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Abstract 

Existing research understates the benefits that can be 
obtained from inlining and cloning, especially when 
guided by profile information. Our implementation of 
inlining and cloning yields excellent results on average 

and very rarely lowers performance. We believe our 
good results can be explained by a number of factors: 
inlining at the intermediate-code level removes most 
technical restrictions on what can be inlined; the ability 
to inline across files and incorporate profile information 

enables us to choose better inline candidates; a high- 
quality back end can exploit the scheduling and regis- 
ter allocation opportunities presented by larger subrou- 
tines; an aggressive processor architecture benefits from 
more predictable branch behavior; and a large instruc- 
tion cache mitigates the impact of code expansion. We 
describe the often dramatic impact of our inlining and 
cloning on performance: for example, the implementa- 
tions of our inlining and cloning algorithms in the HP- 
UX 10.20 compilers boost SPECint95 performance on 

a PA8000-based workstation by a factor of 1.32. 

1 Introduction 

Procedure boundaries have traditionally delimited the 
scope of a compiler’s optimization capabilities. Indeed, 
it is no accident that optimizations within a procedu- 
ral scope are termed global optimizations. But as an 
optimizer’s scope is limited, so is its power, and several 

techniques have been developed to extend optimizations 
to larger scopes. 

One such technique is inlining: direct incorporation 
of the code for a subroutine call into the calling proce- 
dure. After inlining, optimizations blocked or hindered 
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by the procedure call boundary can be applied straight- 

forwardly to the combined code of caller and cake with 
little or no loss of precision. As a side benefit, the run 
time cost of a procedure call is also eliminated. Another 
common technique for exploiting interprocedural infor- 
mation is cloning: the duplication of a &lee so that its 
body may be specialized for the circumstances existing 

at a particular call site or set of call sites. 
Mining is often considered to be a brute-force ap- 

proach to interprocedural optimization. Since many 
global optimizations are not linear time or linear space, 
and since instruction caches are of fixed capacity, the 
code expansion caused by inlining is cause for some con- 
cern. Interprocedural analysis is usually proposed as a 
more tractable alternative to inlining with less drastic 
resource costs. However, it is difficult to model many 
important analyses in an interprocedural setting, and 
many of the analyses degrade markedly in the usual case 
where not all program source is visible to the analyzer. 
Even if interprocedural analysis is performed, effective 
use of this information will almost always require code 
expansion, since many of the code transformations en- 

abled by an interprocedural analysis are impossible to 
safely express without some duplication of code in ei- 
ther the caller, the callee, or both. 

Our high-level intermediate-code optimizer, HLO, 
employs both inlining and cloning iu combination to 
achieve its optimization goals. Cloning is goal-directed: 
it is used to expose particularly important details about 
the calling context to the callee. Inlining is used more 

liberally to allow traditional optimizations to affect a 
wider scope. HLO’s inlining and cloning capabilities 

are uniquely powerful: it can inline or clone calls both 
within and across program modules, can inline or clone 
independent of source language, can accommodate both 
user directives and profile directed feedback, and can 
inline or clone at almost every call site with very few 
restrictions. 

The aggressive inlining and cloning done by HLO can 
substantially reduce the run time of a program. For ex- 
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ample, on the six SPEC92 integer benchmarks, HLO’s 
inlining and cloning boost the overall performance ra- 

tio by a factor of 1.24 on a PA8000 workstation, with a 
maximum speedup ratio of 2.02. For the eight SPEC95 

integer benchmarks the results are even more dramatic, 
boosting overall performance by a factor of 1.32 with a 
maximum speedup ratio of 1.80. 

The remainder of this paper is organized as follows: 
Section 2 describes the capabilities and structure of 
HLO; Section 3 presents data from a number of mea- 
surements; Section 4 describes related work, and Sec- 

tion 5 summarizes our results and describes opportuni- 
ties for future work. 

2 HLO’s Mining and Cloning 

2.1 Compiler Infrastructure 

The current generation of HP compilers communi- 
cate via a common intermediate language known as 

mode. Language front-ends produce ucode, and the 
common back end accepts ucode as input. HLO acts 
as a ucode-toucode transformer interposed between 
the front and back ends of the compiler. By buffer- 
ing the ucode from the front-end, HLO is able to per- 

form module-at-a-time optimizations. An alternative 
compile path allows the ucode to be stored into special 
object files known as isoms. These files remain unopti- 
mized until link time. When the linker is invoked and 

discovers isoms, it passes them en masse to HLO, which 
performs optimizations and then passes the files one-at- 
a-time to the back end, where real object files are pro 

duced. After all files have been optimized the linker is 
reinvoked on the real object files to build the final exe- 
cutable. This path allows HLO to perform intermodule 
optimizations. 

The isom path is fully make compatible. It also al- 
lows for the incorporation of profile information - for 
example, branch execution counts - gathered by previ- 
ous training runs. The availability of profile information 
feeds the inlining and cloning heuristics, and enables 
a number of other profile-based optimizations (PBO) 
within the compiler [15, 9, 121. Figure 1 gives a picture 
of how all this fits together. 

2.2 Structure of HLO 

Conceptually, HLO operates as something of a pipeline. 
The input stage translates the ucode into HLO’s own 
internal representation (IR), and builds up a compre 
hensive symbol table. A variety of classic optimizations 
(e.g. constant propagation) are performed on the IR at 
this time, mainly to reduce its size. After all code has 
been input, a limited amount of inter-procedural anal- 
ysis is performed. HLO then inlines and clones in a 

manner we describe below. The output phase converts 
the HLO IR back into ucode and sends the ucode on to 

the back end for intensive intraprocedural optimization 
and ultimately generation of object code. 

HLO performs several passes of inlining and cloning. 
The main motivation for this multi-pass structure is 
that it is quite difficult to anticipate the optimization 
impact of a particular inline or clone. If all inlining and 
cloning were done in a single pass HLO would not be 

able to focus in on particular areas of interest revealed 
only after the first stage of inlining. Having multiple 
passes also simplifies matters like cloning a recursive 
procedure with a pass-through parameter which might 
be difficult to do correctly in a single pass. The overall 

algorithm is sketched in Figure 2. 
High-level control of the inliner is done by giving 

the inliner a budget. This budget is an estimate of 
how much compile time will increase because of inlin- 
ing. By default the inliner will try to lit compile-time 
increases to 100% over no inlining. Note that because 

various optimization phases are nonlinear, a 100% in- 
crease in compile time does not imply that the inliier 
will double the size of the code. The HP-UX backend 
optimizer contains several algorithms that are quadratic 
in the size of the routine being optimized, so we model 
this effect accordingly. For our compiler, then, code 

growth is typically on the order of 20%. The budget 
can be adjusted in either direction by a variety of user 
controls. Once the overall budget has been computed, 
the inliner computes the staging for the budget. This 
apportions the budget amongst the various passes, ba- 
sically to ensure that not all of the budget is used up 
in the first pass. The compiler then alternates cloning 
and inlining passes until either the budget is exhausted 

or a pass limit is reached. 

2.3 Cloning 

Cloning begins with the selection of cloning sites. Each 
call site is examined in turn. The cloner first determines 
if the call site passes certain legality tests. For example, 
cloning is disallowed if there are gross type mismatches 
between caller and callee, or if the caller and callee do 
not agree on the number of parameters to be passed.’ 

Next, the cloner determines if the caller supplies in- 

teresting information to the callee. For example, the 
caller might pass an integer 0 as the first actual param- 
eter. If the calliig context is sufficiently interesting, 

the callee’s use of this context is queried next. If the 
callee can benefit from knowing about its formals what 
the caller knows about its actuals, the site is consid- 
ered to be one suitable for cloning. At this point, the 

‘We could clone even in such cases, but the idea is to try and 
preserve the behavior of even semantically incorrect programs. 
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Figure 1: (Top) A traditional compile path, supporting intraprocedural optimization, and interprocedural optimiza- 
tion within a source module. (Bottom) The path used in HP-UX compilers to support cross-module optimization 
and profile-based optimization. 

Inline and Clone(G) 

INPUT 

call graph G: (routines, edges) 

ALGORITHM 
// estimate current compile time cost 
current cost C = 0 
FOREACH routine R IN G 

c= C + (sizeof (R)j2 

/,I determine budget 
growth factor D = 1.2 
budget B = C * D 

// determine staging of budget 
s co1 = C + B * 0.2 
. . . 

SClimit-11 = C + B 

// inline and clone 
clone database D = ( } 
pass number P = 0 
WHILE ( C c B AND P < limit 1 Do 

c= Clone(G,SCPl ,C,D) 
c- Inline(G,SCPl ,C) 
P =P+l 

Figure 2: Overall Inlining and Cloning algorithm 

cloner effectively intersects the information supplied by 
the caller and the information useful to the cake to 
create a clone specification, or clone spec. In our cur- 
rent implementation, only caller-supplied constants are 
considered interesting. Many other criteria are possi- 
ble: cloning to exploit aliasing properties that hold at 

the call site, or the fact that certain arguments are ig- 
nored by the callee, or that the caller ignores the return 
value, and so on. 

Our current implementation of the &lee-side anal- 

ysis is relatively simplistic. Each parameter is consid- 
ered independently, only the abstract constancy or non- 
constancy of the parameter is considered, and we do not 
model interprocedural effects (pass-through constants). 
Special emphasis is put on parameter values that reach 
the function position at an indirect call site. Each inter- 
esting use of a parameter is weighed by an estimate of 
the importance of that use. When PBO data is present, 
the compiler computes the profile count of the block 
relative to the routine entry; without such data it uses 

heuristics to guess at the relative importance. 
After finding an interesting call site, the cloner could 

continue on building clone specs for all suitable call 
sites, but doing so might lead to unnecessary prolif- 
eration of clones. Instead, once an interesting site has 
been found, the cloner uses the clone spec to try and 
greedily create a clone group: a set of call sites which 
can safely call the clone described by the clone spec. 
This is done by examining each of the calls made to the 
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callee to see if the calling context at the call site is com- 
patible with the clone spec created for the clone group. 

If so, the call site is included into the clone group. Once 
the clone group is completely formed, the cloner then 

assesses the run-time benefit of making the clone. This 
calculation takes into account factors like the estimated 
total number of calls that will call the clone instead of 
the original routine, and the value to the callee of the 
caller-specific context information. 

After all call sites have been examined, the cloner 
has a collection of clone groups describing the particu- 
lar clones that could be created, and an estimate of the 
benefit of creating each clone. The cloner then ranks 

all clone groups by benefit and greedily creates clones 
and modifies call sites until the current allotment of the 
compile-time growth budget has been used up. Any 
clone groups that were not handled in this pass are dis- 
carded; they may be recreated and cloned in a later 
pass. 

Creation of a clone is fairly straightforward. The IR 
for the clonee is duplicated, and any formal parameters 
that are known from the calling context are turned into 
routine-scope variables and initialized with appropriate 
constants in the clone’s entry block. If there are slight 

discrepancies in type, a type cast is inserted. The clone 
is always placed into the same module as the clonee. If 
the caller is in another module and is passing symbolic 
information which is only visible in the caller’s module 
(e.g. the address of a file-static procedure), this infor- 
mation must be promoted to global scope and given a 
unique name that will not collide with any user-supplied 
name. 

As clones are created, the clone and associated clone 
spec are also recorded in a special database. This 

database comes into play in later cloning passes, when 
it is possible that the cloner will reproduce the same 

clone spec used to clone in an earlier pass, because in- 
tervening optimizations have sharpened the information 
available at call sites which were previously not worth 
consideration. If a given clone exists in the database 
then it is simply reused; otherwise the clone must be 

created as described above. 
Modification of the call sites in a clone group to in- 

voke the clone is also fairly straightforward. The clone 
spec describes the signature of the new routine, so any 

parameters incorporated into the clone are edited from 
the actuals list. The call site is then modified to refer to 
the clone instead of the original routine. This modifica- 
tion in turn inspires changes in the call graph to reflect 
the new relationships between caller, clonee, and clone. 
In particular, if all calls to a clonee are replaced by calls 
to a clone, the clonee may become unreachable in the 
call graph and will be deleted. The cloner attempts to 
anticipate subsequent clonee deletion when estimating 

Clone(G,B,C,D) : returns C 

INPUT 
call graph G: (routines,edges) 
budget B 
current cost C 
clone database D 

ALGORITHM 

N setup 
FOREACH routine R IN G 
create parameter-usage descriptor P(R) 
FOREACH edge E IN G 
create calling-context descriptor S(E) 

// build clone groups 
FOREACH edge E in G 
callee R = E.target 
IF ( clonable(R) end clonable(E) 1 THEN 
clone spec CS = intersect( S(E), P(R) > 
IF ( CS is nonempty > THEN 
clone group CC = (R,CS,E) 
FOREACH edge EJ incident on R 
IF ( clonable(E') AND 

matches( S(E), CS ) > THEN 
add E’ to CG 

estimate benefit of CC 

// select clones 
sort CGs by benefit; C' = C 
FOREACH clone group CG IN CGs 
cost x = (sizeof(R)j2 
IF ( C' + X < B ) THEN 
accept CG; C' = C' + X 

// create clones and jix call sites 
FOREACH clone group CG IN accepted CGe 
IF ( ! lookup(D, R, CS> > THEN 
R' = make clone (R, CS) 
add database entry ( R, CS, R’ ) 
FOREACH edge E' IN CC 
change target of E' from R to R' 

/,/ optimize clones and recalibrate 
FOREACH newly created clone R' 
optimize(R)) 
C = C + (sizeof(R')j2 

Figure 3: Cloning Pass 
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the budget impact of a particular clone group or groups; 
in effect, a clone group that ensures that the clonee will 
be deleted is considered to have no compile time impact. 

2.4 Mining 

The overall structure of an inlining pass is similar to 
cloning. The inliner first considers all call sites for 
any legal, technical, pragmatic, or user-imposed restric- 
tions on inlining. Illegal sites include those with gross 

type mismatches, varargs, or argument arity differences. 
Technically restricted sites include those where infor- 
mation specific to the callee disagrees with information 

specific to the caller. For example, the caller’s IR may 
specify that reassociation of floating point operations 
is allowed, while the callee’s IR may indicate that such 
re-associations are unacceptable. By and large these 
kinds of restrictions are imposed to simplify the task of 
representation of this information. Pragmatic concerns 

include issues like handling callees that use alloca to 
dynamically allocate space on the stack, or inlining at 
a site where actual parameters describe overlapping re- 
gions of memory and the callee is allowed to assume 
that its formal parameters do not alias. User imposed 
restrictions come from various command line options 

and pragmas. 
Once the set of viable inlining sites has been identi- 

fied, they are assigned a runtime figure of merit. High- 
frequency call sites are given highest priority. Sites that 

occur in blocks executed less frequently than the rou- 
tine entry block are assigned a penalty. This helps to 
avoid inlining into a non-critical path; doing so might 
cause increases in register pressure which push spills 
into critical code paths and hurt performance. 

The inliner then walks over the inline site list in pri- 

ority order. The compiktime impact of each site is 
considered, and if within the current budget, the inline 
is accepted. Computation of the compile time effect is 
complicated by interactions among inlines. For exam- 
ple, if A calls B and B calls C, the cost of inlining B into 
A depends on whether or not C has been already been 
inlined into B. To model this dependence, the inliner 
keeps a schedule of the order in which it will perform 
all accepted inlines. By and large, the inliner attempts 
to work bottom-up over the call graph. To compute 

the cost of inlining B into A, a description of the in- 
line is first inserted into the schedule in the appropriate 
spot. If B is then determined to be the target of an ear- 
lier inline or inlines, the estimated size of B after those 
inlines have been performed is used to compute the cost 
of optimizing A. 

The inliner processes and accepts call sites greed- 
ily until its allotment of the budget is exhausted. At 
this point the remaining viable inline sites are discarded 

Inline(G,B,C) : returns C 

INPUT 
call graph G: (routines,edges) 
budget B 
current cost C 

ALGORITHM 
// screen inline candidates 
FOREACH edge E IN G 
IF ( inlineable(E) > THEN 
accept E; compute benefit(E) 

// select inline sites 
sort accepted E's by benefit 
C' = c 
FOREACH accepted edge E 

insert E into schedule 

cost x = 
(sizeof( E.target + E.source >I2 

- (sizeof( E.target )I2 
C' ' = C' 

C' = C' + x 

IF ( E.target is source in 
later inline ) THEN 

adjust C' for cascaded cost 
IF ( C' > B ) THEN 

remove E from schedule 

C’ = C” 

// perform inlines 
FOREACH scheduled edge E 
inline E.target into E.source 

// optimize inlines and recalibmte 
FOREACH routine inlined into R' 
optimize@') 
c= C + (sizeof( 

Figure 4: Mining Pass 
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GO8.e.SprfSso 3166 

022.li 1638 

023.cqntoa 472 

026.comprcss 200 

072x 1373 

085gcc 9942 

099.go 2565 

124.m88ksim 1876 

126.gcc 21241 

129.compress 116 

13OSi 1527 

132.ijpeg 1644 

134.ped 4501 

147.voltcx 9478 

= ZEi 
m cross module 

m within module 

recursive 

Figure 5: Static characteristics of call sites in the SPEC 

integer benchmarks. The number at right is the total 
number of call sites in the code. 

(they may be reconsidered in a subsequent pass of inlin- 
ing). The inliner then uses its schedule to carry out each 
inline in the list of accepted inlines. As with cloning, 
movement of code between modules may result in pro- 
gram entities being promoted to wider scopes. 

3 Measurements 

3.1 Characteristics of Call Sites 

Figure 5 illustrates some static information about the 

14 programs in the SPEC92 and SPEC95 suites. Each 
call site in these programs can be classified into one of 
five categories: external, indirect, cross-module, within- 
module cross-routine, and recursive. 

External sites represent calls to library routines or to 
program modules not visible to the compiler. In princi- 
ple it is possible to provide intermediate code versions 
of such libraries and modules to broaden the scope of 
inlining or cloning even further, but the results reported 
in this paper are with standard precompiled libraries, 
with one notable exception. The 072. SC benchmark in- 
cludes a special curses library in which all curses calls 

do nothing. These calls (reported in our figure as cross- 
module calls) would be ideal candidates for inlining, but 
they are eliminated before inlining because HLO’s inter- 
procedural analysis determines that they have no side 
effect. 

At indirect sites the callee is computed at run time, 

so these sites are not directly amenable to inlining or 
cloning. It is possible to employ various techniques to 
try and resolve the target of indirect calls at compile 
time. For example, HLO will aggressively clone at sites 
where the caller passes a pointer to a procedure and 
the callee uses the value of a formal variable in an indi- 
rect call. Subsequent constant propagation of this code 
pointer to the call site will then provide the information 
needed to turn the indirect call into a direct call, which 
can then be inlined or cloned in a later pass. This sort 
of staged optimization would be much more difficult to 
accomplish in a single inlining pass. 

The remaining are amenable to inlining and cloning. 

As the figure shows, there are significant numbers of 
cross-module calls. The ability to inline these cross- 
module calls is crucial for good performance. 

3.2 Transformations to SPEC Integer Programs 

Table 1 shows more detail on the transformations done 

to a subset of the SPECint programs by HLO. There 
are several points worthy of further discussion. First, as 
more information is made available to the compiler, the 
quality of the code improves. For instance, in 072.sc, 
the base performance level with iulining and cloning 
done per-module is 7.1 seconds. If the compiler is al- 
lowed to inline and clone cross-module, the runtime 
drops to 6.3 seconds. If the compiler is allowed to make 
use of profile information, the runtime becomes 5.3 sec- 
onds. Finally, the combination of both cross-module 
iulining and cloning with profile feedback gives a run 
time of 4.5 seconds. By and large, this monotonic im- 
provement property holds for almost all programs that 

we have examined. 
Another consequence of the increase in scope is that 

compile time2 increases. Again looking at 072.sc, the 
base compile time is 862 seconds, while the compile time 
with cross module inlining and profile feedback is 1786 
seconds, approximately 100% larger (this time includes 
the time required for the instrumenting compile, train- 
ing run, and final compile). In some cases, the compile 
time increases are a good deal larger; in others, smaller. 
The precise impact is often difficult to estimate because 
the analyses performed downstream are often quite sen- 
sitive to particular sorts of code structures. 

2All programs were compiled on an HP K400 workstation us- 
ing special developmental versions of the HP-UX 10.20 compilers. 
The times shown are therefore 30-40% slower than would be ob- 
tained by production compilers on the same hardware. 

139 



Ti; Tim;26 1 

983 8.2 

976 8.2 
1047 7.6 

348 25.6 
466 20.0 

981 1 6.3 

Clone 
Benchmark Scope Inlines Clones Repls Deletions 

Compile 1 Run 

008,espresso 281 28 47 28 
C 188 18 32 23 
P 815 45 106 9 
cP 297 17 47 7 

022.li 256 42 52 63 
C 76 13 18 15 
P 620 93 495 35 
cP 90 23 256 10 

072. SC 127 26 30 18 
C 39 6 8 4 
P 244 42 50 21 
cP 106 12 17 6 

085 .gcc 732 87 247 70 
C 1008 230 760 193 
P 309 47 110 25 
cP 641 349 2484 80 

099. go 400 23 219 6 
C 545 30 371 2 877 
P 154 14 177 0 1013 
cP 121 22 327 0 996 

124.m88ksim 140 33 64 18 491 
C 339 121 431 19 702 
P 97 21 27 17 783 
cp 80 49 132 7 

147. vortex 253 17 67 9 
C 841 121 2211 5 
P 140 9 12 5 
cp 175 83 2142 1 IL 

13544 1 22.5 

453.4 
436.3 

386.0 

298.0 

284.8 
228.7 

2028 1 373.7 
2522 1 270.1 

Table 1: Mine and clone information for selected benchmarks. Here c indicates cross-module compilation, p profile- 
based compilation. Baseline is a compiler with full inlining and cloning capabilities. 
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Figure 6: Relative speedup of SPEC integer programs 
with inlining, cloning, or both, for the PA8000 worksta- 
tion. Baseline compile uses cross-module and profile- 
based optimization, plus peak options not affecting in- 
lining or cloning. Overall figures present the geometric 
mean speedup for each benchmark suite. 

Data in this table also underscores the role of clone 
groups. Most clones are usable at more than one call 
site, and as the optimization scope widens, the ratio of 
call sites modified to clones created increases, indicat- 
ing that a given clone is being used at a larger number 
of sites on average. The distribution tends to be quite 
skewed. A sizeable number of routines are also deleted 

during compilation. These include both file-scope user 
routines and clones which are provably not callable be- 
cause all calls have either been cloned or inlined. 

The data in table also indicates the synergistic ben- 
efits of profile-based and cross-module optimizations. 
For instance, in 099. go, the cross-module profile-based 
compilation actually does fewer inlines than the other 
compilations, yet produces a faster binary. Compile 
times are shorter than the cross-module alone case, de- 
spite the need for a preliminary compile with instru- 

mentation and a training run to produce the profile 
database. The data also shows that for our compiler, 
profile-based optimization is usually more valuable than 

cross-module optimization. We cannot yet say if this 
represents anything fundamental; it may simply be an 
indication of the relative maturity of the profile-based 

optimization components. 

3.3 Overall Performance 

Figure 6 shows the relative performance of the 14 

SPECint programs as measured on a PA8000-based [lo] 
K460 workstation running HP-UX 10.20. The worksta- 

tion had two 180 MHz cpus and 256 MB of memory, 
16way interleaved. Programs were compiled with the 

HP-UX 10.20 C compiler. All compilations used inter- 
procedural optimization (t04 +Onolimit) and all the 
compiles incorporated profile information (tP) gathered 
from an instrumentation run done on the specified train- 
ing data set. Each benchmark was compiled four sepa- 
rate times: with no inlining or cloning, with only inlin- 

ing or only cloning, and with both inlining and cloning. 
Each executable was run three times on an unloaded 
workstation, and the best time reported was used. 

The data shows that inlining alone has the biggest 

impact on performance, though cloning is a vital con- 
tributor to both 022. li and 13O.li (which are quite 
similar) and to 124.m88ksim. Cloning by itself does 
not yield significant performance improvements, and on 
some benchmarks actually reduces performance slightly 
over what can be obtained by inlining alone. Though 
we have several theories, we have not as yet been able 
to determine the precise reason or reasons for the per- 
formance losses seen in some benchmarks when just 
cloning is used. 

What is it that happens in inlining that leads to 

these speedups? To try and answer this question we 
ran several of the benchmarks through a PA8000 sim- 
ulator. Data for several of these sets of simulations 
are presented in Figure 7. In gathering this data, the 
simulator ran modified versions of the SPEC95 inte- 
ger benchmarks, with simplified input sets designed to 
closely mimic the behavior of the benchmark. 

The simulation data shows that in several bench- 

marks inlining has resulted in dramatic drops in overall 

execution time (as measured by cycles) and the num- 
ber of instructions retired by the processor. The effect 
on the CPI varies; in 130. li it falls dramatically, but 

in 147.vortex it rises; yet both benchmarks speed up 
substantially. 

Not surprisingly, inlining and cloning both tend to 
increase the I cache miss rate and the total number of 
I cache misses. For the most part, however, inlining 
reduces the total number of I cache accesses, meaning 
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Figure 7: Simulation results for the PA8000 running a modified versions of the SPEC integer benchmarks. Relative 
indicates that the data is scaled relative to the run with neither inlining or cloning. 
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that some of the increase in miss rate is due to the same 
number of I cache misses being amortized over fewer ac- 

cesses. In the larger benchmarks, especially 126.gcc, 
the I cache miss rate more than doubles. The overall im- 

pact of the inlining and cloning on I cache performance 
is unclear, and seems to depend on the particular dy- 
namic of the program in question. 

The number of D cache accesses is also dramatically 
decreased. This causes an increase in the data cache 

miss rate, again because a similar number of misses is 
spread over fewer total accesses. A big part of this dra- 
matic drop is the elimination of caller and callee register 
save operations at call sites that have been inlined. We 

believe that this indicates that the register allocation 
phase of the HP-UX compiler has little difficulty with 

the larger routines created by inlining and cloning, and 
that for the most part register pressure is not an issue. 

The number of branches overall is reduced. Since 

this number includes procedure calls this is also not 
surprising. The branches that remain appear to be- 
come more predictable. Since the PA8000 always mis- 
predicts procedure return branches, this may also be a 
misleading statistic. However, we suspect that the pre- 
dictability of the remaining branches is also enhanced. 
Any possible improvement in branch behavior must be 
weighed off against an increase in the total number of 
branches, which may increase the rate of branch colli- 
sion in a branch prediction cache. 

3.4 Validation of Heuristics 

There is no practical technique at compile time for de- 
termining the optimum set of inlines or clones. Both 
the run time benefit and compile time costs must be 
estimated (see Ball [3] for an example). Furthermore, 
in any reasonably sized benchmark, there are a stag- 
gering number of ways to perform inlining and cloning. 
Chang, Mahlke, Chen, and Hwu [5] point out that a 
simplified version of the problem is equivalent to the 
knapsack problem, which is known to be NP complete. 
Each site can be either inlined or cloned, and the or- 

der of inlining and cloning may make a difference in the 
final code. 

Inlining and cloning must thus be guided by heuris- 
tics. As with all heuristics it is important to verify 

that the decisions they make are reasonably sound ones. 
To this end we present the data shown in Figure 8, 
which illustrates one technique for assessing the quality 
of heuristics used in HLO. As an experiment, we var- 
ied the budget provided to the inliner from a relatively 
small budget of 25 to a large budget of 1000. For each 
budget level we compiled the benchmark 022. li a num- 
ber of times. In each compile we artificially stopped the 
inliner after a certain number of inlines and/or clone re- 

placements. The resulting curves depict the incremen- 
tal benefit of each successive inline or clone replace- 
ment. As can be seen, very few inlines or clones have 
an adverse impact on performance. Also, once the bud- 
get has reached a sufficiently large value (100 in this 
case), there is no additional performance increase with 
extra inlining. This property (that performance reaches 
an asymptote with increasing budget) is true of many 
of the programs we have studied. Our default bud- 
get of 100 was chosen to maximize the performance of 
the benchmarks we studied without performing unnec- 
essary inlines. 

3.5 Mining in Other Codes 

Inlining is also of potential benefit in any language that 

supports the notion of a procedure or subroutine. At 
present, HLO is only capable of optimizing C, FOR- 
TRAN, and C++ programs. 

In this paper, we do not report any data for the 
floating-point benchmarks in the SPEC suite. One rea- 
son for this is that there is a significant barrier to in- 
lining in FORTRAN: it is difficult to aggressively rep- 
resent the aliasing semantics of an inlined FORTRAN 
subroutine. By default, the compiler is free to assume 
that formal parameters do not alias each other nor any 
global variables. Representing this information in the 

post-inlined code is tricky, and compilers (like ours) that 
cannot properly represent it are usually better off not 
inlining. 

The SPEC benchmarks tend to be small programs; 
126. gee is the largest at around 120,000 lines of code. 
A major challenge to effectively deploying aggressive 
inlining is the sheer size of production codes. We have 
recently been experimenting with compiling the 500,000 
line performance kernel of an important application pro- 
gram, and have been amazed to find that significant 

speedups like we see in some of the SPEC benchmarks 
can also be obtained in large production codes. 

4 Related Work 

Many research and production systems have been capa- 
ble of inliing and cloning [l, 2, 14, 7, 5, 4, 11,6, 8, 131. 
However, very few have reported consistently good re- 

sults in a mature compilation system, reported results 
on moderately large well-known programs, reported the 
effects of aggressive inlining and cloning, or offered a de 
tailed analyses of the costs and benefits of inlining. 

Chang, Mahlke, Chen, and Hwu [5, 111 describe a 
profile-based inliner for the IMPACT compiler. Their 
work is perhaps closest in spirit to ours, inlining across 
modules, and making use of profile information to select 
the best inlining sites. The control algorithm makes a 

143 



. . . . . . . 25 

- loo 
--- 200 

-. - 1000 

19 - 

17 - 

I5 - 

14 - 

I2 
0 

I 

50 

I 

loo 

I 

150 

.4 
.tied ‘\ 

\ 
\ ‘.A 

\ ‘\ .- 

I I I I 
300 350 4clo 450 

Number of inlining and cloning operations 

Figure 8: Incremental benefit of inlines and clone replacements in 022.li, at various budget levels. 

single pass over the inlineable sites, ranking them by 
profile weight. As in our implementation, selected in- 
lines are then scheduled to be performed in roughly 
bottom-up call graph order. Overall control is gov- 

erned by a code growth budget. They report a mean 
speedup of 11% with a maximum speedup of 46%. Our 
work differs in a few important aspects: we make use 
of cloning, perform multiple passes, rank inline sites 
both in terms of profile weight and relative execution 
frequency, and have profile information not only on in- 
terprocedural arcs but also intraprocedural ones. 

Davidson and Holler [7] developed an inliner for C 
programs that operated at source level. They reported 
a mean speedup of about 12% and a maximum speedup 
of about 35% on a variety of programs. They noticed a 

number of cases where inlining induced register pressure 
limited performance. Their study was done without the 
benefit of profile information, which we believe to be 
crucial to getting good performance. 

Allen and Johnson [2] describe a C language inliner 
and give a good discussion of some of the motivations for 
inlining. However, we feel that the commonly held no- 

tion (found in [2] and elsewhere) that an inliner should 
aim to inline only small functions to be untrue. Medium 
and large functions should be inlined if the remainder 
of the compile path is capable of aggressively handling 
large functions. 

Cooper, Hall, and Kennedy [S] describe a cloning 
algorithm which is a good deal more sophisticated than 
ours. Their analysis is interprocedural and relies on the 
actual values of constants passed to callees. Our use 

of clone specifications and clone groups mimics some of 
the clone vector merging possible in their work. For 
reasons we do not yet completely understand, we have 

found our implementation of cloning to be relatively 

ineffective in boosting performance. 
Dean and Chambers [S] describe an interesting sys- 

tem that is able to perform experiments to determine 
the actual benefits of an inline. Our system is handi- 

capped by having to rely on static estimates of the ben- 
efit of an inline, and assessing an independent benefit 
of any particular inline is not easy, since such benefits 
depend upon all the other inlining decisions that have 
been made so far. For code under development in sit- 

uations where development builds make use of inlining, 
however, the idea of a database to record information 
about past inlining decisions is appealing. 

5 Summary and Future Work 

Our experiences with inlining and cloning in HLO 
demonstrate that aggressive inlining and cloning can 
give substantial and widespread improvements in the 
performance of programs, with some well-studied pro- 
grams like 022.li speeding up by a factor of two. 

Our inliner differs from previous inliners described in 
the literature in that it is able to inline at almost any 
call site without restriction; it can inline cross-module 

and cross-language calls; it is uses profile feedback in 
conjunction with multiple passes to aggressively inline 
in the important parts of the program and adapt to the 
consequences of previous inlines and clones; and it keeps 
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a budget that allows for a global assessment of compile 
time impact without artificially restricting the amount 
of inlining in any one portion of the code. 

Our inliner was added to a mature compiler that 
already contained an aggressive, state-of-the-art global 
optimizer. The fact that inlining produces such im- 

pressive additional speedups is an indication that the 
gains we are seeing here are not simply straw-man arti- 
facts where high-level optimizations eliminate problem- 

atic code from an immature global optimizer. Instead, 
the inliner’s actions expose more significant and weighty 
regions of code to the global optimizer, and thereby en- 
able the full power of the compiler to be trained on the 
performance-critical portions of the application. 

Though we are pleasantly surprised with the results 

we have obtained so far, we have a number of future 
projects in mind. We want to apply aggressive inlining 
to large, production programs like the HP-UX kernel, 
database applications, and CAD tools. We also plan 
to improve the impact of cloning and remove the in- 
lining restrictions for FORTRAN codes. We are look- 
ing at techniques to make profiling less onerous, per- 

haps incorporating profile information from a variety 
of sources. We are also contemplating using aggressive 
outlining as a complement to aggressive inlining, to help 
further focus the global optimizer on the truly impor- 
tant stretches of code. 
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