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Abstract 1. The evolution of adaptivity
Research over the past five years has shown significant performancéfter decades of research into efficient methods of data-flow analy-
improvements using a technique calledaptive compilationAn sis and the development of a plethora of transformations, we began

adaptive compiler uses a compile-execute-analyze feedback loopto ask the question: how effective are our compilers? The literature
to find the combination of optimizations and parameters that mini- is replete with evidence of the efficacy of individual transforma-
mizes some performance goal, such as code size or execution timetions, but the issue of combining the correct set of optimizations
Despite its ability to improve performance, adaptive compila- for a wide variety of input codes is a problem both recognized and
tion has not seen widespread use because of two obstacles: the larggenerally ignored. Reasoning about the interactions between trans-
amounts of time that such systems have used to perform the manyformations is dauntingly complex, and the cost of measuring these
compilations and executions prohibits most users from adopting interactions quantitatively was, until recently, prohibitive. For ex-
these systems, and the complexity inherent in a feedback-drivenample, our first attempts to enumerate these interactions empiri-
adaptive system has made it difficult to build and hard to use. cally required fourteen CPU months for a relatively small set of
A significant portion of the adaptive compilation process is optimizations. Some batch compilers, such asVheTA system
devoted to multiple executions of the code being compiled. We by Kulkarniet al, address the problem by repeatedly running their
have developed a technique calleditual executionto address entire suite of optimizations in a round-robin fashion until the code
this problem. Virtual execution runs the program a single time stops changing [20].
and preserves information that allows us to accurately predict the  The increases in processor speed have enabled experiments that
performance of different optimization sequences without running use the computer itself to explore different combinations and per-
the code again. Our prototype implementation of this technique mutations of optimization sequences. In short, these experiments
significantly reduces the time required by our adaptive compiler.  have shown that hand-picked optimization sequences do not con-
In conjunction with this performance boost, we have developed sistently use the compiler to its greatest advantage [8, 9, 25]. In-
a graphical-user interface (GUI) that provides a controlled view of deed, in theViSTA system, Kulkarniet al. report improvements
the compilation process. By providing appropriate defaults, the in- over their fixed-order, round-robin compilation when they added
terface limits the amount of information that the user must provide adaptivity into their system [19].
to get started. At the same time, it lets the experienced user exert These results would be interesting even if they simply identified
fine-grained control over the parameters that control the system. a maximally performing sequence of optimizations, but these ex-
periments have also shown that different input codes benefit from

Categories and Subject DescriptorsD.3.4 [Compilers; Opti- remarkably different sequences. This second result argues strongly
mizatior]: Adaptive compilation in an optimizing compiler for a compiler that can change its behavior for each input program.
) ) The compiler can adapt in two ways. First, it can analyze the

General Terms Experimentation, Performance input code to detect features amenable to specific transformations
. L and invoke the corresponding optimizations [27, 28]. In the case of
Keywords Adaptive compilation opportunities across multiple transformations, however, this is cur-

rently beyond our capabilities: we do not yet know how to identify,
* This work has been supported by Los Alamos Computer Science Institute in general, the salient characteristics of the input code that con-
and by the National Science Foundation through grant CCR0205303. This tribute to performance differences of sequences of transformations,
work does not represent the official opinion of either agency. nor do we have a vocabulary to describe the interaction between
transformations which have markedly different effects on the code.
The second method to find a good optimization sequence is the
one we currently employ. Feedback-driven adaptive compilation
starts by compiling the code with some sequence of optimizations.
The adaptive system then runs the code to produce a measurement.
Permission to make digital or hard copies of all or part of this work for personal or |+ avaluates the measurement and instructs the compiler to recom-
classroom use is granted without fee provided that copies are not made or distributed . . ipe . '
pile the code using a modified sequence of optimizations. We have

for profit or commercial advantage and that copies bear this notice and the full citation . h : et h .
on the first page. To copy otherwise, to republish, to post on servers or to redistribute €Xperimented with different methods for guiding the compiler, in-

to lists, requires prior specific permission and/or a fee. cluding genetic algorithms, greedy algorithms, hill-climbing algo-
LCTES'05, June 15-17, 2005, Chicago, lllinois, USA. rithms, and random probing. We have reduced the number of eval-
Copyright© 2005 ACM 1-59593-018-3/05/0006. .. $5.00. uations needed to find a good sequence fiéry000 in our initial
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experiments to somewhat less tHet), using different methods of " & ACME_gui

searching the space of sequences [8, 7, 15]. These methods pro'& 0 6 ACME

duce consistent and significant improvements in code quality, and - Directories

our experiments in known subspaces suggest that the methods fint|source pirectory: /Users /joe/searchz ffmin|
optimization sequences that are close to the best that can be fount| s ination Directory: | jUsers/Joe/acme._gui/fmin
for a given set of transformations.

. L P .. Existing Database: None
Even with our success in identifying efficient search methods,

the expense is still prohibitive for most use¥80 compilations and gl gon Compilation
executions can take hours for a moderate sized program. “EHG=Cptions Transforms: Use Al
AcCME addresses the performance problem by reducing the | @ ca Population 50 .
. . - - ) Number of Passes: 105
number of executions to a single profiling run at the start of the | ra Elite 10 -
adaptive compilation. We use the profiling data in the analysis | 7 gc Generations 50 Execution %: 80 1.
pha_lse o_f the at_japtive compiler to perfomintual exec_utior_1(ex- Mutation |02 S p————
plained in Section 4), a method of performance estimation based
on instruction counts. We have usAdME to compare the runtime Results ) :
of the compilation with and without virtual execution; Section 5  |Ratio To Base 85.73 % Progress
shows that virtual execution drastically reduces overall compila- g, sequence Todzxogmes | 102
tion time in our adaptive system. hect o2
A second hindrance to widespread adoption of adaptive compi- |**t <t 27 HHHHHHH'HHHHNHHHH‘HHH‘H
lation is the complexity of the interface. Our systeAGME, can Evaluations 72 65
be invoked from the command line. It enables four different search _
algorithms with different sets of parameters, sixteen different opti- Start Stop Advanced _Help

mizations.etc As such, a single invocation éfCME can require as
many as fourteen different parameters.

We believe an adaptive system is unlikely to gain widespread
use if the interface is not designed around the users’ needs, regardthe execution cost for variant versions of the code from data gath-
less of the practicality of adaptation. We address the complexity of ered during the single execution.
running the compiler with an easy-to-use interface that experience v/ sta also uses a number of techniques to weed out compila-
suggests provides correct levels of information to novices and more tion sequences that probably will not change the code — this avoids
experienced users alike. unnecessary invocations of the compiler. This sophisticated analy-

sis solves the other half of the performance problem: in our system,
about26% of the time is spent transforming the code, with the re-

Figure 1. AcME Interface

2. Related work maining time devoted to linking and running the codeME ad-
Cooperet al. used genetic algorithms to find a good ordering of dresses the execution bottleneck, whilesTA’s techniques could
compiler optimizations to minimize executable sizel®09 [8]. be used symbiotically to address the compilation bottleneck.

Since then, there has been a great deal of research into using adap-

tive technigues in compilers to produce better executables. Several3.  ACME design
researchers have continued to examine the problem of ordering op- . . .
timizations [1, 9, 20, 19, 25]. Understanding of the problem has in- The design ofACME flows from our experience running tens of

' P : . millions of compilations and includes both insights into the inter-
creased, and adaptive compilation has led to the production of sig- : : 2 ;
nificantly faster executables. Adaptive compilation has also been face controls and engineering enhancements like virtual execution.

successfully used to improve the performance of individual opti- Our goal has been to make the adaptive system both easier to use

mizations via parameter selection [17, 24, 28]. and more efficient.

Despite the success of this research, adaptive compilation has3 1 |nterface
not been widely adopted. Adaptive compilation’s use has been lim- . hould let th . f th
ited by the time required to find a good solution and the usabil- AN @daptive system should let the user ignore as many of the
ity of the system — the two issues thatME addresses. Other re- implementation-dependent details as possible. Obviously, some of
searchers have also investigated how to make adaptive compila-th€ inputs must be entered by the user, but much of the control
tion more practical. Dr. Options is an automatic system that recom- €an €ither use default behavior or be hidden from the novice user.
mends options for the PA-RISC compiler [14]. Dr. Options com- 1© that end,ba (hSUIhseemhs an Ob‘r']'ous choice fqrfan mt_erfacea
bines profile information, heuristics, and user input to simplify the SINC€ It can both show the user the necessary information an
process of selecting options. However, the system does not use re2rganize levels of information hierarchically, according to the skill
peated compilation and evaluation to improve results. or reguwemerr]]ts of the l{s.er. ¢ h h

The VISTA system is an interactive system which concentrates l?llgudr_e 1 showsA\CME'S mtek: ace.dT e uger must_:andtert ename
on reducing the compilation time, similar &cME [19]. VISTA re- of t ? |rdecft0r3|/ COll’]taIannng[] e co eftﬁ € compiied, 4hm“ E
duces the number of executions needed by storing a representatiorfUPPlies default values for the rest of the parameters. The user can
of each compilation and only executing code which has never been €hange any of the default parameters, including the search method,
seen before. In their results, they run the code only abalit of parameters for that methoétc An advanced user may also wish

the time. Virtual execution takes a radically different approach, ex- © C%erI SléCh fgatures' ?]S the set Olf optirpizaﬂqnshth“e (;andon:j—n
ecuting the code onéand thereafter producing a close estimate of NUMPer seed, and so on; these controls are found in the "Advance
window, shown in Figure 2. Working through the interface, the

following is a list of the notable features AfcME:

L1n reality, ACME runs the code twice, once with no optimization to get .
profiling data for virtual execution, and the second time with our compilers 1. Stop The stop button halts the search algorithm and returns the

default sequence of optimizations to get a performance baseline. Clearly, ~ best result thaAcmE found. In conjunction with support for
this second run is not necessary for virtual execution. restarting a search from its last compilation (so the user doesn’t
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cause harm by accidentally pressing this button), the stop button rigure 3. The progress of three successive runs of the genetic
may be the most important part of the user interface, because it 3jgorithm onadpcm-decoder

gives manual control over a process that can run indefinitely
long.

. Existing DatabaseWheneverACME runs, it stores the results
of all compilation-string/execution-result pairs in a database.
This database is stored in the “Destination Directory” along
with any temporary files the compiler needs to create. It can be
reused for subsequent invocationsAafME on the same piece
of code. This enables the user, for example, to use his machine
to compile overnight, stop the compilation in the morning, and
then restart the compilation the next evening when he leaves.
To take another example, the user can stop the compilation,
run the code to see if it meets his needs, and then resume the
compilation in the same place if it does not.

. Search Algorithmsin [1], we show that different search al-
gorithms have different cost/benefit tradeo#scME currently
supports four search algorithms: a greedy constructive algo-
rithm, a genetic algorithm, a randomized impatient-descent al-
gorithm (a hill climber), and random-probing search of the
space. These give an expert user a high degree of flexibility,
while the default hill-climber algorithm should give the novice
user a good result quickly.

. Transforms AcME defaults to using all of the transformations
available in the compiler, but the user may want to specify only
a subset of these transformations, because they believe that the
code may either not require a certain optimization pass, (f
the code contains no loops, there is no reason to include loop-
oriented transformations), or the pass may simply take too long
(or be experimental or unreliable).

. Number of Passed his control allows the user to choose the
length of the optimization sequence. We find that the default

8.

value of ten produces good results for our benchmarks (and g.

serves our the experimental purposes), but an expert user may
want to change this value; we have no quantitative data relating
number of passes to quality of solution.

. Execution Percentagén benchmarks with many routines, it is
often true that only a small number of the routines account for
most of the work done during execution. The “execution per-
centage” variable tell&.cME to start by profiling the code and

recording the set of routines that account for the “percentage” 10.

of execution time as set by the user. Only this set of routines
will be considered by the search algorithm; the infrequently ex-
ecuted routines can simply be ignored AEME is set to use
virtual execution, the infrequently executed routines are simply
ignored.

. Max EvaluationsSome of the search routines (notably, the hill
climber and the greedy constructor) will run for an unknown
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number of compilations. By setting this field, the user can
bound the number of total compilatioASME performs, while
leaving the field blank tell®\CME to let the search algorithm
run to completion.

Progress InformationOur experience in using our own system
convinces us that feedback is critical. We start by compiling
and executing the code using our standard optimization string.
We then compare successive results during the search against
this baseline. As better results are found, the “Best Sequence”,
“Best Counts” (the instruction-count measurement), and “Ratio
to Base” fields are updated. The “Evaluations” field is a count of
how many compilations and evaluations have occurred, to give
the user a feel for the work being done. Lastly, the “Progress”
graph shows the user how the results have improved over time.
Experience shows that this data is particularly important,
as exemplified by the graph in Figure 3. We performed an
experiment in which we ran the genetic algorithm three times
(i.e., with three different random seeds) on Hipcm-decoder
benchmark. The settings were generations of Sizean elite
set of 10 per generation, and0 generations. These settings
require2050 compilations. In all three runs, we found the best
answer by about thé50%" compilation, so that the rest of the
time was wasted. This feature lets the user halt a search that
has stopped making progress. The user can try again with a
different seed or different search algorithm, or the user can
choose to accept the solution. Because the database can be
reused, redundancies across these restarts are avoided.

Virtual Execution modéin the Advancedvindow). As we ex-
plain in Section 4.2, our current implementation of the virtual
execution algorithm relies on an estimator. The estimator de-
tects and reports cases in which it cannot give an accurate esti-
mation of execution count. The default behavior in these diffi-
cult cases is to run the code to give accurate results. However,
our experiments (shown in Figure 6) suggest that it may not hurt
the solution quality to simply throw those compilations away.

Random Seedin the Advancedwindow). All of the search
algorithms rely to some extent on the generation of random
numbers, and the generation of random numbers relies directly
on the seed used to start the generator. In order to provide
repeatability for our experimentd,cME defaults to using the
same number as a seed to the search algorithms. The choice
of random seed is transparent to the user who just wants to
compile his code and then use it, but a researcher may want



Sparse conditional constant propagatiff26]

Dead code eliminatiobased orssa-form [11, 10]
Optimistic value numberinfg]

Partial redundancy eliminatiof22]

Renaminguilds the name space needed by the implemen-
tations of1 andz. The compiler inserts it automatically
beforel or z.

Useless control-flow eliminatiofi0]

Peephole optimizatioof logically adjacent operations [12]
Peelthe first iteration of each innermost loop

Algebraic reassociatiofb]

Register-to-register copy coalescif]

Operator strength reductiofi0]

Local value numberin§l0]

Optimistic global value numberin@3]

Dominator-tree value numberifig.0]
Extended-basic-block value numberid@]

Lazy code motiofil8]

g8 H0Mm@ oo
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Table 1. Optimization passes included &cME (the letters shown
are used in the GUI to represent the transformations)

to have control over this value to be able to replicate a set
of experiments or ensure that different runs produce different
results.

3.2 Underlying design
The engine upon whicACME sits is theiloc compiler we have

was within1 to 2% of the performance improvement of the training
data.

The search algorithms are also implemented as C programs.
They coordinate the running of the compiler and execution of the
resultant code. They provide all of the bookkeeping, manage tem-
porary files, and log results. To simplify the bookkeeping, test pro-
grams must maintain a strict design, too: they must reside in sep-
arate directories, and each program must have a configuration file
containing some basic information such as the source-file names
and input data to test the executable. The configuration files are
easy to set up.

4. Eliminating the executions

In this section, we look at the theoretical and practical application
of virtual execution. Virtual execution allows us to drastically re-
duce or completely eliminate the cost of the many executions that
adaptive compilation normally requires.

4.1 Virtual execution

The concept of virtual execution relies on a simple premise: given
optimizations which change only the code (but not gdFe — for
example, loop-invariant code motion), two different versions of
the same code produced from two different optimization sequences
will always execute the same blocks for a given input. Virtual exe-
cution first counts each block’s execution frequency with a profile
of the unoptimized code. After this, any sequence of optimizations
that adds, removes, or relocates instructions can be modeled by
computing the sum over all the blocks of each block’s frequency

described in a number of other papers such as [4]. The list of count multiplied by the number of instructions that end up in that
optimizations included in the compiler is shown in Table 1. Each pjock, and this measure should be pregise

of the optimization passes is designed as a standalone Unix filter,

The situation becomes more complicated widerME includes

which gives us the ability to easily reorder them arbitrarily. When ptimization passes theb change therc. For example, consider
a transformation sequence has been applied, we feed the code intgyop peeling, an example of which is shown in Figure 4. This

our backend, which converts thaoc intermediate representation
to ¢, which we compile using a native compiler. This design
allows us to instrument the code and run it as if it were on a virtual

machine, independent of the actual architecture that we are using.

enabling optimization does nothing more than peel the first iteration
of every loop in the program. In the figure, the clone of block A is
denoted A.

To update the execution-frequency countsBoandC, it is not

This lets us run experiments on a variety of physical architectures ¢orrect to simply subtract one frofd andC’s frequency counts

and consolidate the results.

and setB’ andC’’s counts to one. Only one side of the conditional

Further, measuring performance with instruction counts does js taken on the first iteration of the loop, so the other side’s block

not vary from run to run, in contrast to the timing measurements

count should be set to zero, not one. Thus, we need something more

on our Unix systems. Timing measurements on a preemptive multi- from the initial profile than just the blocks’ frequency counts if we
tasking system vary enough to change the paths taken by the searc;e to handle optimization passes which modify ¢ive. We need

methods, making it very difficult to get repeatability. Using instruc-

an actual path profile to handle this case — in fact, all ofdhe-

tion counts based on a virtual machine as our standard of measure¢hanging passes in our compiler require this kind of information.

ment has proven to be controversial: the obvious objection is that \yhile this can be expensive to gather, keep, and manipulate, the
the performance on modern architectures is heavily dependent onyesearch in this area is extensive, and we feel confident that it is
the behavior of the memory subsystem. However, none of the opti- fasiple [3, 13].

mizations in our compiler specifically target memory performance Of course, the optimization passes themselves must be aug-
in the same way as higher-level optimizations like loop transforma- mented to maintain the path information as they make their re-

tions designed to improve data locality[21]. We have compared run- spective changes to tierG. While these changes should be fairly

time measurements against instruction counts for the larger codesgirajghtforward to implement, doing so may well be time consum-
in our test suite using different optimization sequences, and they jq.

tend to correlate; that is, the instruction count measurements using “\ne should note one point. The underlying premise of virtual
different sequences tend to be separated by the same proportion agyecution is that the order and frequency of execution of the basic
the runtime measurements of those sequences. _ blocks in a program need only be measured once, and any trans-
A second concern relates to the question of whether a single formation which changes ther can likewise update the origi-
set of input data can correctly predict performance on arbitrary ng| counts to maintain accuracy. This premise relies on a restricted
data. In our test suite of benchmarks, we have several codes W'thspace of optimizations. For example, the premise may not hold
both training data that is used during adaptive compilation and test \yhen we extend our set of optimizations to include higher-level
data that can be used to check the performance of the code. Wegpes such as unroll-and-jam.
tested for training bias by measuring the performance of the best
version (obtained from the training data) on the testing data. In 27hjs design has the additional advantage that it naturally takes into account
these experiments, we saw no systematic bias in the results — thevarying instruction weights to allow us to consider different architectural
performance improvement of the benchmark using the testing datafeatures.
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2. If a basic block has been duplicated, the counts of the original
and its clone(s) add up to the original frequency count.

3. If a new basic block has been inserted into ¢iFe, it does not
affect other blocks’ counts.

¥

® ©

\/
¢
%

Figure 4. Example of loop peeling
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The estimator starts with a set@hig, count) pairs and a set of
flow edges from the originaC F G with their frequencies. It exam-
ines the updatedrG and predicts runtime block counts using the
heuristics shown below. It is an iterative process, since determining
a count for one block may make it possible to determine a count
for other blocks (either directly or through the updated bounds).
The heuristics use relationships of the blocks in ¢ife such as
dominance, post-dominance, and the successor and predecessor re-
lationship and are as follows:

1. Tags with zero countf any of the tags in a block has a zero
count associated with it, the block receives zero count. There
may be more than one tag if blocks have been merged.

Trivial blocks if the loop nesting depth of bloclB has not
changed, there are no other copies of this block with unde-
termined counts (no tag from occurs anywhere else in the
remaining blocks without counts), and all tagsBnhave the
same count, the® receives that count.

. Compare upper and lower boundsompares the smallest and
largest possible counts for each basic block. If blé& lower
bound equals its upper bound, then the counifas set to this
value. This is a powerful heuristic because of the aggressive
way that bounds are maintained.

. Compare the count assigned to a tag to the sum of upper bounds
of all blocks containing this tagf the sum of upper bounds of
blocks containing the same tdgis equal to the count assigned
to T, each of the blocks receives a count equal to its upper

4.2 Estimated virtual execution

The implementation of virtual execution requires updating any op- 2.
timization pass which can change thec to simultaneously up-

date the profiling data. This may well be an impediment to an ex-
isting compiler infrastructure, as it would necessitate considerable
regression testing. As an alternative, we have developed a modified
version of the virtual execution idea that we cadtimated virtual 3
executionEVE). It is implemented as a separate pass inserted into
the sequence after each invocation afres-changing optimization

pass.

The concept behind EVE is simple: rather than modify each
pass that can change tiFG so that changes are accounted for 4
as they occur, we build one pass that can compareQRé&s.

Then, the compiler inserts this new pass after €2EiG-changing
transformation. The implementation works as follows. We run the
unoptimized code and record, in each block, a block-identifying bound.

tagand an associated value showing the number of times the block .
executed. EVE looks at the tags to deduce the graph changes and®>: Compare the count assigned to a tag to the sum of lower bounds
of all blocks containing this tagsame as the heuristic for deter-

update the execution counts of each block in the oew. It then

assigns each block in the newFG a unique tag with the newly
updated count.

Consider again the loop-peeling example in Figure 4. After loop
peeling, some blocks will be cloned and EVE will encounter the
same tag in two blocks. The count that EVE will see in each of

mining the upper bound (above), but using the lower bounds.

6. Use counts for predecessoitthe counts for all predecessors

of block B (the setP made up ofB’s predecessors) have been
determined and is the only successor each of them has, then
the count forB is the sum of counts of all predecessors. We

implement an extension of this idea by allowing the blocks from
P to have successors other thBnbut require that their counts
are already determined.

Use counts for successotbis is the same as using the counts
from a block’s predecessors (above), but applies to the succes-
sors.

. Use counts for edgesf the count has been determined for
block B, the counts for outgoing edges are available, and their
sum is equal taB’s count, then any successSrwith B as
its only predecessor receives the count of the elge—~ S.

(At present, we do not implement the symmetric heuristic that
inspects incoming edge counts.)

. Use edges with zero couniba block A has only one predeces-
sor B and the edgd8 — A has a zero count associated with
it, then A receives zero for its count. On the other hand, if all
edges leaving3, except forB — A, have a zero count and
the count forB is known, thenA receivesB’s count.

those two blocks will be the original count, and EVE must use
other information to determine the new counts to associate with
each block. Assuming that the nesting depth of the loop is one, we
could deduce that the count of the block still in the loop is at most 7.
one less than the original count, and the count of the peeled block is
at most one. We use the term “at most” carefully — only one side of
the conditional in the peeled loop will execute, so the other side’s g
count should be zero, but it may be impossible to determine this
statically. The safe course is to assign both blocks in the peeled
conditional a range from zero to one.

This becomes more complicated if the loop is nested within
a second loop. When the inner loop is peeled, the number of
times either side of the conditional in the peeled loop executes is 9
impossible to know (if the outer loop runs ten times, it may be that
every odd iteration takes the left path, every even iteration the right
path, for example). Clearly, changes to theG can completely
destroy our ability to update the block counts. As a result, EVE
relies on a set of heuristics to deduce the counts of each block in
the newcFa. If at some point no heuristic is applicable, but the derivation is

EVE uses techniques similar to static estimation to chart the incomplete, the estimator “guesses” the count for one of the blocks
changes in block execution frequency as ¢tres changes, using (for example, to maximize current total instruction count) and re-
the following assumptions: applies all heuristics. Sometimes this process leads to a reasonable

solution. We save the state of the estimator before it performs its

1. If a basic block has not been duplicated or moved to a different first guess: if it leads to contradictory counts or bounds we roll back

nesting depth, its original frequency count remains unchanged. to that point and try another value or pick another basic block.
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The lower and upper bounds provide a range of possible runtime [ Code [ precise | within 1% [ within 2% [ within 3% |

counts for each basic block. To be useful, they must be as accurate [fmin 34.5% 78.5% 89.2% 97.4%
as possible. At the same time, the bounds may not be contradictory: | zeroin 42.7% 68.5% 99.1% 100.0%
a block’s lower bound must be a non-negative value no larger adpcm-c| 39.1% 90.9% 96.1% 100.0%

than its upper bound; if the count for a block has already been | adpcm-d| 7.5% 100.0% 100.0% 100.0%
determined, both lower and upper bounds must be equal to this | fpppp 24.2% 91.2% 95.5% 99.1%

count; the upper- and lower-bound values must agree with the | psieve 48.4% 81.6% 90.0% 94.7%
counts and bounds for successors, predecessors, (post)Jdominators, tomcatv | 70.9% 93.3% 98.3% 99.8%
and (post)dominated blocks. svd 50.8% | 79.3% 88.7% 95.5%
Our implementation updates the bounds values after any of the ep 46.1% 66.9% 85.3% 99.1%
blocks receives a count according to these observations: ft 80.7% 98.7% 99.3% 99.8%
_ is 64.8% | 100.0% 100.0% 100.0%

* Already derived counts can be used as both lower and upper | mg 60.0% 93.7% 95.7% 97.4%

bounds for the corresponding block and propagated to other [Mean 47.5% 386.9% 94.8% 98.6%
nodes in theera.

* A block cannot have a count larger than the count associated Table 2. The percentage of evaluations using estimated virtual
with any tag in it. execution falling close to the actual execution counts

¢ A block will execute at least once if it dominates or postdomi-
nates all of its copies and its original count is greater than zero.

e Lower bounds can be used to improve upper bounds and vice
versa. N
80% - | —

To illustrate the last observation, consider a block B which has H
been duplicated by a transformation. If the upper bounds indicate
that the maximum number of times all copies Bfmay execute is
smaller than the original count fd8 (before the transformation),
then B itself must account for at least the difference between the LG
original count and the sum of upper bounds of the copieB.of A1 —

Similarly, the upper bound foaB cannot be larger than the dif- 20% +H —{ 1
ference between its original count and the smallest possible number
of times all other copies aB will execute (the sum of their lower 0% A P PP P P ) P
bounds). While the sum of upper bounds may be larger than the D D U T
original count, we always expect that the sum of the lower bounds & © & & & & @&‘ s @ AN
is smaller than the block’s original count. The lower bounds are OIS TS
updated for each predecessor (successor) of a btk account
for the difference betweeB’s lower bound and maximum possible Figure 5. EVE success rate
counts fpr all other_predecessors (successors). Note that we cannot; Experimental Results
invert this observation to update upper bounds. ) i ) )

This third observation above is an instructive example of how The techniques presented in this paper are designed to make the
EVE can fail, because the observation itself does not always hold Use of adaptive compilation systems practical. This section demon-
true. On a few occasions, we discovered that two copies of a block Strates that we can achieve results comparable to previous adaptive
(one copy dominating the other) would never execute, although the Systems in substantially less time usikgMmE. ,
original count was greater than zero. A third copy of the same block _ We performed all of our experiments on a Sun Fire V210 server.
existed but had been removed from theG at some point by the ~ The server has two 1GHz processors, each with a 1MB cache,
transformation, and EVE could not detect that. and 2GB of main memoryACME was evaluated using twelve
alternate between them until no more changes in the bounds areSUItes.
detected. Theoretically, the number of such alternations can be as . . i .
large as the difference between upper and lower bound values; t05'1 Evaluating Estimated Virtual Execution
limit such a circumstance, we interrupt this process after it repeats EVE provides a fast alternative to executing code when evaluating
a fixed number of times. optimization sequences in an adaptive system. However, since the

Like static estimation, a certain amount of error is inevitable, instruction counts provided by this technique are imprecise, we first
because sometimes the technique either guesses wrong about theeed to understand the degree of imprecision that is introduced and
flow of control, or fails completely to understand how the origi- how this impacts the results achieved through adaptive compilation.

100% +— = — T T

60% - —{ — [— T

nal set of blocks are mapped into each nemG. When thecrc Itis also critical to understand the other aspect of this trade-off: the
changes in such a way that EVE can no longer be confident in the speedup gained through the use of EVE.
block-frequency countgyCME can either run the code to obtain the A basic measure of EVE'’s precision can be seen in Table 2. This

precise counts, or it can fail to produce a result for that compila- table shows that the margin of error introduced by EVE is small in
tion. In general, the latter case just means that the search algorithnmthe vast majority of cases. As we said, we use instruction counts as
may have to run more trials. It can be more serious WhemE'’s our metric rather than machine timings precisely because we need
estimate is inaccurate, because it may cause the search algorithniboth repeatability and accuracy in the adaptive searches. The data
to make decisions based on erroneous data, meaning the solutionn Table 2 shows that EVE closely approximates actual instruction
found may not be as good as possible. Our experiments in the nextcounts.

section indicate that, despite the inaccuradctesyie with EVE still EVE is not always able to calculate an instruction count for
achieves excellent results. a new version of a program. Complicated changes to the control
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Figure 6. The quality of ACME’s solution, measured against the
default compilation sequence

Figure 7. Running times ofACcME with virtual execution enabled,
normalized against full execution

flow of a program can cause EVE to fail. Figure 5 shows how ihese different searches employ different mixes of transformations,
often EVE successfully calculates an instruction count. There is a gometimes causing a wide variance in running time. For exam-
significant variation in the success rate across benchmarks. Severab|e transformations based on data flow analysis such as partial-
of the benchmarks pose no problem for EVE. However, for three reqyndancy elimination may take significantly longer than a pass

of the benchmarks, EVE successfully understands the transformed”ke our empty-basic-block clearferOf course, if the code is exe-

programs less than half of the time.

To understand the value of EVE, we need to evaluate how it im-
pacts the results we achieve througbme. We usedACME to run
a randomized hill climber limited t600 total evaluations using ei-
ther EVE or the traditional method of executing each program vari-
ation. We further divided the experiment into two cases: when EVE
fails, we either just execute the code, or ignore the result and try
another sequence. We chose a hill climber because it has been th

cuted, the variation in that execution time will impact overall run-
ning time, as well.

EVE cuts the adaptive compile time in half for many of our
benchmarks and in several cases reduces the time to les30¥tan
of the time needed without it. Notable exceptions ave, fpppp,
andmg. As we showed in Figure 5, EVE fails a significant amount
of time on these programs, because some of the routines in these

Programs have particularly complicated control flow. Interestingly,

most successful technique for finding good optimization sequences¢. 50 presents problems for the EVE analysis but still shows

at this level of effort (generallg00 trials)[15]. At the same time,
the hill climber’s performance is the most sensitive to inaccurate
estimations, which might mean that EVE would fail to find good
solutions. The results, normalized against the performance of our
standard optimization sequence, are shown in Figure 6. Using EVE
in ACME provides performance close to the level of the standard
adaptive compilation system, but without the overhead of repeat-
edly executing the code. EVE’s inability to track the changes in

somecFGs through some optimization sequences does not prevent

AcME from ultimately finding a good sequence. The next section
demonstrates how EVE speeds up adaptive compilatiéyCimEe.

5.2 Running ACME

To determine the effects of EVE on the overall running time of
the AcME compiler, we ran the hill-climbing search algorithm
over our test suite with each éfcME's three execution modes as

a50% decrease in overall compile time. The results are promising
in this normalized view, but it is instructive to examine actual wall-
clock time, as well.

The time required foAcCME to do 100 evaluations ohsieve
under the always-execute mode is approximately one hour. This
is the highest observed for our set of benchmarks, followed by
fpppp at40 minutes,tomcatv at 18.5, andft at 18 minutes. If
we assume that it také®)0 evaluations for the hill climber to find
an acceptable sequence, the time required for nsieve would be
hours if we execute the code for every sequence. With EVE en-
gaged and discarding failed sequences, this wall time would drop to
under20 minutes. The next highest wall time{pppp at just over
3.3 hours for500 evaluations without EVE. This time would drop
to under2 hours, a less dramatic improvement, but still significant.
For tomcatv, the total time would drop from approximatelys
hours tol1 minutes. Forft, 1.5 hours would drop t@5 minutes.

described in the previous section. Because each of the executionWhile the degree of improvement varies, EVE certainly increases
modes can cause the search algorithm to follow different paths, we the range of programs that can be feasibly compiled with an adap-
set a cutoff ofL00 evaluations for each targetVe normalized the tive system.
times using EVE against the time without EVE. Because the search ~ Some of the variations in the normalized results are due to the
algorithm relies on a random-number generator, we ran this entire fact that virtual execution has no effect on the time it takes to
test multiple times using different values for the random seed to apply the compilation sequence to the target program. For example,
explore different areas of the optimization space and give a betternsieve has a simple structure that allows the compilation sequence
picture of the benefits of EVE. The results, averaged across theto complete quickly, so the ratio between transformation time and
multiple runs for each benchmark, are shown in Figure 7. execution time is skewed toward execution time. As a result, virtual
The timing results for these tests vary considerably for a variety execution has a proportionally large benefit in this case. As we said
of reasons. As we said above, the different execution modes will in Section 2, other groups’ work that targets reducing the number
produce different searches by the hill-climbing algorithm. Some
of the transformations take much longer to run than others, and 4In fact, partial redundancy elimination and lazy code motion both require
the insertion of a renaming transformation that is not counted as a separate
pass.

3 Ultimately, ACME ran a full 100 evaluations for each execution mode.
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