=

A Hardware Mechanism for Dynamic Extraction and
Relayout of Program Hot Spots

Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom, Ronald D. Barnes,

Wen-mei W. Hwu
Coordinated Science Lab
1308 West Main Street, MC-228
Urbana, IL 61801

{merten,atrick,nystrom,rdbarnes,hwu}@crhc.uiuc.edu

ABSTRACT

This paper presents a new mechanism for collecting and de-
ploying runtime optimized code. The code-collecting com-
ponent resides in the instruction retirement stage and lays
out hot execution paths to improve instruction fetch rate
as well as enable further code optimization. The code de-
ployment component uses an extension to the Branch Target
Buffer to migrate execution into the new code without mod-
ifying the original code. No significant delay is added to the
total execution of the program due to these components.
The code collection scheme enables safe runtime optimiza-
tion along paths that span function boundaries. This tech-
nique provides a better platform for runtime optimization
than trace caches, because the traces are longer and persist
in main memory across context switches. Additionally, these
traces are not as susceptible to transient behavior because
they are restricted to frequently executed code. Empirical
results show that on average this mechanism can achieve
better instruction fetch rates using only 12KB of hardware
than a trace cache requiring 15KB of hardware, while pro-
ducing long, persistent traces more suited to optimization.

1. INTRODUCTION

The development of out-of-order execution and auto-
matic dynamic speculation has led to dramatic improve-
ments in the performance of modern microprocessors.
These techniques were the first steps toward allowing the
microprocessor itself to determine how to execute code op-
timally. To this point in time, such optimization decisions
have been limited in scope and have typically been made on-
the-fly without any persistent record. This paper presents
a framework for further dynamic optimization with persis-
tent code transformations, and demonstrates a dynamic op-
timization targeting high instruction issue throughput.

Many optimizations rely on accurate profile information to
profitably transform code. While many compilers support
the use of profile information, software vendors have been re-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first

page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada

Copyright (c) 2000 ACM 1-58113-287-5/00/06-59 $5.00

luctant to add the profiling step to their development cycles.
Not only is it difficult to determine a profile that is represen-
tative of the way the program will actually be used, but in
the presence of profiling, the behavior of certain programs
may change. For these reasons, an automatic, transparent
mechanism for profiling and reoptimizing the code based on
current usage would be advantageous.

An automatic system could improve performance in ways
that a static compiler cannot. As program behavior changes
over time, it could reoptimize code for the current behavior,
taking advantage of temporal relationships, whereas a typ-
ical static compiler optimizes only for the average behavior
across the entire execution. Such an automatic, hardware-
based system could lead to more targeted optimizations.

One such hardware profiler is called the Hot Spot Detec-
tor [7]. At runtime it determines the most frequently exe-
cuted branch instructions while collecting a profile of their
behavior. A snapshot of this profile is taken when the Hot
Spot Detector determines that execution is primarily con-
fined to the collected branches. This set of branches is then
considered a hot spot. Because this process is performed very
quickly at runtime, a unique opportunity exists to optimize
the currently executing code while leaving sufficient time to
gain benefit from executing in the optimized code. The gen-
eral characteristics of hot spots are considered in Section 3,
and the Hot Spot Detector mechanism is discussed more
throughly in Section 4.2. This hardware serves as the basis
for our code collection mechanism.

Using the Hot Spot Detector, we have developed a hardware
runtime optimization that performs code straightening, loop
unrolling, partial function inlining, and branch promotion to
improve instruction fetch performance. We propose to en-
able wide fetch by collecting instructions and placing them
in memory in executed order, thus enabling a traditional in-
struction cache to fetch multiple blocks per cycle. Unlike
many other schemes for fetching multiple basic blocks per
cycle, ours requires no extra hardware on the critical path
of the microprocessor, but instead uses a modest 12KB of
hardware plus control logic located in the instruction retire-
ment stage of the processor pipeline.

2. RELATED WORK

Runtime optimization of applications promises to deliver
higher performance than is currently available with static

Alan Berenbaum
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-59 $5.00

Alan Berenbaum
59

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

techniques. A number of software-based, dynamic reop-
timization systems, such as Dynamo [1], Daisy [3], and
FX!32 [5], have emerged that optimize running applications,
storing the optimized sequences into a portion of memory
for extended execution. However, such systems may suffer
from significant software overhead related to code profiling
and optimization. Our mechanism similarly uses a memory-
based code storage technique, but utilizes a hardware struc-
ture for rapid profiling, analysis, and optimization. The
earlier systems also require that a software executive mon-
itor and control the reoptimization process, whereas in our
system, the hardware itself manages this process.

The mechanisms and algorithms presented in this paper
utilize runtime optimization techniques to attack a prob-
lem that traditionally has been managed through either
special-purpose hardware or compiler techniques. In order
to achieve higher levels of instruction-level parallelism, the
fetch unit is required to supply multiple basic blocks per
cycle to the execution units. Early designs include the se-
quential instruction caches and collapsing buffer [2], which
were designed to fetch several contiguous blocks across cache
boundaries and non-sequential intra-cache line blocks, re-
spectively, in a single cycle. However, the complexity of the
shift logic in the collapsing buffer may cause an undesirable
increase in fetch latency. More recent solutions to the wide
fetch problem involve reordering the code blocks into exe-
cuted order and storing them into a special cache called the
trace cache [11]. This cache organization has been shown to
perform well, as instructions normally separated by taken
branches can be fetched in a single cycle.

Most compilers improve fetch performance by reordering
a program’s blocks sequentially along expected frequent
paths. Compilers often use profile information [9] [6] to orga-
nize the functions and blocks within functions, performing
function inlining where appropriate. The Software Trace
Cache [10] technique constructs traces at compile time that
are similar to the traces constructed at runtime by a trace
cache. Unlike most static techniques, our system optimizes
across library and DLL boundaries.

The goal of our work is to allow the processor to transform
the frequently executed code dynamically so that it better
fits the current usage profile and better matches the avail-
able resources in the microarchitecture. Other venues for
dynamic optimization are being explored by others, such as
the transformation of traces in the trace cache [4]. However,
the optimizations are limited by the relatively short length
of the traces, and the fact that the traces are not persistent
over a long time period.

3. HOTSPOT CHARACTERISTICS

Prior work has shown that a majority of dynamic execution
takes place inside program hot spots [7]. For many of the
hot spots, the dynamic number of taken branches does not
heavily outweigh the number of fall-through branches, as
would be the case for inner loops with no internal control-
flow. While some hot spots do contain such loops, many
also have much more complex control flow.

The number of call and return instructions, which together
average about 15% of the dynamic control flow in the ex-

60

xlgetvalue xlobgetvalue xlygetvalue

L

ret

_Twa distinct cals

vl
call---~

5
(Ten more
_ BBs
Dig\l
ret - hot call/ret
— hot path
— cold path
m hot branch
O cold branch

Figure 1: Basic block flow graph for selected func-
tions in a dominant hot spot in 130.li.

amined benchmarks, indicates that hot spots have complex
control flow. While these control transfers are often highly
predictable, their frequency presents a barrier to wide fetch
and optimization. Many of the benchmarks have a fair num-
ber of unconditional jumps, representing, on average, about
5% of dynamic control flow instructions. These instructions
perform no control decisions and are obvious candidates for
optimization. Indirect jumps and indirect calls do not make
up a large portion of the branches, but are frequent enough
to become hazards to long trace formation for some bench-
marks. Inlining the potential target may eliminate the ef-
fects of a miss on the fetch, and also allow for wide fetch
across the indirect jump or call. Finally, only about 35% of
the dynamic control flow instructions fall-through to sequen-
tial instruction addresses. Consequently, traditional fetch
architectures that break fetches at taken branches will often
be limited to one basic block per fetch.

In an effort to better understand the composition of hot
spots, an important hot spot in the 130.li benchmark is
closely examined. The hot spot represents about 45% of
the dynamic execution for the training input. A portion of
this hot spot is depicted in the control-flow graph in Fig-
ure 1, in which the black boxes and arrows represent the
branches and paths collected as part of the hot spot. This
entire hot spot consists of 81 branches spanning approxi-
mately 368 static instructions. The hot spot is not simply
a tight loop; rather, control proceeds through a number of
functions with minimal inner loops. The evform function
also makes an indirect call to a wide variety of other func-
tions, none of which qualify for inclusion in this hot spot.

Control enters this portion of the hot spot in function
evform at point A and proceeds through xlgetvalue,
xlobgetvalue, and xlygetvalue via calls and exits at point
C. A majority of the branches are biased, indicating a
primary path through the functions. Likewise, the loops
marked by back-edges B, D, and E only iterate a few times,
if at all, during each invocation of the hot spot. Execution
in this hot spot is largely consistent, as 47 of the 56 static
branches (9.2M of 10.9M dynamic branches) have highly
consistent dynamic branch direction (greater than 90% in
one direction).

Alan Berenbaum
60

A number of layout optimization opportunities exist for this
example code. Specifically, a code-straightening optimiza-
tion could eliminate many of the taken conditional branches,
and remove many of the cold blocks from the trace. Further-
more, function inlining may be performed to remove fetch
and optimization barriers caused by the calls and returns.

4. ARCHITECTURE

This section describes a hardware-driven mechanism that
is capable of automatically extracting frequently executed
regions of code and remapping the code so that it closely
matches the dynamic behavior of the program. The ad-
ditional system requirements imposed by this mechanism
include a small (less than 12KB) table, some associated reg-
isters and control logic, and a few pages of reserved virtual
address space for each process. The remapping hardware in-
volved is not sensitive to latency (it may lag behind actual
instruction retirement) and should have little effect on the
processor’s critical path.

To understand the functionality of this system, it is useful
to first consider a high-level view of system operation. First,
the system must identify and profile suitable hot spots. This
is referred to as profile mode. Upon hot spot detection, scan
mode is entered, in which code executes as normal while the
system searches for a suitable branch to begin a trace.

Once a suitable entry branch is found, the system will tog-
gle between fill mode and pending mode, in which the orig-
inal code is executed and remapped into a reserved area of
virtual memory called the memory-based code cache. Fill
mode requires that the processor write remapped code to
memory; this reduces execution speed while it is taking
place. However, fill mode is very infrequent (often less than
0.005% of execution, as shown in Table 7), making this over-
head insignificant. When the remapping process is complete,
the mechanism returns to scan mode to look for additional
traces within the hot spot. When the time period allowed
for remapping the code for the detected hot spot expires, the
system returns to the profiling state, and begins searching
for new hot spots.

4.1 Memory-BasedCodeCache

As in all dynamic optimizing systems, the optimized code
must be saved in some location for future execution. Some
systems utilize specific hardware caches that contain the op-
timized code and automatically substitute it for the original
code. Other systems, including the one presented in this pa-
per, use a region of memory commonly called a code cache
to contain the translated code.

In our system, standard paging mechanisms are used to
manage a set of virtual pages reserved for the code cache.
Because virtual memory is used to contain the optimized
code, standard paging and instruction caching mechanisms
allow the translations to persist across context switches. The
code cache pages can be allocated by the operating system
at process initialization time and marked as read-only exe-
cutable code. Of course, the remapping hardware must be
allowed to write into this reserved region of memory.

One limitation of this simple system is that the code cache
cannot grow beyond its initial size. Therefore, a sufficiently

61

large code cache must be allocated at process initialization.
For our initial experiments, we assume a large code cache,
and never remove remapped code from the cache. A code
cache replacement policy would be useful in a production
system, but is outside the scope of this paper.

4.2 Hot SpotDetection

The first step in the process of remapping hot spots is de-
tection of the frequently executed blocks. By employing a
hardware scheme, it is possible to eliminate the overhead
of profiling and make hot spot detection completely trans-
parent to the system. The heart of the hardware profiling
mechanism is a structure called the Branch Behavior Buffer
(BBB), which is shown in Figure 2. While the program exe-
cutes, the BBB collects profile data on individual branches;
this will eventually provide sufficient information to allow
reconstruction of the hot paths. The BBB is indexed on
the branch address and contains several fields that enable
branch profiling: tag (or branch address), branch execution
count, branch taken count, and branch candidate flag. The
BBB, as described in [7], has been extended from its basic
design to facilitate the process of trace formation. The ad-
ditional fields are not used during hot spot detection and
will be explained in subsequent sections.

To collect hot spot information, the BBB monitors retired
branch instructions, allocating an entry for each new branch
as long as an unused entry is available. Once an entry has
been acquired by a branch, its execution counter is incre-
mented whenever that branch is subsequently retired; if the
branch was taken, the taken counter is also incremented.
If the execution counter reaches its maximum value, both
counters are locked to preserve the profile bias. Periodically,
a refresh timer invalidates all BBB entries whose execution
counter does not exceed a preset “candidate” branch thresh-
old. This effectively implements a “most frequently used”
policy. Although unlikely, it is still possible for conflicts to
prevent an important branch from entering the BBB. Con-
sequently, the proposed remapping algorithm is designed to
easily tolerate an occasional missing branch profile.

Attached to the BBB is a hot spot detection counter that
monitors the percentage of executed branches that fall
within the current set of candidate branches. The hot
spot detection counter increments upon execution of a non-
candidate branch and decrements upon execution of a can-
didate branch by controlled values such that when execution
remains within an intensely executed set of branches for a
sufficient length of time, the counter eventually reaches zero.
When the counter hits zero it signals a hot spot detection,
at which time the current BBB state is frozen long enough
for the trace generation unit to construct traces for the hot
spot before reentering profile mode. To avoid redetecting
hot spots that have already been optimized, branches in the
memory-based code cache are not placed in the BBB and do
not cause the detection counter to move in either direction.
Code cache instructions may be identified simply by their
instruction address.

4.3 Trace Generation Overview

Once a hot spot has been identified, the processor enters
scan mode. In this mode, the program continues to exe-
cute in the normal manner while the Trace Generation Unit

Alan Berenbaum
61

Branch Behavior Buffer . Hot Spot Detection Counter
_branch Behavior Bulte & —roparEeetion Zoum

W
Q &
¢ v
‘b\/\# &
Y & O & B 3
%&lb & K Q\@Q A’Z}QQQ‘ .\Sb QQQ, ng
& 7SSO
O S YO S S
RefreshTimey L R N A A R R AR S AN
Reset Timer
Saturating|
E Adder
Branch Address
L
At Zero:
Hot Spot
TIF Detected
=1 &
L=

Figure 2: Branch Behavior Buffer with new fields
shaded in gray.

In—order
Retire

e

Fetch Decode...Execute

[

Branch
‘ Icache ‘Predictor ‘

BTB ‘
) Memory

Figure 3: Instruction supply portion of the proces-
sor with the remapping hardware.

(TGU) examines the retired instructions. Guided by pro-
file information collected by the BBB, the trace generation
unit detects instructions that follow a hot path and stores
these instructions in the code cache. Figure 3 depicts the
interaction between the TGU and other components.

As the TGU writes instructions into the code cache, it per-
forms two important functions. First, it creates connected
regions of code that embody the detected hot spot and de-
fines entry points to these regions. It does this in such a way
that if program control enters a hot region at a selected entry
point, control will likely remain inside the region of code for
a significant length of time. Second, the TGU automatically
performs code relayout along the most frequently executed
paths in the hot spot.

The TGU writes instructions into the code cache in sequen-
tial blocks or traces. Each trace is associated with an entry
point, which is the point at which control can enter the
trace from the original code. The mechanism used to acti-
vate trace entry points is discussed in the next section. For
each hot spot, a collection of traces, or a trace set, is cre-
ated for the code that comprises the hot spot. Although
an individual trace may contain internal branches as well as
branches to other traces in the same set, it never transfers
control directly to code in a different trace set. Therefore,
each remapped hot spot is a self-contained region of code
that can be independently optimized and deployed.

4.4 CodeDeployment

Transfer of execution to the optimized code is handled by
the Branch Target Buffer. Because of code self-checks, a
criterion for our system is that the original code cannot be
altered in any way. After each new trace is constructed in
the code cache, an entry point for the trace is written to
an array located in the first page of the code cache. After

62

a preset interval, a timer signals the end of remapping for
the current hot spot. At that time, a routine is initiated
to install the array of entry points into the BTB. For each
entry point, the BTB target for the entry point branch is
updated with the address of the entry point target in the
code cache. An entry point bit is also set in the BTB to
lock the entry in place until a BTB flush. After a context
switch, the same routine can be invoked to reinstall the entry
points into the BTB on a per-process basis. No new hard-
ware is required, other than that needed to update BTB
entries and to ignore branch address calculations selectively
for branches that have the entry point bit set. During fill
or pending mode, which are described in the next section,
it is desirable for execution to remain in the original code
without jumping into the code cache. This prevents new
traces from containing copies of code cache instructions and
ensures that all exit branches return to the original code.
Therefore, while operating in those modes, the processor
must ignore the entry point bit. The additional number of
branch mispredictions incurred due to locked but ignored
entry branches is small, because very little time is spent
executing in the fill or pending modes.

4.5 Trace Generation Algorithm

Figure 4 illustrates the decision logic used by the TGU. As
traces are remapped into the memory-based code cache, the
TGU transitions between the following three modes of op-
eration:

e Scan Mode: Search for a trace entry point. This is the
initial mode following hot spot detection.

e Fill Mode: Construct a trace by writing each retired in-
struction into the code cache.

o Pending Mode: Pause trace construction until a new path
is executed.

To assist on-the-fly code remapping, additional fields have
been added to the BBB, as shown in Figure 2. The
BBB.taken_target and BBB.fall-through_target fields are
used to hold offsets into the code cache, in which the code
following the corresponding original branch direction has
been laid out. Valid bits for each target indicate whether
or not that path has already been remapped. A callID field
also supports remapping by tagging the target fields to a
particular calling context. This prevents code from differ-
ent contexts from being linked together, a problem that is
discussed in Section 4.7. Finally, a touched bit is added to
support the rollback operation described in Section 4.6.2.
In addition to the BBB, the TGU uses the set of registers
listed in Table 1.

In Figure 4, each of the rules that cause a state transition
is listed next to the condition that triggers the rule. In this
section the rules that are associated with the same opera-
tion (e.g. End Trace) are listed together, followed by a list
of actions that are taken when any of the conditions are
satisfied.

e New Entry Point (Scan Mode)

Rule 1: A taken conditional branch or unconditional jump
is retired corresponding to a candidate BBB entry in
which neither direction has been remapped.

Alan Berenbaum
62

From Profile
Mode

New Entry Poin Cold Branch

Rule Condition

Rule Condition

New Entry Point:
1 — (jcc || jmp) && candidate && taken

End Trace:
2 — jcc && candidate && both_dir_remapped

3 — jcc && Icandidate
&& off_path_branch_cnt
> max_off_path_allowed

Merge:

6 — jcc && candidate
&& other_dir_not_remapped
&& exec_dir_remapped

Continue:

7 — jcc && addr_matches_pending_target
&& exec_dir_not_remapped

Cold Branch:

Continue

4 — ret && ret_addr_mismatch
5 — jcc && candidate && recursive_call

8 — (jcc || jmp) && !candidate

Figure 4: Trace generation modes.

CodeCacheOffset | Offset to next available memory location
in code cache. Updated each time the

current trace is filled with an instruction.

CurrEntryBranch | Original address of branch instruction used

as the entry point to the current trace.

CurrEntryTarget | Code cache target of CurrEntryBranch.

PendingTarget Original address of the instruction that
that follows the current trace. Used in
Pending mode to determine when to

continue filling a trace.

Number of non-candidate branches
executed while filling the current trace.

OffPathBranches

NextCallID Integer value for the next unused call ID.

A call ID estimates calling context.

CallIDStack Stack representing the current call-chain
during Fill mode. Each entry contains a
call ID and a return address. The top

entry is for the current function, below it

are entries for a fixed number of parents.

Table 1: TGU registers used for code remapping.

— Align CodeCacheOffset with cache line boundary
— Set BBB.taken_target = CodeCacheOffset

— Set CurrEntryBranch = branch PC

— Set CurrEntryTarget = CodeCacheOffset

— Reset CallIDStack so that it contains no entries
— Transition: Scan Mode — Fill Mode

End Trace (Fill Mode)

Rule 2: A conditional branch is retired that has a candi-
date BBB entry for which both directions are remapped.

Rule 3: A conditional branch is retired that does not have
a candidate BBB entry and OffPathBranches exceeds a
maximum off-path threshold.

Rule 4: A return instruction is retired and the next PC
does not match the return address on the top of CallID-
Stack. This is usually the result of executing a return
instruction without having inlined its corresponding call
instruction.

Rule 5: A conditional branch is retired that has a candi-
date BBB entry whose BBB.CallID is on the CallIDStack

— Emit an unconditional jump for the opposite direc-
tion. If this direction has been remapped, the jump
will transfer control to another point in the code cache;
otherwise, it will return control to the original code.

— Install the current entry point. CurrEntryBranch and
CurrEntryTarget are written to an array of entry points
in the code cache for future insertion into the BTB.

— Transition: Fill Mode — Scan Mode

Merge (Fill Mode)

Rule 6: A conditional branch is retired that has a can-
didate BBB entry in which the current branch direction
has already been remapped and the other direction has
not been remapped. It may later be possible to continue
growing the trace if execution ever follows the other path.

— Emit a conditional branch with BBB.current_target as
the branch target. BBB.current_target refers to the
taken_target field if the retired branch was taken, and
the fall-through_target field if it was not.

— Set PendingTarget = address in original code of the next
instruction opposite the retired branch direction

— Transition: Fill Mode — Pending Mode

Continue (Pending Mode)

Rule 7: A conditional branch is retired whose target ad-
dress matches PendingTarget and whose current direction
has not been remapped.

— Set BBB.current_target = CodeCacheOffset
— Transition: Pending Mode — Fill Mode

Cold Branch (Pending Mode)

Rule 8: A conditional branch is retired for which a candi-
date BBB entry does not exist.

— Emit an unconditional jump to PendingTarget.
— Install the current entry point.
— Transition: Pending Mode — Scan Mode

below the top entry. This indicates recursion.

4.6 Trace Examplewith Optimizations

This section steps through the remapping process by fol-
lowing a code example. Figure 5b shows the original code
layout, and Figure 5a lists the execution sequence seen after
entering scan mode. Basic remapping generates the trace
shown in Figure 5c. The application of two remapping
optimizations, patching and branch replication, results in
the trace shown in Figure 5d. Patching reduces premature

— Emit a conditional branch whose taken direction
matches the direction followed by the retired branch.
Thus, if the retired branch’s fall-through direction was
executed, its branch sense is inverted. If this direction
has already been remapped, the code cache offset from
the branch’s BBB entry is used as the branch target.
Otherwise, the next PC in original code is used.

63

Alan Berenbaum
63

Execution order during remapping:
C1A1B1A2C2A3B2C3D1

@

Entrance: C1 .
[1-opt
[2-opt
(b)
[3-opt
Entrance: C1 -
res [4-opt
[5-opt
r26
[6-opt
r3
[7-opt
a7 RM-D1]
[8-opt
RM-D1|
8 d
| (d)
©
BBB (after trace formation)
Exe¢TakepC|TK TkA FtV| FtA Callig Touch
A |350(120|1| 1 |Block(RM-C2) | 1 | Block(RM-B1) 0 0
B [235| 120(1| 1 |Block(RM-A2) | 1 | Block(RM-C3) 0 0
C|235| 235(1| 1 |Block(RM-AL) | 1 | Block(RM-D1) 0 0

(e)

Figure 5: Trace generation example.

trace exits while branch replication performs more aggres-
sive code straightening, unrolling loops in the process. Steps
1 through 8 refer to the basic algorithm. Steps 1-opt through
8-opt refer to the algorithm with the optimizations. Often
the operations performed in the unoptimized algorithm are
also performed in the optimized version. Figure 5e depicts
the final contents of the BBB after remapping.

To aid in the explanation, the following notation will be
used: X refers to static branch X. X, refers to the n'*
instance of X dynamically. X-tk is the taken target of the
static branch X, and X-ft the fall-through target. X,-ft
indicates that X,, falls-through to X-ft. X, -tk means that
X, branches to another target, which will be X-tk except
in the case of indirect jumps. Block(X) is the basic block of
instructions terminated by branch X. Finally, RM-X, is a
copy of X in the code cache caused by the retirement of X,.

Step 1 and 1-opt: RETIRED[C:-tk — Block(A)] As shown
in Figure 5a, C: is the first candidate branch seen in scan

64

mode. Following Rule 1, CurrEntryBranch is set to C and
CurrEntryTarget to Block(RM-A;). C’s BBB.taken_target
is also updated with the offset of Block(RM-A1). The TGU
then enters fill mode, and Block(A) is filled into the trace.

Step 2 and 2-opt: RETIRED[A;-ft — Block(B), Bi-tk —
Block(A)] A is seen as fall-through branch A; and is written
into the code cache as RM-A;. The first time any branch
X is remapped as RM-X,,, the branch is emitted such that
it falls-through to the target of X,. In our example RM-A4;
falls-through to A-ft. Thus RM-A; and A have the same
branch sense (i.e. RM-A; is not inverted). Because A’s
BBB.taken_target is invalid at this point, the taken target
of RM-A; must point back to A-tk which is Block(C) in the
original code. Next, A’s BBB.fall-through_target is updated
to point to Block(RM-Bj).

Block(B) is filled following RM-A;. Bi causes RM-Bj-ft
to be set to Block(RM-A3). Since RM-B;-ft is equiva-
lent to Bi-tk, RM-B; has the opposite branch sense of B
and is said to be inverted. RM-Bi-tk points to Block(C)
in the original code. B’s BBB.taken_target is updated to
Block(RM-A3), and Block(A) is filled again, now following
RM-B;-ft.

Step 2-opt only: In addition to the above actions, the ad-
dress of each remapped branch is written to its unused BBB
target field. This allows the remapped branch to be modi-
fied later so that its target can be redirected. In this case A’s
BBB.taken_target is set to the address of branch RM-A; and
B’s BBB.fall-through_target is set to the address of RM-B;.
To distinguish this from the case in which both targets of a
branch have already been remapped, A’s BBB.taken target
and B’s BBB.fall-through_target remain marked as invalid.

Step 3 and 3-opt: RETIRED[Az-tk — Block(C)] Az is the
first time A is seen taken, so RM-Ay-ft is directed along
the taken path to Block(RM-C5). Previously, in step 2,
Aq-ft was seen and A’s BBB.fall-through_target was made
valid. Since RM-A; is inverted, RM-A»-tk is directed to the
BBB.fall-through_target, Block(RM-B).

Step 3-opt only: Previously, in step 2-opt, Ai-ft was seen
and RM-A;-tk was directed to original code because the
taken path of A had not yet been seen. However, As-tk
now provides the taken path. A simple optimization called
patching allows RM-A1-tk to be updated to branch to a tar-
get within the code cache.

4.6.1 Patching

Without patching, RM-A;-tk would cause the trace to exit
the code cache prematurely and the system would be forced
to execute original code until a new entry point was encoun-
tered. Patching can be performed because, in Step 2, the
address of RM-A; was placed into the currently invalid tar-
get field of A’s BBB entry (in this case, BBB.taken_target).
Now, in Step 3-opt, RM-A;-tk can be patched to the same
target as RM-A-ft. This is shown by the dotted arc from
RM-A; to Block(RM-C5) in Figure 5. In general, patching
can be performed in fill mode whenever the trace encoun-
ters a branch that has been remapped only in the opposite
direction.

Alan Berenbaum
64

Step 4 only: RETIRED[C2-tk — Block(A)] Since C-tk has
already been seen (it was the entry branch), C2-tk matches
rule 6 and is merged back to Block(RM-A;). RM-C> is writ-
ten to the code cache with RM-C»-tk pointing to Block(RM-
Aji). Since C-ft has not been seen, the TGU switches from
fill to pending mode, where it will wait for either C-ft or a
cold branch.

Step 4-opt only: RETIRED[C>-tk — Block(A)] By merging
RM-C> to Block(RM-A1), the loop is unable to take advan-
tage of the rest of the cache line. To improve instruction
issue bandwidth, it is desirable to eliminate as many taken
branches as possible without reducing instruction cache per-
formance. The TGU can use a second optimization called
branch replication to avoid the taken jump from RM-Cs to
Block(RM-Ay).

4.6.2 Branch Replication

Branch replication is a general optimization that has the
dual effect of both unrolling small loops and tail duplicat-
ing blocks that are remapped in multiple traces. Without
branch replication, a trace is filled past a particular branch
in the same direction only once. Any subsequent copies of
that branch in the same trace set are inverted with respect
to the first copy such that their target addresses point to
the fall-through address of the first copy. Branch replica-
tion, on the other hand, allows traces to continue past the
branch multiple times without linking back to the first copy
of the branch (Section 4.6.3 contains a more precise treat-
ment of branch replication). Applying this optimization to
the example, instead of merging RM-C>-tk to Block(RM-
A1), RM-C5 is inverted so that RM-Ca-ft now points to
Block(RM-A3). C’s BBB.taken_target is not updated since
it already contains a valid target. Because C-ft still has not
been seen, RM-C»-tk must point back to Block(D), which is
the fall-through address in the original code.

Step 5 only: RETIRED[A3-ft — Block(B)] The TGU is still
pending on Block(D) and A is not a cold branch, so the
TGU stays in pending mode.

Step 5-opt only: RETIRED|[A3-ft — Block(B)] At As, both
A-ft and A-tk have been seen. Rule 2 could be used to
end the trace, in which case RM-Aj3-tk would be set to
jump to A’s BBB.fall-through_target, Block(RM-B;). To
close the trace, an unconditional jump would be used to
make RM-As-ft go to the taken_target in A’s BBB entry,
Block(RM-C;). However, branch replication has a higher
priority than Rule 2, so the TGU will continue filling. A’s
BBB.taken_target is used to point RM-As-tk to Block(RM-
C3), and Block(B) is filled after RM-A3-ft.

Step 6 only: RETIRED|[B;-ft — Block(C)] The TGU is still
pending on Block(D) and B is not cold, so the TGU stays
in pending mode.

Step 6-opt only: RETIRED[B;-ft — Block(C)] This is the
first time B-ft is seen. Since RM-B;’s address was stored in
B’s BBB.fall-through_target in Step 2-opt, patching can be
done to RM-B; as was done for RM-A4; in Step 3. RM-B;-tk
is patched to Block(RM-C3). Block(C) is then filled follow-
ing RM-Bs-ft in the code cache. Since B’s BBB.taken_target
is valid, RM-Ba-tk points to Block(RM-A,).

65

LastReplicatedBranch | Code cache offset of the last replicated
branch instruction in the trace.

BBB index of the last replicated
branch. The target fields of this entry
are used when the trace is rolled back.
Index into the Call ID stack that
corresponds to the calling context of

the last replicated branch.

LastReplicated Entry

LastReplicatedSP

Table 2: TGU registers used for branch replication.

Step 7 only: RETIRED|Cs-ft — Block(D)] The TGU is
pending on Block(D), which is the target of C3. The TGU
re-enters fill mode and fills Block(D) following RM-Ca-ft.

Step 7-opt only: RETIRED[Cs-ft — Block(D)] C-ft is en-
countered for the first time at Cs. RM-C3s-tk is set to point
to BBB.taken_target, which is Block(RM-A;), and Block(D)
is filled following RM-C5-ft.

Step 8 and 8-opt: The filling continues through D until it
enters into cold code and triggers Rule 3.

4.6.3 Branch Replication Details

Because of the complexity of branch replication, this section
presents a more complete picture of the implementation de-
tails. To support branch replication, the TGU requires the
additional registers listed in Table 2.

Branch replication may be performed any time that the
conditions defined above in rules 2 or 6 arise. Normally
these conditions result in an End Trace or Merge opera-
tion. However, branch replication adds an additional stip-
ulation to these conditions. If the remapped target points
to a previous trace (BBB.current_target < CurrEntryTar-
get) or if the remapped target and code cache offset are in
the same or sequential cache banks, then branch replication
is performed instead of the End Trace or Merge operation.
Recall that BBB.current_target refers to BBB.taken_target
if the branch is taken, and BBB.fall-through_target other-
wise. Likewise, BBB.other_target refers to the target oppo-
site BBB.current_target. If BBB.current_target points to a
previous trace, branch replication tail duplicates the next
block in the current trace, and the following actions are per-
formed:

— If not valid(BBB.other_target), set BBB.other_target =
CodeCacheOffset. This updates the address used for
patching.

— Emit a conditional branch whose taken target fol-
lows the direction opposite of the currently executing
branch. If this direction has already been remapped,
BBB.other_target is used as the branch target. Other-
wise, the original target address is used.

— Set BBB.current_target = CodeCacheOffset. This up-
dates the BBB target with an offset into the current trace.

If BBB.current_target is in the same trace but is less than
two cache banks away, then branch replication effectively
unrolls the loop up to the next conditional branch. This
heuristic assumes a two-bank cache line, but could be ap-
plied to other types of cache configurations. The TGU per-
forms the following actions:

Alan Berenbaum
65

— Set LastReplicatedBranch = CodeCacheOffset

Set LastReplicatedEntry = current BBB index

— Set LastReplicatedSP = current top of CallIDStack

If not valid(BBB.other_target), set BBB.other_target =
CodeCacheOffset.

— As in the previous case, emit a conditional branch whose
taken target follows the direction opposite of the currently
executing branch.

Reset all touched bits in the BBB.

The three “LastReplicated” registers are set during loop un-
rolling, but are only used in the event that a rollback is per-
formed. Unless the trace ends through one of the other end
trace conditions (Rules 3-5), branch replication will continue
to duplicate blocks until it finds a loop that crosses two cache
banks, at which time the trace is rolled back to the previous
replicated branch. Specifically, a rollback takes place when-
ever LastReplicatedBranch contains a valid address and the
branch replication condition fails due to a distant branch
target in the same trace (the target address precedes the
current code cache offset by more than one cache bank).

During a rollback, the code cache offset is reset to the last
replicated branch, and the End Trace or Merge operation
that was deferred during branch replication is now per-
formed. A rollback triggers the following actions:

— Set CodeCacheOffset = LastReplicated Branch

— Set the top of CallIDStack to LastReplicatedSP

Invert the branch, overwriting its target with LastRepli-

catedEntry.current_target, advance CodeCacheOffset.

Invalidate BBB target fields with the touched bit set.

If both targets of LastReplicatedEntry are remapped, per-

form an End Trace operation.

— If only one target is remapped perform a Merge and set
LastReplicated Entry.other_target = CodeCacheOffset

When the TGU combines both the patching and branch
replication optimizations, some care must be taken to ensure
correct operation. In particular, a touched bit in the BBB
entry is set whenever the entry is modified to indicate that
its fields point to the most recently filled block. All touched
bits are then reset on a branch replication. During rollback,
the touched fields are invalidated by clearing their valid bits
so that their values are not used in the future.

4.6.4 Backtracking

Occasionally, during fill mode, actual execution does not fol-
low the most frequently executed path through the hot spot.
To avoid the creation of suboptimal traces, an optimization
called backtracking is used to discard the current trace when
execution follows a cold path. The TGU checks for execution
down a cold path by comparing the BBB branch bias for the
currently executing direction against a preset cold threshold.
For taken branches, the execution counter in the BBB entry
is shifted right by two bits and subtracted from the taken
counter. If the result is positive, the branch’s taken fre-
quency exceeds a cold threshold of 25%. To perform the
check for fall-through branches, the taken counter can first
be subtracted from the execution counter. Returning to the
example, if execution had fallen-through at branch C rather
than iterating at least once, the TGU would have discarded

66

the trace. The TGU performs the following actions during
backtracking:

— Reset CodeCacheOffset to CurrentEntryTarget.
— Invalidate BBB entries with the touched bit set.
— Transition: Fill Mode — Scan Mode

Once patching or branch replication has been performed on a
trace, it is no longer safe to backtrack. Therefore a single-bit
flag is raised by these operations to suppress backtracking
for the remainder of the trace. It is also useful to limit
backtracking so that the amount of time spent in fill mode is
minimal. This can be done simply with a small counter that
counts the number of consecutive backtracks and suppresses
backtracking after reaching a threshold.

4.6.5 Branch Promotion

High instruction issue rates are often limited by the num-
ber of branches that can be predicted in a single cycle. One
method for overcoming this limitation is to mark the instruc-
tion with a static prediction via a technique called branch
promotion. Some trace cache implementations use a Branch
Bias Table [8] to track the long-term behavior of the branch,
promoting consistent instructions in traces so that they do
not require a dynamic prediction. When the static predic-
tion is wrong, however, the processor suffers a branch mis-
prediction penalty, and is likely to cause the promoted in-
struction to revert back to its dynamically predicted form.

Similarly, wide-issue instruction cache mechanisms suffer
from the same limit on branches per cycle. However, the
hot spot detection mechanism is well-suited to make pro-
motion decisions during remapping, because a profile of the
branches exists in the BBB. Since mispredictions are ex-
pensive, we chose to promote only instructions that execute
100% in one direction, according to the BBB. In the exam-
ple in Figure 5, RM-C> is a promoted branch because its
taken and executed counters have the same value. Occa-
sionally, branches change their behavior over the course of
program execution, causing mispredictions that may negate
much of the benefit of their promotion. Thus, we require a
means for demoting such misbehaving instructions. We pro-
pose a small buffer (empirically chosen to contain 16 entries
in our implementation), called the Branch Demotion Buffer,
that tracks a typically small number of promoted branches
that exhibit mispredictions and marks the misbehaving in-
structions in the instruction cache to force a dynamic pre-
diction. The buffer is organized as a fully associative cache
containing saturating counters. Demotion or re-promotion
is performed on the instructions when the counter reaches
set threshold values.

4.7 Automatic Inlining Example

Call and return instructions account for a significant portion
of control transfers. Therefore, benefit can be gained from
inlining calls. Consider the example shown in Figure 6. The
caller consists of a single block loop that makes two serial
calls to the same callee. The remapping process begins as
normal, placing Block(callA) into the code cache. At that
point, a direct call is seen, and inlining of the call begins.

The process begins by assigning the callee the next available
call ID, 1 in the example, and pushing it onto the hardware

Alan Berenbaum
66

Execution order during remapping: RM-callA] Call ID Stack: 1
C1 callAl D1 E1 retl callB1 D2 callF1 D3)
RM-D1
Block(callF) 1
A = RM-EL
. RM-ret Call ID Stack:
, \
’ i
/ I
/! ! RM-callBl Call ID Stack: 2
/)
1~ RM-D2
jmp - Block(E)
l;l RM-callF] Call ID Stack: 23
4
] RV-D3
ret
Block(callF) ﬂiimp
Block(E)

Original Code Layout Remapped Code Layout

Figure 6: Trace example with inlining.

call stack along with the expected return address. Next, a
CALL_INLINE instruction is inserted in place of the original
call. When executed, this instruction will push the return
address of the original call site, Block(callB), onto the pro-
cess stack, but will allow execution to fall-through to the
next instruction in the trace. Pushing the original return
address is a fail-safe that guarantees that control will return
to the correct function if execution takes an early exit from
the trace. It also hides the existence of the code cache from
programs that read the return address value directly.

Blocks D, E, and “ret” are then filled into the code cache as
normal. When branch D is remapped, its BBB.CallID field
is replaced with the current call ID (1). Once the return
instruction is reached, the TGU pops the top entry from
the call ID stack and compares the expected return address
with the address of the next retired instruction. If these
addresses do not match (Rule 4), the TGU terminates the
trace by emitting a return instruction. A mismatch com-
monly occurs when a trace has no corresponding inlined call
(the call ID stack is empty). However, a mismatch can also
occur if, while in pending mode, the program returns from
the current function and later enters it from a different call
site before continuing to fill the trace. In our example, call
ID 1 is popped from the call ID stack and the expected
return address matches Block(callB). The TGU continues
to fill instructions past the return, but instead of emitting a
normal return instruction, it uses a return inline instruction,
which allows control to fall-through to subsequent instruc-
tions in the trace. Although the return inline normally falls
through to the next instruction, it still must compare the
return address found on the stack with the original address
of the next trace instruction. This check is necessary in the
event that a program directly modifies its return address. If
the comparison fails, the return inline behaves exactly as a
normal return instruction.

Following the return inline instruction, Block(callB) is
remapped, and inlining of callB begins. Recall that RM-
D;-tk points to original code. Without the call ID fields,
this branch would be incorrectly patched to point to the

67

current code cache offset. To avoid this problem, each po-
tentially distinct calling context acquires its own unique call
ID. If on a BBB lookup during remapping BBB.CallID does
not match the call ID on the top of the stack, then both
target fields are invalidated. Consequently, when a function
is inlined multiple times, targets associated with previous
inlined copies are ignored and overwritten with offsets into
the most recent copy. In our example, when the second call
is remapped, the next call ID, 2, is pushed onto the stack.
Because D’s BBB.CallID is 1, BBB.fall-through_target is in-
validated and BBB.taken_target is set to Block(RM-callF').

After Block(callF) is filled, another call site to the same
function is encountered. CallF is inlined as before, and the
next call ID, 3, is pushed onto the stack. Block(RM-Ds3)
is then filled into the trace. When a BBB lookup for D3 is
performed, the BBB.CallID value, 2, matches one of the call
ID stack entries below the current stack pointer. Therefore,
the condition for Rule 5 is satisfied, and the TGU ends the
trace by emitting a conditional jump to Block(callF') and an
unconditional jump to Block(E).

4.8 New Instructions

The following are new instructions that are used within the
remapped code. These instructions are designed to support
runtime optimization in hardware but are not visible to the
programmer. Although these instructions may be emulated
with traditional instructions, they may need to be imple-
mented in the microarchitecture to be maximally efficient.

e CALL_INLINE(return addr to original code)

Unlike a normal call, the program counter is set to the
next sequential instruction, and the return address is set
to the operand value rather than the next PC. The process
stack and the branch prediction Return Address Stack
(RAS) are properly maintained in case a normal return is
executed later.

e RETURN_INLINE(expected return addr)

Execution speculatively continues with the instructions
immediately following the RETURNINLINE. Mean-
while, the operand, which is the expected return address,
is compared to the return address on the stack. If the
values do not match, then a misprediction occurs and a
normal return is executed.

e CALL_INDIRECT_INLINE(indirect addr, inlined addr,
return addr to original code)

The actual indirect target is calculated normally and com-
pared against the inlined address operand. If there is a
mismatch between the actual target and the inlined tar-
get, a normal call is made to the calculated target. Oth-
erwise, a CALL_INLINE is performed. In both cases, the
original return address provided by an operand is pushed
onto the stack.

e JMP_INDIRECT_INLINE(indirect addr, inlined addr)

The actual indirect target is calculated normally and com-
pared against the inlined address operand. If there is a
mismatch between the actual target and the inlined tar-
get, a normal jump is made to the calculated target. Oth-
erwise, control passes to the instruction immediately fol-
lowing the inlined jump. This instruction is particularly
useful for optimizing across DLL boundaries.

Alan Berenbaum
67

Benchmark Num. ‘ Actions Traced ‘ Model L1 ICache Trace Cache Remap

Insts. ‘ size,way,block size,way,block,BBT Code ‘
099.go 89.5M | 2stone9.in training input Traditional 64KB, 4, 128B none no
124.m88ksim | 120M |clt.in training input Remap 64KB, 4, 128B none yes
126.gcc 1.18B |amptjp.i training input Trace Cache | 64KB, 4, 128B 8KB, 4, 64B, 4KB no
129.compress | 2.88B |test.in training input count enlarged to 800k TC + Remap | 64KB, 4, 128B 8KB, 4, 64B, 4KB yes
130.1i 151M | train.lsp training input (6 queens) Trace Cache | 64KB, 4, 128B | 128KB, 4, 64B, 16KB no
132.ijpeg 1.56B | vigo.ppm training input TC + Remap | 64KB, 4, 128B | 128KB, 4, 64B, 16KB yes
134.perl 2.34B | jumble.pl training input
147.vortex 2.19B | vortex.in training input Table 5: Fetch mechanism models.
MSWord(A) | 325M|open 16.0 MB .doc file, search, then close
MSWord(B) 911M [load 25 page .doc, repaginate, word count, A

select entire doc, change font, undo, close duce the BBB table size to 1024 entries without incurring an
MSExcel 168M | VB script generates Si diffusion data/graphs excessive number of conflicts. We also collect slightly tighter
Adobe Photo-| 390M |load detailed tiff image, brighten, hot spots by reducing the clear timer interval and increas-
Deluxe(A) increase contrast, and save . he h d . With the additi 1
Adobe Photo-| 108M |exported detailed tiff image to ing the hot spot etec.tor counte.r S1ze. 1th the additiona
Deluxe(B) encapsulated postscript fields, the BBB occupies approximately 12KB of hardware.
Ghostview 1.00B |load gsview and 9 page ps file, view, zoom,
and perform text extraction

Table 3: Benchmarks for remapping experiments.

[Parameter [Setting |
Num BBB entries 1024
BBB associativity 4-way
Exec and taken cntr size 9 bits
Candidate branch thresh 16

4096 branches
32768 branches

Refresh timer interval
Clear timer interval

Hot spot detect cntr size 13 bits
Hot spot detect cntr inc 2
Hot spot detect cntr dec 1

Table 4: Hardware parameter settings.

5. EXPERIMENT AL EVALUATION

Trace-driven simulations were performed for a number of
benchmarks in order to explore hot spot characteristics and
to establish the effectiveness of the proposed hot spot remap-
ping scheme. Both SPECINT95 and common WindowsNT
applications were simulated to provide a broad spectrum of
typical programs. The benchmarks and their input sets are
summarized in Table 3. The eight applications from the
SPECINT95 benchmark suite were compiled from source
code using the Microsoft VC++ 6.0 compiler with the op-
timize for speed and inline where suitable settings. Several
WindowsNT applications executing a variety of tasks were
also simulated. These applications were the general distri-
bution versions, and thus were compiled by their respec-
tive independent software vendors. In order to extract com-
plete execution traces of these applications (all user code,
including statically- and dynamically-linked libraries), we
employed special hardware capable of capturing dynamic in-
struction traces on an AMD K6 platform. Since the traced
instructions are from the x86 ISA, variable length instruc-
tions are used throughout simulation. To ensure examina-
tion of all executed user instructions, sampling was not used
during trace acquisition or simulation.

The hot spot detection hardware and trace generation unit
were simulated on an instruction-by-instruction basis for the
entire execution. When the new instructions listed in Sec-
tion 4.8 were being remapped, their extra operand sizes were
taken into account. The Hot Spot Detector was configured
according to the parameters listed in Table 4. These pa-
rameters are similar to those used in [7], which have been
determined empirically to detect consistent and concise hot
spots. Compared to the previous work, we were able to re-

68

5.1 Instruction Fetch Mechanism

Simulations of a sequential-block instruction fetch unit were
performed featuring a 64KB, 4-way set associative, 128-byte
line, split-block, 10-cycle miss penalty L1 ICache. The L2
ICache consists of a 512KB, 2-way set associative, 256-byte
line, split-block, 100-cycle miss penalty cache. Some fetch
units were also coupled with trace caches featuring either
128 (8KB) or 2048 (128KB), 4-way set associative, 64-byte
lines. Table 5 summarizes the various configurations. The
trace caches are allowed to form traces in remapped code.

The simulated ICache model has a split-block configuration
such that each line is divided into two banks. If a request
falls into the second bank, the first bank of the subsequent
cache line is also returned, if present. The instruction buffer
is capable of delivering up to sixteen instructions per cycle
to the decoders, but will not issue instructions past a taken
branch. Up to three branches may be issued per cycle, and
any instructions in the fill buffer that fall after the third
branch will not be used until they are verified to be on the
predicted path. The ICache assumes predecode information
to identify instruction boundaries and branches.

A 14-bit-history gshare branch predictor is modeled with a
pattern history table consisting of entries with seven 2-bit
counters, together capable of three predictions per cycle [8].
In addition to the conditional branch predictor is a 32-entry
return address stack and a 1024-entry indirect address pre-
dictor. We model an ideal BTB to isolate the effect of stor-
ing entry points in the BTB. The entry point replacement
policy has been deferred for future work.

We also model a trace cache that is indexed on the trace’s
starting address and allows partial matches (it has the abil-
ity to fetch the beginning of a trace up to a prediction mis-
match). Both trace cache models (8KB, 128KB) are coupled
with an ICache, and use the same branch predictor as the
ICache. When a fetch request is made, both units are ac-
cessed in parallel; a trace cache hit always takes precedence
over an ICache hit, and only when both caches miss is the
L2 ICache accessed. The trace cache is block-based and is
modeled after the design in [8]. Each cache line is 64 bytes
wide with slots for 16 instructions and up to 3 branches.
Four target addresses are stored in the line to provide the
next fetch address in case of partial matching. Traces end
when the limit on instructions or branches is reached, or
when an indirect branch instruction is encountered. The
traces are built in basic-block granularity unless more than

Alan Berenbaum
68

H Returns
<_% I. I I I M Indirect
(_'t I calls
’§ O Calls
s NN
o O Indirect
:_'E jmps
2 B Uncond.
-% jmps
L% @ Taken

brancheg

o
=}

Word(B)
Excel

Figure 7: Reduction in taken control-flow instruc-
tions in remapped code compared to original code.

half of the line will be wasted, in which case partial blocks
may be filled. The trace cache also utilizes a Branch Bias
Table (BBT) of 1024 or 4096 entries (approximately 4 bytes
each) to facilitate branch promotion within traces. Includ-
ing the additional target addresses and tag stored in each
cache line, the combined size for the 8KB trace cache and
1024-entry BBT is approximately 15KB.

The CALL_INLINE and RETURN_NLINE instructions do
not require branch prediction and do not consume any of the
three branch resources allowed per cycle. CALL_INLINEs
are unconditional control flow, and RETURN_INLINEs
almost always return to the inlined caller because they
are only emitted into the code cache when the respec-
tive CALL_INLINE is in the same trace. Since they are
predicted statically, functions that modify the return ad-
dress will result in branch misprediction upon returning.
CALLINDIRECTINLINE and JMP_INDIRECT INLINE
do not terminate a trace in the trace cache as their non-
inlined counterparts do. When fetched from either the
ICache or TCache, these instructions are predicted as if they
were conditional branches. A fall-through prediction causes
the issue of the inlined target, while a taken prediction relies
upon an indirect predictor to obtain the new fetch address.

5.2 Performanceof RemappedCode

Figure 7 summarizes the reduction in taken control-
transferring instructions due to the remapping optimization.
Each pair of bars for a benchmark is normalized to 100% of
the taken control transfers in the original code. The bars
for the remapped applications include taken control trans-
fers both from the code cache and from the original code.
On average, a 45% reduction is seen across the benchmarks,
signifying the effectiveness of the code-straightening tech-
niques. Notice that call and return inlining is particularly
effective, removing 25% of the taken control transfers in
147.vortex, and sizeable amounts in the other benchmarks.
Code straightening techniques for the conditional branches
yield, on average, about a 24% reduction in taken control
transfers, and as much as 40% for MSWord(A), PD(A), and
PD(B). These results show a dramatic reduction in the num-
ber of taken branches in the benchmarks.

Table 6 summarizes the average static length and useful life-
time of the traces formed by the remapping system. To
measure effective trace length, each time a trace is entered,
the number of static instructions executed before exiting the

69

Trace Length - Static Inst. Executed per Entry
0-16 [17-32 [33-49 [50+
54% | 24% [10% [12%
Trace Age - Millions Inst. Executed Since Creation
0-24 [25-49 [50-99 [100+
4% | 3% | 4% | 89%

Table 6: Aggregate trace characteristics.

Benchmark ‘ % Remap | % Scan/ | % Fill Code ‘ Entry ‘
Code Pending | Mode | Size(KB) | Points
go 10.51 1.02 0.0051 14.8 60
m88ksim 68.91 4.98 0.0027 8.6 49
gee 32.01 1.07 0.0063 135.1 715
compress 87.05 0.84 0.0001 6.4 30
1i 74.32 0.61 0.0032 13.6 59
ipeg 84.44 0.09 0.0005 22.2 57
perl 72.34 0.04 0.0002 12.4 69
vortex 34.08 0.12 0.0006 26.4 103
Word(A) 78.46 0.08 0.0014 10.2 37
Word(B) 45.66 0.29 0.0040 73.9 330
Excel 30.69 3.12 0.0271 87.6 352
PD(A) 86.38 0.58 0.0030 18.9 105
PD(B) 81.15 125 | 0.0107 9.1 101
Gsview 60.15 0.35 0.0027 61.0 336
Average 60.44 1.03 0.0048 36.4 172

Table 7: Benchmark remapping results.

trace are counted. The distribution shows that often more
than 16 static instructions are executed, indicating that the
traces may expose more optimization opportunities than in
the trace cache. To measure the useful lifetime traces, each
time a trace is entered the number of instructions executed
since the installation of that trace are calculated. The age
of an executed trace is usually greater than 100 million in-
structions, which is the entire runtime of some benchmarks
and should provide opportunity for further optimization.

Table 7 presents the results of the remapping optimization
system. A large percentage, often as much as 80%, of the
dynamic execution occurs in the remapped code. Typically
less than one percent of execution is spent looking for traces
to form within a hot spot (scan/pending modes), and a very
small percentage, often less than .005%, is spent actually
remapping the code (fill mode). Even if the remapping pro-
cess requires a several cycles per remapped instruction, the
total overhead would be well under 0.1%.

To evaluate the effectiveness of the layout optimizations,
each benchmark was simulated with several different fetch
unit configurations. Figure 8 shows the performance of the
various fetch mechanisms. As our optimizations were tar-
geted toward the fetch unit, the fetched instructions per
cycle (FIPC) metric was selected as an appropriate gauge of
effectiveness. The first bar in the graph represents the base-
line FIPC of the native applications. This is an aggressive
multiple-block fetch unit operating on the original code. The
second bar depicts the FIPC of the remapped code, which
averages 21.5% improvement over the base case. The im-
provement achieved by a comparably sized trace cache is
18%. Adding the trace cache in addition to the remapping
hardware yields a benefit of 24.6% over the base case. With
a much larger trace cache, approximately 15 times larger in
size than the remapping hardware, the FIPC is improved to
32.3% over base, and 38.4% if remapping hardware is also
included. Despite the large reduction in taken control trans-
fers, as shown in Figure 7, FIPC does not necessarily scale

Alan Berenbaum
69

12

10

Fetch IPC

go
gce
ijpeg
perl
vortex

m88ksim
compress

Word(A)

O1C:64KB

M |C:64KB remap

0O1C:64KB
TC:8KB

B IC:64KB
TC:8KB
remap in TC

O1C:64KB
TC:128KB

M IC:64KB
TC:128KB
remap in TC

Excel
PD(A)
PD(B)

Word(B)
Gsview
Average

Figure 8: Fetched IPC for various fetch mechanisms.

accordingly. This is primarily because branch mispredic-
tions cause a dramatic number of stall cycles, which lessens
the effect of improving throughput during useful cycles.

One advantage of our system over a trace cache is its abil-
ity to inline returns and indirect branches. The benefit of
inlining returns is evident in a trace constructed for the ex-
ample hot spot from the li benchmark shown in Figure 1.
The TGU forms a single trace that begins prior to the call of
evform, continues following the hot branches while inlining
both calls to x1ygetvalue, and returns to evform where the
TGU terminates the trace because the maximum number
of allowed off-path branches has been exceeded. This trace
is 284 instructions long, represents approximately 10% of
program execution, and achieves an average of 15.1 FIPC
when executing in the trace. In addition, our traces may
include loops, as was shown in Figure 5. Conveying loop
structure potentially allows better optimization than could
be performed with simpler traces.

6. CONCLUSION

Recent innovations in microprocessor design have given the
processor itself more control over how to execute code opti-
mally. Our system advances the state-of-the-art by allowing
the processor to detect the most frequently executed code,
to perform code straightening, partial function inlining, and
loop unrolling optimizations, and to deploy the code for im-
mediate use, with all of this transparent to the user appli-
cation. The detection and extraction of frequently executed
code is done at the retirement stage of the processor, off the
timing-critical paths. Preliminary results show that the op-
timizations applied by our system achieve significant fetch
performance improvement at little extra hardware cost. In
addition, because the remapped code consists of important,
persistent traces, our mechanism creates opportunities for
more aggressive optimizations in the future.

7. ACKNOWLEDGMENTS
The authors would like to thank all the members of the
IMPACT research group, especially Joe Matarazzo and John

70

Sias, for their valuable insight and assistance in developing
this work. We also thank Prof. Sanjay Patel for his in-
sight into the operation of the trace cache, and the anony-
mous referees for their constructive comments. Our research
has been supported by Advanced Micro Devices, Hewlett-
Packard, Intel, and Microsoft.

8. REFERENCES

[1] V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic
optimization: The design and implementation of dynamo.
Technical Report HPL-1999-78, Hewlett-Packard Laboratories
Cambridge, June 1999.

T. M. Conte, K. Menezes, P. Mills, and B. Patel. Optimization
of instruction fetch mechanisms for high issue rates. In Proc.
22nd Annual Int’l Symp. on Computer Architecture, pages
333-344, June 1995.

K. Ebcioglu and E. R. Altman. Daisy: Dynamic compilation
for 100% architectural compatibility. In Proc. 24th Int’l Symp.
on Computer Architecture, pages 26—37, June 1997.

D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill unit
to work: Dynamic optimizations for trace cache
microprocessors. In Proc. 31th Annual IEEE/ACM Int’l
Symp. on Microarchitecture, pages 173-181, December 1998.
R. J. Hookway and M. A. Herdeg. Digital FX!32: Combining
emulation and binary translation. Digital Technical Journal,
9(1), August 1997.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,

T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The
superblock: An effective technique for VLIW and superscalar
compilation. The Journal of Supercomputing, 7(1):229-248,
January 1993.

M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and
W. W. Hwu. A hardware-driven profiling scheme for identifying
program hot spots to support runtime optimization. In Proc.
1999 Int’l Symp. on Computer Architecture, pages 136-147,
May 1999.

S. J. Patel, D. H. Friendly, and Y. N. Patt. Evaluation of
design options for the trace cache fetch mechanism. JEEE
Transactions on Computers, Special Issue on Cache Memory
and Related Problems, February 1999.

K. Pettis and R. C. Hansen. Profile guided code positioning. In
Proc. ACM SIGPLAN 1990 Conf. on Programming Language
Design and Implementation, pages 16—27, June 1990.

A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas, and

M. Valero. Software trace cache. In Proc. 1999 Int’l Conf. on
Supercomputing, June 1999.

E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low
latency approach to high bandwidth instruction fetching. In
Proc. 29th Int’l Symp. on Microarchitecture, pages 24-34,
December 1996.

(2]

(3]

(4]

(8]

(6]

7]

(8]

(9]

(10]

(11]

Alan Berenbaum
70

