as the bottom three partitions of a bar in the figure, 
denote the miss cycles for L3, L2, and L1 cache respectively, 
while no instruction is issued for execution. If the cache hierarchy 
and instruction issue are both active in the same cycle, we 
account the cycle as Cache+Exec. If only the latter is active in a 
cycle, the cycle belongs to Exec category. The Other category 
accounts for all other cycles such as bubble cycles due to branch 
misprediction. Figure 10 shows that the benchmarks suffer 
performance loss from cache misses at nearly all levels of the 
memory hierarchy. 

Figure 10 shows that SSP effectively reduces the L3 cycles, 
which is the main reason for the 87% speedup on the in-order 
processor. Over the seven programs, SSP achieves a speedup of 
135% on average for the L3 category. The reason is that the tool 
enhances the binary to issue long-range prefetches. Because in-
order processors are not as latency-tolerant as OOO models, the 
benefit of using SSP is more dramatic on the former. However, 
we still observe the reduction in the L3 cycles for all programs on 
the OOO processor. The reduction is due to the long-range 
prefetches resulting from SSP, attacking load misses beyond the 
reach of the OOO instruction window. On top of the OOO 
processor which can hide both cache misses in most cache levels 
(especially L1) and functional unit latency, SSP can further 
reduce the latency on the lower levels of cache hierarchy by 
performing long-range prefetching for few loads. 
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Figure 9. Percentage of where delinquent loads are satisfied 
 when missing in L1. Height of a bar is those loads’ miss rate. 
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Figure 10. Cycle breakdown of in-order, in-order+SP, OOO,  

and OOO+SP, normalized to in-order model. It shows the 
impact of SP on cache hierarchy on both in-order and OOO. 
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While SSP reduces the L3 cycles effectively, it sometimes 
increases the L1 cycles. As a result, SSP achieves only 5% 
speedups on the OOO processor. Because we assume SSP 
without special hardware support, speculative threads can only be 
spawned at the retirement stage of the pipeline. And thread 
spawning is assessed with similar penalty to exception handling 
that incurs pipeline flushes. This makes the SSP scheme less 
effective in producing timely prefetches for L1 cache misses.  Our 
results show that there is potential in further improving the tool 
for an OOO processor. The opportunity lies in judiciously 
applying SSP to even more selective loads, targeting long-range 
prefetching for reducing L3 cache misses without interfering with 
L1 misses that are covered by OOO.  Future dynamic optimizers 
can monitor the coverage and timeliness data associated with a 
prefetching thread and if the thread does not help reduce latency, 
future chk.c instructions for that thread will return no available 
context. Alternatively, on OOO we need to create a slice that 
achieves even longer-range prefetching. For instance, 
precomputation via hand-adaptation in [31] achieves 3-times 
speedup on health on an OOO processor by creating a bigger 
interprocedural slice. This is due to the inlining of a few levels of 
recursive function calls by the programmer’s hand adaptation to 
create large enough slack. The tool could not perform such 
aggressive optimization. We are investigating SSP techniques to 
complement, instead of interfering, the prefetching by OOO 
execution. 

4.5 Automatic vs. Hand Adaptation 
Wang et al. performed hand adaptation on three memory-
intensive benchmarks for speculative precomputation [31]. In 
contrast, we use the automated binary adaptation tool to enhance 
the binary for SSP. We compare the performance of both 
approaches on the same simulator. The common programs from 
both works are mcf and health. On an in-order processor, hand-
adaptation achieves a speedup of 73% on mcf, while the post-pass 
tool achieves 37% speedup. Our tool loses 20% of the overall 
performance of the manual version. On an OOO processor, both 
approaches achieve little improvements.  

For the health benchmark, the enhanced binary from SSP 
achieves 103% speedup on the in-order processor, while hand 
adaptation achieves a speedup of 130%.  We lose about 12% of 
the overall performance of the manual version. On the OOO 
processor, the hand-adaptation achieves 200% speedup, while our 
tool reports a speedup of only 120%. We lose 27% of the overall 
performance. As explained in Section 4.4, the loss is due to the 
fact that our tool could not perform the aggressive inlining of 
recursive function calls done by hand. 

5. RELATED WORK 
Longer memory latencies (relative to processing time) have 
motivated the research on building more complex pattern-based 
predictors of program behaviors in hardware. In comparison, 
several research groups have recognized recently that the program 
itself could be used as a predictor. This paper presents a software 
tool for such program-as-predictor prefetching. Luk proposed 
software controlled pre-execution that uses available hardware 
thread contexts to execute inserted code for prefetching [21]. The 
hand-inserted code provides prefetches for a non-speculative 
thread and yields an average speedup of 24% in seven irregular 

applications on an out-of-order SMT processor based on Alpha. 
The inserted code was not trimmed using the concept of slicing. 
Roth and Sohi proposed data driven multithreading that uses 
hardware contexts to prefetch for future memory accesses and 
predict future branches [25]. There was no automated compiler 
for identifying the triggers or extracting a minimal sequence of 
instructions to produce the address of a future memory access. 
Zilles and Sohi performed analysis of dynamic backward slices 
for execution-based prediction [33][34]. They target more 
delinquent events such as problem branching. Our work focuses 
on the automated tool that generates p-slices and triggers for load 
operations. 

Collins et al. used the simulator to capture the dependence graph 
that forms p-slices for basic triggers [7]. This graph-capture code 
is equivalent to performing dynamic slicing, which is shown to be 
potentially prohibitively expensive [2]. P-slices using chaining 
triggers were constructed manually. The post-pass binary tool 
aims at automating it in the compiler. Dependence graph 
precomputation [3], dynamic speculative precomputation [6], 
and slice processors [23] use all-hardware approaches. The 
hardware complexity may increase if future processors try to 
target a very long-range prefetch. Furthermore, to identify a 
program subset with minimal size and maximal accuracy may 
require a sophisticated program analysis, and the complexity of 
attainable analysis in hardware is typically constrained. However, 
hardware has the advantage of being able to track program 
behaviors and dynamically adjust accordingly. In comparison to 
the all-hardware approaches, SSP uses the existing SMT 
hardware and relies on the compiler to perform binary adaptation. 
Aamodt et al. approached pre-execution as a generalized form of 
computation prediction [1]. They introduced and measured slice-
locality, a necessary property for history-based methods such as 
those used for value and branch outcome patterns to be extended 
for dynamically predicting repeating patterns of computations. 
They provided the insight that program execution exhibits slice-
locality and that by recording the few most recently seen unique 
slice traces per problem load or branch, the majority of problem 
branches and load instances are covered. Our SSP tool exploits 
slice-locality by statically capturing the dominant slices, instead 
of building hardware to track and adjust slice-traces dynamically. 

6. CONCLUSIONS AND FUTURE WORK 
It is difficult to parallelize pointer-intensive applications for 
multithreading architectures. However, we demonstrate an SMT 
approach that leverages otherwise-idle threads to perform 
precomputation and prefetches for the main thread. By exploiting 
the increasing memory bandwidth available on modern 
processors, we can reduce the memory latency for the main 
thread. This new form of multithreading, unlike traditional 
parallelization which focuses on partitioning the data or 
computation, minimizes the changes to the existing binaries and 
to the execution of the main thread. The main thread does not 
integrate computation results from the speculative threads. This 
makes it possible to speed up existing optimized binaries via 
multithreading. 

Unlike some previous work that either assumes complex 
hardware mechanisms or relies on manual adaptation, this paper 
presents an effective post-pass compilation tool for the software-
based speculative precomputation. The tool achieves an average 

127



of 87% speedup on an in-order processor for seven applications. 
Motivated by our results on the research Itanium model and by 
our assumption of no expensive hardware support, we recently 
performed SSP on the out-of-order Pentium 4 processor with the 
Hyper-threading technology [22] and achieved 7% to 45% 
speedups on real silicon [30]. In the future, we plan to extend this 
tool for other delinquent events in the program and for using SSP 
more judiciously on an OOO processor. Furthermore, we plan to 
use this automated tool to enable broader and more productive 
application of SSP to programs such as database applications. 
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