
Post-Pass Binary Adaptation for
Software-Based Speculative Precomputation

Steve S.W. Liao, Perry H. Wang, Hong Wang, Gerolf Hoflehner , Daniel Lavery , John P. Shen

Microprocessor Research
Intel Labs

Intel Compiler
Software and Solutions Group

{shih-wei.liao, perry.wang, hong.wang, gerolf.f.hoflehner, daniel.m.lavery, john.shen}@intel.com

ABSTRACT
Recently, a number of thread-based prefetching techniques have
been proposed. These techniques aim at improving the latency of
single-threaded applications by leveraging multithreading
resources to perform memory prefetching via speculative prefetch
threads. Software-based speculative precomputation (SSP) is one
such technique, proposed for multithreaded Itanium models. SSP
does not require expensive hardware support—instead it relies on
the compiler to adapt binaries to perform prefetching on
otherwise idle hardware thread contexts at run time. This paper
presents a post-pass compilation tool for generating SSP-
enhanced binaries. The tool is able to: (1) analyze a single-
threaded application to generate prefetch threads; (2) identify and
embed trigger points in the original binary; and (3) produce a new
binary that has the prefetch threads attached. The execution of the
new binary spawns the speculative prefetch threads, which are
executed concurrently with the main thread. Our results indicate
that for a set of pointer-intensive benchmarks, the prefetching
performed by the speculative threads achieves an average of 87%
speedup on an in-order processor and 5% speedup on an out-of-
order processor.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compiler, optimization,
code generation, memory management.

General Terms
Measurement, Performance, Design, Experimentation, Algorithms.

Keywords
Long-range thread-based prefetching, pointer, slicing, slack, chaining
speculative precomputation, speculation, prediction, scheduling, post-
pass, dependence reduction, loop rotation, delay minimization, triggering.

1. INTRODUCTION
Memory latency has become a critical bottleneck in achieving
high performance on modern processors. Today, many large
applications are memory intensive, as both their data working set
and the complexity to predict their memory accesses increase.
Despite continued advances in cache design and development of
new prefetching techniques, the memory latency problem persists

and escalates especially with pointer-intensive applications,
which tend to defy conventional stride-based prefetching
techniques. One solution is to overlap memory stalls in one
program with the execution of useful instructions from another
program, as done in emerging simultaneous multithreading
(SMT) processor architectures [10][15][22][28]. In addition to
improving multitasking throughput, SMT has also been used to
improve the performance of single-threaded applications by
leveraging speculative threads to perform cache prefetches on
behalf of the main (or non-speculative) thread [25]. A speculative
thread executes code to precompute memory addresses and issue
prefetches. Instead of using a complex address pattern predictor,
this pre-execution approach uses the program itself as a predictor
to prefetch for a pointer-intensive program accurately and
efficiently.

Various forms of such thread-based prefetching have been
proposed recently. Examples include Collins et al.’s speculative
precomputation [7], Luk’s software controlled pre-execution
[21], Roth and Sohi’s data driven multithreading [25], and Zilles
and Sohi’s speculative slices [34]. These studies demonstrated the
performance potential of thread-based prefetching by assuming
the availability of hardware and/or compiler support. In this
paper, we introduce an automated tool for transforming
application code in order to attach prefetch threads in the binary.
The aim of this paper is to demonstrate the feasibility of
automatically generating binaries for thread-based prefetching
and the effectiveness of the resulting binaries. To our knowledge,
this work is the first to automate the entire process of extracting
dependent instructions leading to target operations, identifying
proper spawning points and managing inter-thread
communication to ensure timely pre-execution.

Our tool is post-pass because it does not modify the normal
compilation steps, but rather is invoked after the compilation
process. The tool is based on the speculative precomputation
(SP) paradigm for future ItaniumTM processors [16]. SP utilizes
hardware thread contexts to execute precomputation slices (p-
slices), which consist of instructions that compute the memory
addresses for prefetching [7]. Speculative threads can be spawned
by one of two events: a basic trigger, which occurs when a
designated trigger instruction in the non-speculative thread is
retired, or a chaining trigger, by which one speculative thread
explicitly spawns another. Collins et al. demonstrated that long-
range prefetching using chaining triggers is the key to high
performance via speculative precomputation [7]. As a proof of
concept, they manually find the chaining triggers in the binary.
Collins et al. later proposed dynamic speculative precomputation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006…$5.00.

117

which shows the implementation of an all-hardware approach [6].
In contrast, our work uses the SMT model without expensive
hardware support and relies on the post-pass compilation to
generate p-slices and to place triggers judiciously. Instead of
constructing p-slices dynamically, the post-pass tool examines
code regions and extracts p-slices statically with profiling
feedback. To maximize the concurrent usage of available memory
bandwidth, the chaining triggers inside the p-slices are scheduled
early across multiple threads. We also traverse the dependence
graph to identify and embed basic triggers in the main thread’s
code.

We show that the tool is effective for a set of seven pointer-
intensive benchmarks with exploitable parallelism among the
prefetches in the speculative threads and memory accesses in the
main thread. The algorithms employed in the tool effectively
schedule the p-slices and triggers so that speculative threads can
run ahead of the main thread to perform effective prefetches. The
tool improves the performance by 87% on an in-order processor
and by 5% on an out-of-order processor. SSP provides a greater
benefit for the former, because the latter already hide some
memory stall cycles. Finally, it is also important to examine
whether the automated results match the results from hand
adaptation in finding slices and locating triggers. We show that
the former loses at most 20% of the performance on the in-order
processor and 27% on the out-of-order processor, compared with
the two hand-tuned binaries available from our previous work
using the same machine model [31].

The rest of the paper is organized as follows. Section 2 describes
the SSP paradigm and highlights the design of two research
Itanium machine models and a high-level overview of our tool.
We describe the post-pass compilation algorithm and evaluate the
resulting binaries in Sections 3 and 4, respectively. Section 5
discusses the related work and Section 6 concludes the paper.

2. SOFTWARE-BASED SPECULATIVE
PRECOMPUTATION
In speculative precomputation, a run-time event (either a basic or
a chaining trigger) invokes the execution of a p-slice as a
speculative thread. The thread precomputes and prefetches the
address accessed by a load that misses the cache frequently,
hereafter called a delinquent load. Once the trigger is reached, the
load is expected to appear later in the instruction stream of the
main thread, hence the speculatively executed p-slice can reduce
the cache misses in the main thread. In general, any long-latency
operation can be viewed as a delinquent operation and become a
potential candidate to benefit from speculative precomputation.
SSP uses the otherwise idle hardware thread contexts to execute
p-slices. The post-pass tool ensures that no store instructions are
included in the precomputation. The speculative execution of p-
slices does not alter the architecture state of the main thread.
Consequently, the integration [25] of results from speculative
threads into the main thread becomes unnecessary. Although
prefetching wrong addresses may hurt performance, the SSP
paradigm does not require p-slice computation to satisfy the
correctness constraints, since the precomputation is prevented
from modifying the main thread’s architecture states. Thus, SSP
enables many optimizations in the speculative threads by
separating the performance issue from the correctness issue.

SSP assumes no expensive hardware support. It uses (1) existing
lightweight exception-recovery mechanisms in Itanium [26] to
spawn a thread and (2) existing memory buffers in the processor
to transfer the live-in values from a parent thread to its child
thread, as detailed in Section 3.4.2. Thus, the machine does not
need to have special flash-copying hardware between register
files of the two thread contexts. SSP relies on the software tool to
generate p-slices and code for transferring live-in values from the
main thread. In the following sections, we first describe our
Itanium machine models and then the post-pass compilation tool
that adapts binaries for SSP.

2.1 Research Itanium Models
We investigate both in-order execution and out-of-order
execution Itanium machine models. The in-order model uses a
12-stage pipeline that resembles a two-bundle wide Itanium [26],
with each bundle consisting of three instructions. Both models
provide an SMT mechanism with four hardware thread contexts.
Compared to the baseline in-order model, the out-of-order (OOO)
model assumes four additional front-end pipe stages to account
for the extra OOO complexity, such as register renaming and
instruction scheduling stages. The expansion queue in the in-
order machine is per-thread 16-bundle long. In contrast, the OOO
model has a per-thread 255-entry reorder buffer and an 18-entry
reservation station. Table 1 specifies cache and memory latency
information, along with processor details. To account for future
processor generations, the models are designed with higher
memory latencies than current product generations.

Table 1. Modeled Research Itanium Processor

Threading SMT processor with 4 hardware thread contexts.
Pipelining In-order: 12-stage pipeline. OOO: 16-stage pipeline.
Fetch per cycle 2 bundles from 1 thread or 1 bundle each from 2 threads
Branch predict. 2k-entry GSHARE. 256-entry 4-way associative BTB.
Issue per cycle 2 bundles from 1 thread or 1 bundle each from 2 threads
Function units 4 int. units, 2 FP units, 3 branch units, 2 memory port
Register files
per thread

128 integer registers, 128 FP registers, 64 predicate
registers, 8 branch registers, 128 control registers.

Cache structure

L1 (separate I & D): 16KB each. 4-way. 2-cycle latency.
L2 (shared cache): 256KB. 4-way. 14-cycle latency.
L3 (shared cache): 3072KB. 12-way. 30-cycle latency.
Fill buffer: 16 entries. All caches have 64-byte lines.

Memory 230-cycle latency. TLB Miss Penalty: 30 cycles.

Spawning a speculative thread involves allocating a hardware
thread context for the thread, and providing to the thread context
the address of the first instruction of the speculative thread. If a
free hardware context is not available, then the spawn request is
ignored. We use the lightweight exception-recovery mechanism
to raise an exception when a free hardware context is available for
thread spawning. To implement live-in buffers for inter-thread
communication, we utilize the backing store of the Register Stack
Engine on the Itanium processor family [26]. Our software tool
adds code to copy necessary live-in values into this on-chip
buffer, which is shared by both threads. The values can then be
copied to the register file in the newly spawned thread,
eliminating the possibility of inter-thread hazards where a register
may be overwritten before a child thread has read it. In our
experiment, the number of live-in values is relatively small as
described in Section 4.

118

2.2 Post-Pass Compilation Tool
In contrast to dynamic speculative precomputation [6], SSP uses
software to identify p-slices and trigger points prior to run time.
The tool adapts the binaries to enhance them to achieve
performance speedups. Figure 1 shows the tool flow of the
system. To minimize changes to the normal compilation process,
we encapsulate the tool in a post-pass phase. Partly because of
this strategy, this encapsulation allows us to reuse the same tool
in a future binary translation tool when the source code is not
available.

The first compilation pass generates the regular binary. In the
second pass, we use the profiling information collected from
running the original binary to enhance the binary for SSP. The
post-pass tool first reads in the compiler intermediate
representation (IR) and the control flow graph (CFG). This
representation is also used by the code generator at the code
emission stage where the IR exactly matches the hardware
instructions in the binary [4]. Each CFG node is also annotated
with run-time frequency information.

Since we target only delinquent loads, our tool needs to first
identify them in the program. For many programs, only a small
number of static loads are responsible for the vast majority of
cache misses. The tool uses the cache profiles from the simulator
to identify the top delinquent loads that contribute to at least 90%
of the cache misses. Figure 2 shows that the tool successfully
locates the loads that greatly impact performance for both in-
order and OOO research models. These programs are from the
SPEC CPU2000 [14], and Olden benchmarks suites [5]. In
Figure 2, the first bar in each category shows the speedup
assuming a perfect memory subsystem where all loads hit in the
L1 cache. The phenomenal speedups confirm that these are
memory-intensive programs. The second bar in each category
represents the speedup when the delinquent loads are assumed to
always hit in the L1 cache. This information also provides us the
upper bound on what the post-pass tool can achieve. In most
cases, eliminating performance losses from only the delinquent
loads yields much of the speedup achievable by zero-miss-latency
memory. Figure 2 also shows that, compared with the in-order
model, the OOO model has less room for improvement via SSP.

After delinquent load identification, the tool computes the
program slice of identified loads’ memory addresses, defined as

the set of instructions that contribute to the computation of the
address for the speculative thread to execute before issuing the
memory prefetch. Slicing can reduce the code to only the
instructions relevant to the computation of an address. Using
slicing and profiling, the tool extracts a minimal sequence of
instructions to produce the addresses of delinquent loads, and
schedules the slice to ensure timely prefetches.

Finally, the tool locates the desirable triggering points in the main
thread for spawning the p-slices in order to minimize the
communication (i.e., the number of live-in values) between the
threads, while ensuring enough prefetching distance. During code
generation, the tool inserts code in the original binary that
invokes the p-slices. Also, once the p-slices are built, they are
compiled with live-in copying code and appended after the
function in which the trigger resides in the program binary. Since
our SSP tool targets hardware without the flash-copy mechanism,
it also performs live-in analysis to generate code to copy live-in
values. The detailed post-pass algorithm for SSP is presented in
the following section.

3. POST-PASS ALGORITHMS FOR SSP
The post-pass tool adapts the binary so that the speculative thread
prefetches the data of the delinquent load with large enough
slack, which is defined as the execution distance between the
main thread and the speculative thread. Specifically, the slack of a
thread-based prefetch is defined as:

slack(load,prefetch)=timestampmain(load)–timestampspec(prefetch),

where timestampmain(load) and timestampspec(prefetch) denote the
time when the targeted load is executed in the main thread and
when the prefetch is executed in the speculative thread,
respectively. The above mathematical definition is ideal and
indeed is likely to vary each time the trigger and the load are
encountered. In practice, our SSP tool employs a heuristic in the
following sections to estimate this slack value. Positive slack
values are desirable, because they indicate the speculative thread
executes the instructions ahead of the main thread. The goal of

First compilation pass

Regular binary Profiles

Second compilation pass

Post-pass control flow graph builder

Delinquent load identification

Slicing, scheduling, trigger point identification

SSP-enabled binary generation

Enhanced binary with triggers+slices

Our post-pass tool:

First compilation pass

Regular binary Profiles

Second compilation pass

Post-pass control flow graph builder

Delinquent load identification

Slicing, scheduling, trigger point identification

SSP-enabled binary generation

Enhanced binary with triggers+slices

Our post-pass tool:

Figure 1. Tool flow for generating SSP-enhanced binaries

0

6

12

18

24

30

io ooo io ooo io ooo io ooo io ooo io ooo io ooo io ooo

em3d health mst treeadd.df treeadd.bf mcf vpr average

Perfect Memory Perfect Delinquent Loads

Figure 2. Speedup when assuming perfect memory vs. when

assuming delinquent loads always hit the cache.

119

our algorithm is to find slices that contain large enough slack, but
not too large. Having too much slack may cause adverse cache
interference, or the prefetched data may be replaced by the time
the main thread encounters the delinquent load.

We first present the slicing tool and scheduling algorithm in
Sections 3.1, and 3.2. Section 3.3 describes the identification of
all the trigger points in the main thread’s binary for launching the
slice computation. Finally, Section 3.4 describes how the tool
generates the new binary including p-slices and code for copying
their live-in values from the main thread.

3.1 Slicing for Speculative Precomputation
To generate p-slices, the post-pass tool first reads in the program
representation and identifies the delinquent loads. The tool
employs cache profile data from the simulator to determine the
set of loads that contributes to the majority of cache misses.
Typically, only a small number of static loads are selected. Next,
the tool applies program slicing to each load address to reduce the
code to only the instructions relevant to the load’s address
computation.

The slice selection process determines the content for speculative
precomputation. A common technique for computing program
slices is to transitively follow all of the control and data
dependence edges originating from the reference being sliced.
But this notion of slicing, originally proposed by Weiser [32],
may result in large slices. Specifically, this original context-
insensitive algorithm may suffer from inaccuracy due to
unrealizable paths [18] because they compute the slice as the
union of all the statements in all paths that reach the reference
without matching in- and out-parameter bindings. To solve this
imprecision problem, the slicing algorithm proposed in [20]
defines a context-sensitive slice of a reference r with respect to a
calling context C as:

)],...,[),,((
),(]),...,[,(

11

1

−
∈

=

nn

n

cccfcontextmapslice
rsliceccrslice

Ff
U

Uφ

In the equation, let C = [c1 , …, cn] be the call sites currently on
the call stack maintained by the post-pass tool, with cn being the
one on the top of the call stack, and F be the subset of the formal
parameters of the procedure upon which r depends on. The
function contextmap(f,c) returns the actual parameter passed to a
formal variable f at call site c. Slice(r,φ) represents the set of
instructions found by transitively traversing the dependence edges
backwards within the procedure in which r is located and its
callees. In summary, the computation of a context-specific slice
only builds the slice up the chain of calls on the call stack, which
reduces the size of the slice. Our slicing tool also ignores loop-
carried anti dependences and output dependences in order to
produce smaller slices.

3.1.1 Region-Based Slicing
A slice with large slack ensures the corresponding speculative
thread runs early enough to prefetch timely. On the other hand,
unnecessary expansion of slack may cause prefetched data to be
evicted from cache before its use. In this paper, we propose a
region-based slicing method that allows us to increase the slack
value incrementally from one code region to its outer ones, to

find slices with large enough slack to avoid untimely prefetches,
but small enough slack to avoid early eviction. A region
represents a loop, a loop body, or a procedure in the program.
Derived using CFG information, a region graph is a hierarchical
program representation that uses edges to connect a parent region
to its child regions, that is, from callers to callees, and from an
outer scope to an inner scope. In addition, we build a dependence
graph that contains both control and data dependence edges. For
each delinquent load identified, we locate the backward slice of
the load address in the dependence graph, starting from the
innermost region in which this load occurs. The demand-driven
slice computation accepts a request on a delinquent load’s
address and uses a primarily recursive descent algorithm region
by region until the slack of precomputing the address is large
enough. We will use the simplified code excerpt from the
function primal_bea_map() in the mcf benchmark from
SPEC CPU2000 [14] as an example to illustrate the algorithms in
this paper. Figure 3 shows the code excerpt and a corresponding
slice in the loop region. A solid arrow denotes a data dependence,
and a dashed arrow denotes a control dependence. Note that there
are no false loop-carried dependences in this figure. By finding
the slice of the address of the delinquent load “t->tail->
potential”, SSP executes fewer instructions than the main
thread does. Because many instructions in the loop body are not
present in the slice, the region-based slicing achieves enough
slack and selects this region for precomputation. The region
selection is detailed in Section 3.4.1.

When the current region being examined is a loop or a procedure
with recursive procedure calls, this region may introduce
recurrences in the equation to compute the slice of a reference r.
To allow the reuse of previous slices, a slice summary is recorded
to exploit redundancy in slice computation [20]. We resolve
recurrences encountered when computing a slice summary by
using an iterative algorithm that is guaranteed to reach a fixed
point. The algorithm locates the recurrences by using a stack to
track the slice summaries of the references being constructed. If a
new slice summary to be computed is already on the stack, a
recurrence is detected and the algorithm simply uses the
approximate slice summary already built. If the approximate
summary is used in the computation of another summary, we
deem that the latter depends on the former. All such dependence
relationships are recorded. When the approximate slice summary
is finalized, its dependent summaries are placed on a worklist.
The algorithm finds the fixed point solution by iteratively
removing a slice summary from the worklist, recomputing it, and
adding new dependents on the worklist if the result changes. The
fixed point computation terminates when the worklist is empty.
The fixed point solution is guaranteed to terminate because the
number of static instructions in a program is finite.

(a) Simplified excerpt. load(u->
potential) is a delinquent load.

(b) Slice of the address of the delinquent load in
the loop region. Arrows are dependence edges.

branch if arc < K

prefetch(u->potential)

u = load(t->tail)

t = arc

arc = t + nr_group

A:

B:

C:

D:

E:

do {
A: t = arc;

...
B: u = load(t->tail);
C: load(u->potential);

...
D: arc = t + nr_group;
E: } while (arc < K);

(a) Simplified excerpt. load(u->
potential) is a delinquent load.

(b) Slice of the address of the delinquent load in
the loop region. Arrows are dependence edges.

branch if arc < K

prefetch(u->potential)

u = load(t->tail)

t = arc

arc = t + nr_group

A:

B:

C:

D:

E:

do {
A: t = arc;

...
B: u = load(t->tail);
C: load(u->potential);

...
D: arc = t + nr_group;
E: } while (arc < K);

Figure 3. Simplified code example from mcf and a slice.

120

3.1.2 Speculative Slicing
Another source of enhancing the likelihood of timely prefetch is
from removing unprofitable instructions from a given p-slice. To
achieve that, we use speculation techniques to reduce the size of a
slice. Since the SSP threads do not alter the architecture state,
unlike traditional speculation mechanisms, we do not have to
generate recovery code when a mis-speculation is encountered.
Although reducing the size using speculation techniques is prone
to lower the accuracy of address computation, we exploit profile
information to maintain a reasonable tradeoff between the size
and accuracy of slices.

Empirical results have shown that pure static slicing may
introduce a large number of unnecessary instructions in the slice
due to the lack of run-time information [19]. However, pure
dynamic slicing [2] can often be prohibitively expensive. We use
a hybrid slicing [13] approach to improve precision while
maintaining efficiency. This approach, called control-flow
speculative slicing, alleviates the imprecision problem of static
slicing by exploiting block profiling and dynamic call graphs.
This control flow information is used to filter out unexecuted
paths and unrealized calls. In our experience, the quality and
efficiency of static analysis drops rapidly if the code being
analyzed contains indirect calls that we cannot resolve. To tackle
this issue, we instrument all the indirect procedural calls to
capture the call graph during profiling, and provide the result
back to the slicing algorithm. The slicing tool currently does not
use data speculation information to trim the slices, since the static
disambiguator in the compiler has proven to be effective [11].

In summary, both region-based slicing and speculative slicing
perform slice-pruning operations [20]. That is, after the slack
value becomes large enough, region-based slicing prunes the
traversals of the dependence edges to avoid prefetching the data
too early. Similarly, speculative slicing prunes the slice
computation at those nodes that are unlikely to yield effective
speculative precomputation. Slice-pruning is key for SSP,
because a precise slicing tool may not produce useful slices if the
precomputation does not result in timely prefetches.

3.2 Scheduling the Slice
As defined in Section 3.1, a slice was simply considered a set of
instructions. In this section, we describe the generation of an
execution slice. Using the slice of the code in Figure 3 as an
example, we show a corresponding execution slice in Figure 4.
Scheduling and synchronization determine when and which
instructions in the slices are assigned to the available thread
contexts. Our algorithm aims at scheduling enough slack for the
prefetches. For each targeted code region, the scheduling
algorithm considers two precomputation models: chaining
speculative precomputation (chaining SP) and basic speculative
precomputation. Chaining SP in this context means using one
precomputation thread to spawn another precomputation thread.

In this work, both threads execute identical code and are
collectively referred to as chaining threads. Chaining SP allows
parallelism among the chained thread invocations. Scheduling for
chaining SP is often the key to create enough slack, because the
spawning inside the speculative threads enables long-range
prefetching without incurring the spawning overhead on the main
thread. In contrast, basic SP uses only one speculative thread. The
scheduling algorithms for both SP models are presented in
Section 3.2.1 and 3.2.2, respectively.

3.2.1 Scheduling for Chaining SP
Although parallelism is not a necessary condition for chaining SP
to produce enough slacks, increased thread-level parallelism in
the chaining threads is important as its existence can be exploited
to produce much larger slack between the prefetches and the main
thread. Hence, given a p-slice generated by the slicing tool in
Section 3.1, our algorithm constructs a do-across prefetching loop
whose iterations are executed in parallel by the chaining threads.
This parallel execution is constrained by the fine-grained
synchronization between the threads, because a do-across loop
may contain loop-carried dependences. To increase thread-level
parallelism, the algorithm first reduces the number of
dependences (described in Section 3.2.1.1) and then minimizes
the delays among the threads for the given set of dependences
(described in Section 3.2.1.2). A chaining thread can be setup to
iterate over multiple iterations or targets for multiple regions. For
simplicity, the tool currently uses one chaining thread to target
one iteration in a loop region of the main thread. Our scheduling
algorithm is also applicable to speculative multithreading, since
that paradigm needs to address a very similar delay minimization
problem [9].

Note that the scheduling algorithm requires latency information
in combination with the dependence graph. The latency of a
memory operation is determined by cache profiling, and the
machine model provides latency estimates for other instructions.
The latency information is annotated on a dependence graph
edge. A slice and the annotated dependence edges between the
nodes in the slice form the dependence graph of the slice, as
shown in Figure 3(b). Using the region graph information, the
instructions in a region are scheduled together. Currently we do
not move instructions across region boundaries.

3.2.1.1 Dependence Reduction
In addition to removing loop-carried false dependences, we
develop two optimizations for dependence reduction, loop
rotation and condition prediction. The parallelism of chaining SP
is highly sensitive to actual code sequence in the slice for a loop
iteration. For example, if the first instruction of a chaining thread
depends on the last instruction of the previous chaining thread, no
amount of thread scheduling efforts can improve further as the
thread executions are serialized. However, it is possible to
prevent SSP thread serialization by reordering the SSP code. We
are able to reorder this code without affecting the main thread
since, unlike traditional parallelization, our main thread and
speculative threads execute different code. Loop rotation reduces
loop-carried dependence from the bottom of the slice in one
iteration to the top of the slice in the next iteration. The algorithm
greedily finds the new loop boundary that converts many
backward loop-carried dependences into true intra-iteration
dependences. The algorithm enforces the property that new

do {
A: t = arc;
B: u = load(t->tail);
C: prefetch(u->potential);
D: arc = t + nr_group;
E: } while (arc < K);

Figure 4. An execution slice for the code in Figure 3.

121

boundary does not introduce new loop-carried dependences.
Loop-carried anti dependences and output dependences are
ignored when scheduling the chaining SP code. By shifting the
loop boundary, we may expose more parallelism for chaining SP.

The second optimization is to use the prediction techniques on
some conditional expressions in the slice. For instance, spawning
chaining threads often occurs when the loop contains a
delinquent load, because the load misses many times during the
program execution. The spawn condition becomes highly
predictable. Thus, we use the prediction when the parallelism is
little, or the delinquent load occurs before the spawning. The
computation of the chaining spawn condition usually incurs loop-
carried dependences; hence by using prediction, the delay among
the threads is oftentimes reduced. The prediction breaks the
dependences leading to the spawn condition after predicting the
spawn condition. After such removal of dependences, more
instructions can be executed after the spawning point instead of
before the point. This results in higher thread-level parallelism.

3.2.1.2 Delay Minimization
The key for an efficient schedule is to minimize the delay of the
consecutive chaining threads when there is any inter-slice
dependence. Minimizing the delays results in larger slack values.
Cytron showed that the delay-minimizing scheduling problem is
NP-complete, even for simpler loop parallelization problems that
assume no loop-independent dependences exist [9]. Hence
Cytron proposed a two-phase scheduling heuristics, which first
partitions the dependence graph and then reorders the nodes in
each partition according to their priority value. Specifically, the
first phase in [9] partitions the graph by level-sorting the
instructions considering only the forward dependences. The
second phase computes the node priority by subtracting the
maximal edge latency among the incoming backward edges from
the maximal edge latency among the outgoing backward edges
from the node. Our algorithm is two-phase as well: graph
partitioning followed by list scheduling on the resulting acyclic
graph. While Cytron used adjacent edges to compute the node’s
priority, we use the maximum node height in the dependence
graph of the slice as the priority value of a node. The two phases
are presented in Section 3.2.1.2.1 and 3.2.1.2.2, respectively.

3.2.1.2.1 Graph Partitioning
We use the strongly connected components (SCC) algorithm in
[24] to partition a dependence graph. In a strongly connected
subgraph, there exists a path from a node to any other nodes in
the same subgraph. The SCC is defined as the maximal strongly
connected subgraph. A degenerate SCC contains only one
instruction node. Furthermore, we form SCC’s without
considering any false loop-carried dependences. In comparison,
Cytron’s partitioning phase is relatively restrictive since all loop-
carried forward dependences are enforced to produce code
schedule. Any occurrence of non-degenerate SCC in the
dependence graph consists of one or more dependence cycles,
which implies the existence of loop-carried dependences. A
speculative thread executing a loop iteration must resolve the
loop carried dependence in a dependence cycle in order for the
next chaining thread to start executing the same dependence cycle
in the next iteration. Hence the span of the dependence cycle
should be minimized. To achieve this, our heuristics schedules all

instructions in an SCC first before scheduling instructions in
another SCC.

Figure 5(a) shows the SCC’s in the slice’s dependence graph in
Figure 3(c). The three instructions, A, D, and E, in Figure 3 are
merged into one SCC node in Figure 5. Each of the load
instructions, B and C, forms a degenerate SCC node, because it is
not part of any dependence cycles. Node B and C do not compute
live-in values for the next chaining thread. Since the partitioning
uses SCC’s to tighten the dependence cycles into one SCC, the
algorithm can then schedule the chaining thread to first execute
the non-degenerate SCC in Figure 5, spawn the next chaining
thread, and then execute the two degenerate SCC’s in Figure 5.
This partitioning is important for the Itanium, because when the
load instruction B in Figure 3 misses in cache, executing
instruction C, which depends on the outcome of instruction B,
will stall an in-order processor while waiting for the miss being
serviced. Chaining SP triggers several speculative threads to
overlap multiple prefetches. To overlap the miss cycles in the
code in Figure 3, chaining SP forms several instances of a pointer
dereference and executes the chaining threads in parallel, as
shown in Figure 5(a).

3.2.1.2.2 Scheduling an Acyclic Graph
The resulting partitioned graph is a directed acyclic graph (DAG)
and thus can be scheduled by list scheduling algorithm. We select
the forward cycle scheduling with maximum cumulative cost
heuristics. As the heuristics accumulates the cost, or latency, for
each path, the node with longer latency to the leaf nodes of the
slice has a higher priority. If two nodes have the same cost, the
node with the lower instruction address in the original binary has
a higher priority. Finally, the instructions within each non-
degenerate SCC are list scheduled by ignoring all the loop-carried
dependence edges. The resulting code is shown in Figure 5(b).
Node B and C have smaller node heights than the non-degenerate
SCC does and are assigned lower priority.

As shown in Figure 5, we partition the slice into a critical sub-
slice and a non-critical sub-slice. The term critical sub-slice
denotes the set of SCC nodes before the spawn point. The
remaining nodes on the DAG become the non-critical sub-slice.
The instructions in the former are often in a long dependence
chain due to the chaining effect. The non-degenerate SCC in
Figure 5(a) is identified as the critical instructions. On the other
hand, no future instructions depend on the non-critical sub-slice,
which does not compute the live-in values for the next chaining
thread.

E

A

D

load

load

spawn spawn… E

A

D

load

load

critical
sub-slice

non-critical
sub-slice

(a) Chaining SP (Thin arrows are dependence edges)

trip count

(b) The automatically
generated do-across
prefetching loop for SSP

B:

C:

L1:
A: t = arc;
D: arc = t + nr_group;

/* live-in: arc */
E: if (arc < K) spawn(L1);
B: u = load(t->tail);
C: prefetch(u->potential);

thread_kill_self();

E

A

D

load

load

spawn spawn… E

A

D

load

load

critical
sub-slice

non-critical
sub-slice

(a) Chaining SP (Thin arrows are dependence edges)

trip count

(b) The automatically
generated do-across
prefetching loop for SSP

B:

C:

L1:
A: t = arc;
D: arc = t + nr_group;

/* live-in: arc */
E: if (arc < K) spawn(L1);
B: u = load(t->tail);
C: prefetch(u->potential);

thread_kill_self();

Figure 5. Chaining SP for the code in Figure 3

122

Although heuristics are needed for this NP-complete problem [9],
it is important to investigate whether the output of the algorithm
is comparable to the optimal schedule. Cooper et al. showed that
if the available instruction-level parallelism (ILP) is very small,
the forward scheduling with maximum dependence height
heuristics performs very well on real codes and there is little
opportunity for improving its performance further [8]. The
available ILP is computed as the length of the worst possible
schedule divided by the length of the best possible schedule. This
is equivalent to the ratio of the sum of the latencies of all
operations in the dependence graph to the critical path length.
Our tool automatically computes the available ILP from the
dependence graph. We observe that the dependence chains
leading to the delinquent loads do not exhibit much instruction-
level parallelism. Thus, simply using the height of a node in the
dependence graph is a reasonable metric for assigning priority
values.

For chaining SP, we compute the slack of a slice at the i-th
iteration of the generated do-across prefetching loop for the
region as:

slackcsp(i)=(height(region)-height(critical sub-slice)
 -latency(copy live-in’s and spawn)) * i

The function height computes the height of the dependence graph
for a region or for a slice by finding the maximum of the node
heights in a region or a slice. The above equation assumes that
there are enough hardware threads. We model the communication
overhead (copying live-in’s) as a factor in decreasing the slack.

3.2.1.2.3 Synchronizations across the Threads
After a slice is scheduled by the two phases above, we need to
insert synchronizations in the resulting do-across prefetching loop
due to the remaining loop-carried dependences. The partitioning
algorithm via SCC facilitates efficient synchronization, because
the nodes in the same dependence cycle are tightened into one
SCC. Synchronization placements determine the degree of the
thread-level parallelism and the synchronization overhead. For
instance, if we have more than one non-degenerate SCC nodes,
assuming no synchronization cost, synchronizing across threads
after the execution of each non-degenerate SCC may result in
shorter delays across the threads than synchronizing once after all
the non-degenerate SCC’s have been executed. However, the
former scheme requires more instances of handshaking and the
implementation of faster synchronization hardware primitives
than the latter. To minimize both the synchronization overhead
and the hardware support, the tool currently allows one point-to-
point communication between the threads. Thus, we synchronize
only once after all the non-degenerate SCC’s have been executed.
As a result, we pass all the live-in values at the spawn point.

3.2.2 Scheduling for Basic SP
Basic SP does not allow a speculative thread to spawn another
thread. The advantage of using basic SP is that it saves the thread
spawning and communication overhead. However, basic SP uses
only one sequential speculative thread and thus may stall if the
thread encounters a data dependence after the delinquent load on
an in-order execution machine. Figure 6(a) shows the sequential
execution of the loop iterations for the slice in Figure 3. Because
the slice contains pointer dereferences, the speculative thread
stalls at the second load when the first load misses in the cache.

This reduces the memory parallelism across different loop
iterations using basic SP.

The instructions in Figure 3 are list scheduled by ignoring all the
loop-carried dependence. The resulting code for basic SP is
shown in Figure 6(b). For basic SP, the slack value at the i-th
iteration of the generated prefetching loop for the region is
computed as:

slackbsp(i)=(height(region)-height(slice)) * i

Contrasting the two equations that compute the slack show that
basic SP saves more thread spawning overhead, while chaining
SP can provide a higher slack value when a non-critical sub-slice
incurs high latency. The basic SP for a loop region is illustrated
in Figure 6. If the region is a loop body, basic SP uses a
speculative thread to execute one iteration (loop body) and in
each iteration of the loop, the main thread triggers new
speculative thread for the next iteration, as done in [7].

3.3 Slice Triggering for SSP
After we find the slice inside a region, locating good trigger
points in the main thread would ensure enough slack while
minimizing the communication between the main thread and the
speculative thread. The set of triggers should form a cut set on the
control flow graph to ensure that each execution path leading to
the delinquent load has only one trigger point. As infrequent
edges are filtered out in a pre-pass, the optimal solution is to find
the minimum total cost of the cut weighted by the frequency, Σi (fi
* ci), where fi and ci are the frequency and the triggering cost of
the edge i, described below. Given the set of costs associated with
the edges, if we map the problem to the max-flow min-cut
problem by representing cost as capacity [12], the complexity for
finding the optimal cut is polynomial to the product of the
number of the edges and the number of the nodes. However,
computing the precise cost is difficult in practice. As a result, our
traversal on the dependence graph for finding a trigger point is
conservative. During the traversal, we compute the slack of the
slice by subtracting the dependence height of the slice from the
length of program schedule in the main thread.

With basic SP, the communication between the main thread and
the speculative thread would slow down the main thread. The
main thread needs to allocate the live-in buffer (LIB) and copy
the live-in values to the buffer. Thus, we model the copying
overhead as decreasing the slack with a higher cost. Minimizing
the live-in copying takes precedence over increasing the slack
value. In addition, we maintain control dominance information
intra-procedurally and terminate the traversal at the procedural
boundaries. With such information, we only consider the nodes

D

E

A

(a) Basic SP. Thin arrows are loop-
independent dependence edges.

B:

C:

An SSP
thread
runs
from one

iteration
to next.

D

E

A

B:

C:

do {
A: t = arc;
B: u = load(t->tail);
C: prefetch(u->potential);
D: arc = t + nr_group;
E: } while (arc < K);

thread_kill_self();

(b) The automatically generated
prefetching loop for Basic SP

load

load

load

load

D

E

A

(a) Basic SP. Thin arrows are loop-
independent dependence edges.

B:

C:

An SSP
thread
runs
from one

iteration
to next.

D

E

A

B:

C:

do {
A: t = arc;
B: u = load(t->tail);
C: prefetch(u->potential);
D: arc = t + nr_group;
E: } while (arc < K);

thread_kill_self();

(b) The automatically generated
prefetching loop for Basic SP

load

load

load

load

Figure 6. Basic SP for the code in Figure 3

123

that control-dominate the delinquent loads as potential trigger
points and prune the slicing when the slack value is too high. If
the slack value increase remains low after some traversal, we
would prune the slicing as well. This is because continuing the
slicing would include too many nodes while the slack value
remains the same. Finally, the tool would first place the trigger
after the instruction that produces the last live-in to the slice, and
then move the trigger points to the immediate control dominant
nodes if the slack value of the immediate dominant node remains
the same. Note that the trigger points do not need to be in the
dependence graph of the slice. By moving the triggers to a control
dominance point, several triggers may be combined and thus
reduce the number of trigger placements.

3.4 SSP-Enabled Code Generation
Finally, the post-pass tool selects the region and the
precomputation model for a delinquent load and then generates
the new binary with the p-slices attached.

3.4.1 Selecting Regions and Precomputation Models
If there is no overlap among the execution of different threads,
conventional do-across parallelization may yield no speedups.
However, parallelizing an application for SSP may still produce
enough slack between the main thread and the speculative thread
when there is no parallelism. Thus, instead of the degree of
parallelism, we use the number of reduced miss cycles and the
slack as our optimization targets. The region-based traversal starts
with the innermost region where the delinquent load occurs and
finds the first region in which the reduced miss cycles for basic or
chaining SP is greater than a threshold value. The value is
calculated as the product of the cutoff percentage and the miss
cycles from cache profiling. We experiment with different
percentage values and discover that the resulting performance is
not highly sensitive to the percentage as long as it is reasonably
selected. To avoid a slice becoming too big that often leads to
wrong address calculations, we also stop the traversal of the
region graph when it is nested several levels deep. The traversal
also stops when the outermost region is reached. If none of the
regions reduce the miss cycles beyond the threshold percentage,
we pick the region with the largest percentage of miss cycles.
However, when the reduced miss cycles are about the same for
two regions, we prefer the inner one to the outer.

For a given region, we assign one to be its trip count (or the
number of iterations) if the region is not a loop. For a loop
region, the trip counts are derived from block profiling if
available; otherwise, they are estimated. If the trip count is small
or the slack value for basic SP is larger than that for chaining SP,
we use slackbsp in Section 3.2.2 to compute the slacksp function
below. Otherwise, chaining SP is used. Reduced miss cycle count
for a region is computed by summing over all the iterations the
number of miss cycles reduced in each iteration.

reduced_misscycle=Σi min(miss_cycle_per_iteration, slacksp(i))

We record the decision to use chaining or basic SP for each
region traversed and the slack values. Thus, the final code may
have nested chaining SP. Finally, different slices are combined if
they share nodes in the dependence graph.

3.4.2 Generating the Binary
After the selection above, we insert the trigger instructions and
generate slices in the binary. The trigger instruction is to bind a
spawned thread to a free hardware context. The thread spawning
is done via the existing lightweight exception-recovery
mechanism in the Itanium architecture. This mechanism uses the
speculation check instructions to determine if an exception
should be raised for mis-speculation recovery. We take advantage
of this feature by introducing a new check instruction, chk.c,
for available context check. The trigger instruction, chk.c,
raises an exception if free hardware context is available for
spawning. Otherwise, chk.c behaves like a nop. Figure 7
shows that the tool adapts the binary by replacing a single nop
instruction with a chk.c instruction and by appending to the
function the slice code as the exception recovery code.

As shown in Figure 7, each spawn instance consists of two
blocks, the stub block and the slice block. The stub block is
executed by the main thread as the recovery code for a chk.c
instruction. The stub code copies the live-in values to the live-in
buffer and issues an instruction to spawn the speculative thread at
its end. The main thread resumes its normal execution after
executing the stub block as its recovery code. At the same time,
the spawned thread begins executing the slice block, which
contains code to copy live in values from the live-in buffer to the
thread’s register file. The code layout for two thread spawns and
their individual trigger instructions are illustrated in the Figure 7.
The tool can form a slice block by extracting instructions from
various procedures. Finally, to implement a live-in buffer that the
main thread and the speculative thread can both access, we use
the on-chip memory buffer, which is the spill area for the backing
store of the Register Stack Engine on the Itanium processor
family, as the live-in buffer [26].

4. EXPERIMENTS AND ANALYSIS
In this section, we begin with a description of the simulation
environment and the benchmark suites. We then present the
performance data.

4.1 Experimental Framework
The experiments are carried out on SMTSIM/IPFsim, a version of
SMTSIM simulator [27] adapted to work with Intel’s Itanium
simulation environment [29]. This infrastructure is execution-
driven and cycle-accurate. It supports a variety of single-threaded
and multi-threaded Itanium research processor models, including
in-order pipeline, out-of-order pipeline, and SMT. It enables
comprehensive performance study of several speculative
precomputation machine models.

Function Body
…
instruction n
instruction n+1
…
chk.c stub_block_1
…
chk.c stub_block_2
…

Attachment 1

stub_block_1:
copy live-in to buf
spawn slice_block_1

slice_block_1:
copy live-in from buf
slice body

Attachment 2

stub_block_2:
copy live-in to buf
spawn slice_block_2

slice_block_2:
copy live-in from buf
slice body

Function Body
…
instruction n
instruction n+1
…
chk.c stub_block_1
…
chk.c stub_block_2
…

Attachment 1

stub_block_1:
copy live-in to buf
spawn slice_block_1

slice_block_1:
copy live-in from buf
slice body

Attachment 2

stub_block_2:
copy live-in to buf
spawn slice_block_2

slice_block_2:
copy live-in from buf
slice body

 Figure 7. Code layout in the enhanced binary for SSP

124

All benchmarks studied in this paper are compiled with the Intel
compiler [4][17] using the advanced instruction-level parallelism
techniques such as aggressive use of speculation and prefetching.
To ensure that the baseline binaries achieve the best that our
compiler can deliver, we use the peak options including profile-
guided optimizations and prefetching. While the automated tool
leverages production compiler infrastructure [4], it is currently
for research investigation only and is not yet intended as a new
feature in the production compiler. The tool targets the pointer-
intensive applications in the Olden suite [5] and the SPEC
CPU2000 suite [14]. The Olden benchmarks consist of the
pointer-intensive codes that are known to suffer frequent L2 and
L3 cache misses. Em3d solves electromagnetic propagation in
three dimensions. Health models Colombian health care system.
Mst computes the minimum-spanning tree of a graph. Finally,
treeadd performs depth-first search on a balanced B-tree. To
study prefetching for both depth-first and breadth-first traversals,
we enhance the program to perform both. Thus, two versions are
used: treeadd.df for the depth-first traversal of a balanced B-tree
and treeadd.bf for the breadth-first counterpart. From the SPEC
CPU2000 suite, we use memory-intensive applications such as
mcf and vpr that miss the L2 and L3 cache often. These two
benchmarks exhibit an average of about four-times speedup when
we assume zero-miss-penalty memory on an in-order model, as
shown in Figure 2. Mcf is a combinatorial optimization program.
Vpr performs FPGA circuit placement and routing. For 12 SPEC
CPU2000 programs, Aamodt et al. [1] have shown that the
average number of stores per slice is only 0.87 and the average
slice includes only 22.5 instructions even when following load-
store dependences using perfect disambiguation and extracting
slices over a window of 256 committed instructions from the
main thread. Hence they demonstrate that these programs do not
update the dynamic data structures very heavily while executing
delinquent loads, and that in any case, exploitable parallelism
exists between the prefetch threads and the main thread.

4.2 Slice Characteristics
As shown in Table 2, the post-pass tool successfully locates
several static slices to target a small number of selected
delinquent loads. The column labeled “Interproc slices” indicates
the number of p-slices that are interprocedural. We find that
interprocedural slices contribute to larger slack value and hence
higher performance. Furthermore, the slice-pruning methods such
as speculative slicing and region-based slicing, effectively
extracts short sequence of instructions to produce the address for
a delinquent load. Finally, the last column in Table 2 shows that
the average number of live-in values for the slices identified
above is relatively small.

The tool automatically selects basic or chaining SP for a given
region. The benchmark treeadd.df uses basic SP. Most loops in
the benchmark suite use chaining SP. We find that chaining SP
produces bigger slacks and achieves long-range prefetching. The
performance impact of the scheduling is presented in the next
section.

4.3 Performance of SSP-Enhanced Binaries
This section presents the speedups gained by SSP on both in-
order and OOO processors, over the baseline in-order processor.
In Figure 8, the three bars associated with each application denote
the speedup of SSP on the in-order machine, that of the OOO
machine, and that of SSP on the OOO machine, respectively. The
baseline is the in-order processor without the precomputation
threads. SSP achieves an average speedup of 87% over the
baseline in-order processor on the seven pointer-intensive
benchmarks. Although our machine can only issue one bundle
from each of the two threads per clock cycle, SSP achieves at
least 2x speedups for em3d, health, and treeadd.bf on the in-order
processor. This demonstrates an advantage of the SSP model over
traditional parallelization that relies on partitioning data or
computation: In the SSP model, one instruction executed by the
speculative thread may save more than one clock cycle for the
main thread if the instruction is executed early. A single prefetch
instruction executed 230 cycles ahead of the main thread may
save 230 cycles if the data had only been in the main memory.
SSP is effective for in-order processors especially because the in-
order pipeline stalls when an instruction attempts to use the
destination register of an outstanding load miss. The first bar for
each benchmark in Figure 8 shows that the post-pass tool
effectively enhances the binary to use multithreading for
preventing such pipeline stalls in the main thread’s execution.

Even though SSP only targets the delinquent loads, its
performance for health approaches that of the OOO execution,
which attempts to cover all misses. However, we observe that the
OOO processor can on average achieve 175% speedup over the
baseline in-order processor. The reason is that OOO can execute
beyond dependent instructions and tolerate many L1 cache misses
on memory-intensive applications. The SSP tool achieves an
average of 5% speedup on the OOO processor.

Benchmark Slices
(#)

Interproc
slices (#)

Average
size

Average #
live-in

em3d 8 0 10.3 2.8
health 2 1 9.0 3.5
mst 4 1 28.3 4.8
treeadd.df 3 0 11.3 3.0
treeadd.bf 2 0 12.5 4.5
mcf 5 0 14.0 4.4
vpr 6 0 13.5 4.0

Table 2. Slice characteristics

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

4.6

5

em3d health mst treeadd.df treeadd.bf mcf vpr Average

in-order+SSP OOO OOO+SSP

Figure 8. Speedups of SSP, OOO model, SSP+OOO model

over the baseline in-order model.

125

4.4 Dynamic Statistics for SSP-Enhanced
Binaries
To evaluate the effectiveness of our tool in detail, we measure the
cache miss reduction for the benchmark programs. Figure 9
shows the percentage breakdown of which level of the memory
hierarchy is accessed. The height of any bar in the figure is the L1
cache miss rate. In the figure, the four configurations for each
benchmark are presented in the following order: the baseline in-
order model, the in-order model with SSP, the OOO model, and
the OOO mode with SSP. All the partial misses in the figure
denote the percentage of accesses to cache lines which were
already in transit to L1 cache due to accesses by prior loads from
the main thread or from a prefetch.

Figure 9 shows that on the in-order model, most of the reduction
of cache misses happens in the lower cache levels, which are
categorized in the bottom portions of the bars in the figure. Thus,
the chaining SP schedules many long-range prefetches and hence
reduces many L3 and L2 cache misses. Chaining threads can
achieve these long-range prefetches because even if one thread
stalls due to the in-order execution, many chaining threads can
still run ahead and prefetch data. Traditional intra-thread
prefetching techniques cannot overcome this stall problem on the
in-order model. Although some benchmarks cause more L1 cache
misses on the OOO model than on the in-order model, the former
model executes the benchmarks faster than the latter. This is
because the OOO model overlaps many cache misses with
program execution. Furthermore, because OOO hides cache
misses better, and relies less on thread-based prefetching, SSP
reduces fewer misses on the OOO model than on the in-order
model.

Even if a slice computes the load address correctly, the prefetch is
useless if it is untimely. The reduction in cache misses in Figure 9
shows not only that the slices compute many addresses correctly
but also that the scheduling algorithm generates many timely
prefetches. The number of wrong addresses generated by
speculative slicing is small for these benchmarks.

4.4.1 Cache Latency Reduction by SSP
To further understand the speedups, we show in Figure 10 the
detailed cycle breakdown for SSP on both an in-order and OOO
model. All data are normalized to the execution cycle count of the
baseline in-order processor. This reveals how much miss penalty
SSP manages to reduce at different levels of cache hierarchy. The
height of each bar in the figure denotes the cycle counts,
normalized to the cycle count of the baseline in-order processor.
As shown in Figure 10, the total cycles are partitioned into six
categories: L3, L2, L1, Cache+Exec, Exec, and Other. The first
three, shown as the bottom three partitions of a bar in the figure,
denote the miss cycles for L3, L2, and L1 cache respectively,
while no instruction is issued for execution. If the cache hierarchy
and instruction issue are both active in the same cycle, we
account the cycle as Cache+Exec. If only the latter is active in a
cycle, the cycle belongs to Exec category. The Other category
accounts for all other cycles such as bubble cycles due to branch
misprediction. Figure 10 shows that the benchmarks suffer
performance loss from cache misses at nearly all levels of the
memory hierarchy.

Figure 10 shows that SSP effectively reduces the L3 cycles,
which is the main reason for the 87% speedup on the in-order
processor. Over the seven programs, SSP achieves a speedup of
135% on average for the L3 category. The reason is that the tool
enhances the binary to issue long-range prefetches. Because in-
order processors are not as latency-tolerant as OOO models, the
benefit of using SSP is more dramatic on the former. However,
we still observe the reduction in the L3 cycles for all programs on
the OOO processor. The reduction is due to the long-range
prefetches resulting from SSP, attacking load misses beyond the
reach of the OOO instruction window. On top of the OOO
processor which can hide both cache misses in most cache levels
(especially L1) and functional unit latency, SSP can further
reduce the latency on the lower levels of cache hierarchy by
performing long-range prefetching for few loads.

0%

20%

40%

60%

80%

100%

io ooo io ooo io ooo io ooo io ooo io ooo io ooo

em3d health mst treeadd.df treeadd.bf mcf vpr

L2 Hit Partial

L2 Hit

L3 Hit Partal

L3 Hit

Mem Hit Partial

Mem Hit

Figure 9. Percentage of where delinquent loads are satisfied
 when missing in L1. Height of a bar is those loads’ miss rate.

0%

20%

40%

60%

80%

100%

io ooo io ooo io ooo io ooo io ooo io ooo io ooo

em3d health mst treeadd.df treeadd.bf mcf vpr

Other

Exec

CacheExec

L1

L2

L3

Figure 10. Cycle breakdown of in-order, in-order+SP, OOO,

and OOO+SP, normalized to in-order model. It shows the
impact of SP on cache hierarchy on both in-order and OOO.

126

While SSP reduces the L3 cycles effectively, it sometimes
increases the L1 cycles. As a result, SSP achieves only 5%
speedups on the OOO processor. Because we assume SSP
without special hardware support, speculative threads can only be
spawned at the retirement stage of the pipeline. And thread
spawning is assessed with similar penalty to exception handling
that incurs pipeline flushes. This makes the SSP scheme less
effective in producing timely prefetches for L1 cache misses. Our
results show that there is potential in further improving the tool
for an OOO processor. The opportunity lies in judiciously
applying SSP to even more selective loads, targeting long-range
prefetching for reducing L3 cache misses without interfering with
L1 misses that are covered by OOO. Future dynamic optimizers
can monitor the coverage and timeliness data associated with a
prefetching thread and if the thread does not help reduce latency,
future chk.c instructions for that thread will return no available
context. Alternatively, on OOO we need to create a slice that
achieves even longer-range prefetching. For instance,
precomputation via hand-adaptation in [31] achieves 3-times
speedup on health on an OOO processor by creating a bigger
interprocedural slice. This is due to the inlining of a few levels of
recursive function calls by the programmer’s hand adaptation to
create large enough slack. The tool could not perform such
aggressive optimization. We are investigating SSP techniques to
complement, instead of interfering, the prefetching by OOO
execution.

4.5 Automatic vs. Hand Adaptation
Wang et al. performed hand adaptation on three memory-
intensive benchmarks for speculative precomputation [31]. In
contrast, we use the automated binary adaptation tool to enhance
the binary for SSP. We compare the performance of both
approaches on the same simulator. The common programs from
both works are mcf and health. On an in-order processor, hand-
adaptation achieves a speedup of 73% on mcf, while the post-pass
tool achieves 37% speedup. Our tool loses 20% of the overall
performance of the manual version. On an OOO processor, both
approaches achieve little improvements.

For the health benchmark, the enhanced binary from SSP
achieves 103% speedup on the in-order processor, while hand
adaptation achieves a speedup of 130%. We lose about 12% of
the overall performance of the manual version. On the OOO
processor, the hand-adaptation achieves 200% speedup, while our
tool reports a speedup of only 120%. We lose 27% of the overall
performance. As explained in Section 4.4, the loss is due to the
fact that our tool could not perform the aggressive inlining of
recursive function calls done by hand.

5. RELATED WORK
Longer memory latencies (relative to processing time) have
motivated the research on building more complex pattern-based
predictors of program behaviors in hardware. In comparison,
several research groups have recognized recently that the program
itself could be used as a predictor. This paper presents a software
tool for such program-as-predictor prefetching. Luk proposed
software controlled pre-execution that uses available hardware
thread contexts to execute inserted code for prefetching [21]. The
hand-inserted code provides prefetches for a non-speculative
thread and yields an average speedup of 24% in seven irregular

applications on an out-of-order SMT processor based on Alpha.
The inserted code was not trimmed using the concept of slicing.
Roth and Sohi proposed data driven multithreading that uses
hardware contexts to prefetch for future memory accesses and
predict future branches [25]. There was no automated compiler
for identifying the triggers or extracting a minimal sequence of
instructions to produce the address of a future memory access.
Zilles and Sohi performed analysis of dynamic backward slices
for execution-based prediction [33][34]. They target more
delinquent events such as problem branching. Our work focuses
on the automated tool that generates p-slices and triggers for load
operations.

Collins et al. used the simulator to capture the dependence graph
that forms p-slices for basic triggers [7]. This graph-capture code
is equivalent to performing dynamic slicing, which is shown to be
potentially prohibitively expensive [2]. P-slices using chaining
triggers were constructed manually. The post-pass binary tool
aims at automating it in the compiler. Dependence graph
precomputation [3], dynamic speculative precomputation [6],
and slice processors [23] use all-hardware approaches. The
hardware complexity may increase if future processors try to
target a very long-range prefetch. Furthermore, to identify a
program subset with minimal size and maximal accuracy may
require a sophisticated program analysis, and the complexity of
attainable analysis in hardware is typically constrained. However,
hardware has the advantage of being able to track program
behaviors and dynamically adjust accordingly. In comparison to
the all-hardware approaches, SSP uses the existing SMT
hardware and relies on the compiler to perform binary adaptation.
Aamodt et al. approached pre-execution as a generalized form of
computation prediction [1]. They introduced and measured slice-
locality, a necessary property for history-based methods such as
those used for value and branch outcome patterns to be extended
for dynamically predicting repeating patterns of computations.
They provided the insight that program execution exhibits slice-
locality and that by recording the few most recently seen unique
slice traces per problem load or branch, the majority of problem
branches and load instances are covered. Our SSP tool exploits
slice-locality by statically capturing the dominant slices, instead
of building hardware to track and adjust slice-traces dynamically.

6. CONCLUSIONS AND FUTURE WORK
It is difficult to parallelize pointer-intensive applications for
multithreading architectures. However, we demonstrate an SMT
approach that leverages otherwise-idle threads to perform
precomputation and prefetches for the main thread. By exploiting
the increasing memory bandwidth available on modern
processors, we can reduce the memory latency for the main
thread. This new form of multithreading, unlike traditional
parallelization which focuses on partitioning the data or
computation, minimizes the changes to the existing binaries and
to the execution of the main thread. The main thread does not
integrate computation results from the speculative threads. This
makes it possible to speed up existing optimized binaries via
multithreading.

Unlike some previous work that either assumes complex
hardware mechanisms or relies on manual adaptation, this paper
presents an effective post-pass compilation tool for the software-
based speculative precomputation. The tool achieves an average

127

of 87% speedup on an in-order processor for seven applications.
Motivated by our results on the research Itanium model and by
our assumption of no expensive hardware support, we recently
performed SSP on the out-of-order Pentium 4 processor with the
Hyper-threading technology [22] and achieved 7% to 45%
speedups on real silicon [30]. In the future, we plan to extend this
tool for other delinquent events in the program and for using SSP
more judiciously on an OOO processor. Furthermore, we plan to
use this automated tool to enable broader and more productive
application of SSP to programs such as database applications.

7. ACKNOWLEDGEMENTS
We thank Tor Aamodt, Murali Annavaram, Jesse Fang, Monica
Lam, Yong-fong Lee, Ken Lueh, Justin Rattner, and Xinmin Tian
for their valuable comments on this paper. We appreciate the
helpful suggestions from the referees for this conference.

8. REFERENCES
[1] T. Aamodt, A. Moshovos, and P. Chow. The Predictability of

Computations that Produce Unpredictable Outcomes. In 5th
Workshop on Multithreaded Execution, Architecture and
Compilation, pp. 23-34, Austin, Texas, December 2001.

[2] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, pp. 246-256, June 1990.

[3] M. Annavaram, J. Patel, E. Davidson. Data Prefetching by
Dependence Graph Precomputation. In 28th International
Symposium on Computer Architecture, Goteborg, Sweden, July
2001.

[4] J. Bharadwaj, W. Chen, W. Chuang, G. Hoflehner, K. Menezes, K.
Muthukumar, J, Pierce. The Intel IA-64 Compiler Code Generator.
In IEEE Micro, Sept-Oct 2000, pp. 44-53.

[5] M. Carlisle. Olden: Parallelizing Programs with Dynamic Data
Structures on Distributed-Memory Machines, Ph.D. Thesis,
Princeton University Department of Computer Science, June 1996.

[6] J. Collins, D. Tullsen, H. Wang, J. Shen, Dynamic Speculative
Precomputation. In Micro conference, December 2001.

[7] J. Collins, H. Wang, D. Tullsen, C, Hughes, Y. Lee, D. Lavery, J.
Shen. Speculative Precomputation: Long-range Prefetching of
Delinquent Loads. In 28th International Symposium on Computer
Architecture, Goteborg, Sweden, July 2001.

[8] K. Cooper, P. Schielke, D. Subramanian. An Experimental
Evaluation of List Scheduling. Rice University Technical Report
98-326, September 1998.

[9] R. Cytron. Compiler-time Scheduling and Optimization for
Asynchronous Machines. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 1984.

[10] J. Emer. Simultaneous Multithreading: Multiplying Alpha’s
Performance. In Microprocessor Forum, October 1999.

[11] R. Ghiya, D. Lavery, and D. Sehr. On the Importance of Points-to
Analysis and Other Memory Disambiguation Methods for C
Programs. In SIGPLAN Conference on Programming Language
Design and Implementation, pp. 47-58, June 2001.

[12] A. V. Goldberg and R. E. Tarjan. A New Approach to the
Maximum-Flow Problem. In Journal of the Association for
Computing Machinery, 35(4):921-940, October 1988.

[13] R. Gupta and M. L. Soffa. Hybrid Slicing: an Approach for
Refining Static Slicing Using Dynamic Information. In The
Foundations of Software Engineering, pp. 29-40, September 1995.

[14] J. L. Henning. SPEC CPU2000: Measuring CPU Performance in
the New Millennium. In IEEE Computer, July 2000.

[15] G. Hinton and J. Shen. Intel’s Multi-Threading Technology. In
Microprocessor Forum, October 2001.

[16] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, R. Zahir,
Introducing the IA-64 Architecture. In IEEE Micro, Sept-Oct 2000.

[17] R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C. Lim, J. Ng, D.
Sehr. An Advanced Optimizer for the IA-64 Architecture, In IEEE
Micro, Nov-Dec 2000.

[18] W. Landi and B. Ryder. A Safe Approximate Algorithm for
Interprocedural Pointer Aliasing. In SIGPLAN ’92 Conference on
Programming Language Design and Implementation, pp. 235-248,
June 1992.

[19] S. Liao. SUIF Explorer. Ph.D. thesis, Stanford University, August
2000, Stanford Technical Report CSL-TR-00-807.

[20] S. Liao, A. Diwan, R. Bosch, A. Ghuloum, M. S. Lam. SUIF
Explorer: an Interactive and Interprocedural Parallelizer. In
Proceedings of the 7th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 37-48, Atlanta,
Georgia, May 1999.

[21] C. K. Luk, Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors, In 28th International Symposium on Computer
Architecture, Goteborg, Sweden, June 2001.

[22] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, M.
Upton. Hyper-Threading Technology Architecture and
Microarchitecture. In Intel Technology Journal, Volume 6, Issue on
Hyper-threading, February 2002.

[23] A. Moshovos, D. Pnevmatikatos, A. Baniasadi. Slice Procesors: an
Implementation of Operation-Based Prediction. In International
Conference on Supercomputing, June 2001.

[24] E. Reingold, J. Nievergelt, N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall Publishers, 1977.

[25] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. In
7th IEEE High-Performance Computer Architecture, January 2001.

[26] H. Sharangpani and K. Aurora, Itanium Processor
Microarchitecture. In IEEE Micro, Sept-Oct 2000.

[27] D. M. Tullsen. Simulation and Modeling of a Simultaneous
Multithreaded Processor. In 22nd Annual Computer Measurement
Group Conference, December 1996.

[28] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In 22nd
International Symposium on Computer Architecture, June 1995.

[29] R. Uhlig, R. Rishtein, O. Gershon, I. Hirsh, and H. Wang.
SoftSDV: A Presilicon Software Development Environment for the
IA-64 Architecture. In Intel Technology Journal, Q4 1999.

[30] H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito, M. Girkar,
S. Liao, J. Shen. Speculative Precomputation: Exploring Use of
Multithreading Technology for Latency. In Intel Technology
Journal, Volume 6, Issue on Hyper-threading, February 2002.

[31] P. Wang, H. Wang, J. Collins, E. Grochowski, R. Kling, J. Shen.
Memory Latency-tolerance Approaches for Itanium Processors: out-
of-order execution vs. speculative precomputation. In Proceedings
of the 8th IEEE High-Performance Computer Architecture,
Cambridge, Massachusetts, February 2002.

[32] M. Weiser. Program Slicing. In IEEE Transactions on Software
Engineering, 10(4), pp. 352-357, 1984.

[33] C. Zilles and G. Sohi. Understanding the Backward Slices of
Performance Degrading Instructions. In 27th International
Symposium on Computer Architecture, Vancouver, BC, Canada,
May 2000.

[34] C. Zilles and G. Sohi. Execution-Based Prediction Using
Speculative Slices. In 28th International Symposium on Computer
Architecture, Goteborg, Sweden, July 2001.

128

