
Software Pipelining for Transport-Triggered Architectures

Jan Hoogerbrttgge Henk Corporaal Hans Mulder

Delft University of Technology

Department of Electrical Engineering

Section Computer Architecture and Digital Systems

Abstract

This paper discusses software pipelining for a new class of ar-

chitectures that we call transport-triggered. These architectures

reduce the interconnection requirements between function units.

They also exhibit code scheduling possibilities which are not avail-

able in traditional operation-triggered architectures. In addition the

scheduling freedom is extended by the use of so-called hybrid-

pipelined function utits.

In order to exploit this tleedom, existing scheduling techniques

need to be extended. We present a software pipelirtirtg tech-

nique, based on Lam’s algorithm, which exploits the potential of

!mnsport-triggered architectures.

Performance results are presented for several benchmak loops.

Depending on the available transport capacity, MFLOP rates may

increase significantly as compared to scheduling without the ex~a

degrees of freedom.

As stated in [5] transport-triggered MOVE architectures have extra

irtstxuction scheduling degrees of tkeedom. This paper investigates

if and how those extra degrees influence the software pipelining

iteration initiation interval. It therefore adapts the existing algo-

rithms for software pipelining as developed by Lam [2]. It is

shown that transport-triggering may lead to a significant reduction

of the iteration initiation interval and therefore to an increase of

the MIPS and/or MFLOPS rate.

The remainder of this paper starts with an introduction of the

MOVE class of architectures; it clari6es the idea of transport-

triggered architectures. Section 3 formulates the software pipelin-

ing problem and its algorithmic solution for trrmsport-triggered

architectures. Section 4 describes the architecture characteristics

and benchmarks used for the measurements. In order to research

the influence of the extra scheduling freedom, the algorithm has

been applied to the benchmarks under dfierent scheduling disci-

plines. The next section (5) compares and analysis the measure-

ments. Finally section 6 gives severaf conclusions and indicates

further research to be done.

1 Introduction
2 The MOVE class of architectures

Software pipelining is a well known technique for optimizing

loops for superpipelined and VLJSV like architectures. In software

pipelining the next iteration of 8 loop starts before the current one

end$ it aims at minimizing the initiation interval of successive

iterations. Several algorithms for automatic software pipelining

exist [1,2,3,4]. They differ in complexity and flexibility.

This paper describes and investigates software pipelining for a

class of architectures which we cafl transpor6friggered architec-

tures. In opera[ion-triggered architectures, instmctiotrs specify

operations and require this operation to trigger the transport of

source and destination operands. In lran.rporr-zriggered architec-

tures instructions specify the transport of data only and, therefore,

require the transport to trigger the operations.

AII recent RISC. VLIW. and strperpipehned architectures can be
classified as operation-triggered. The class of MOVE architectures

presented in [5] and certain micro architectures (e.g., [6]) can be

classified as transport-triggered.

Permissionto copy without fee all or part of tbii material is granted pro-

vided that the copies are no! made or distributed for direct commercial
advantage,tbe ACM copyright notice and the t itle of the pubka tion and

its date appear, and notice is given that copying is by permission of the

Association for Computing Machme~. To copy otherwise, or to

republish, requires a fee and/or specitic permission.

(3I 1991 ACM O-89791-460-O/91/Mll/W74 $1.50

MOVE architectures can be viewed as a number of function units

(FUs) connected by some kind of transport network (see figure 1).

By changing the type rmd number of FUs and the connectivity

and capacity of the transport network a whole range of architec-

tures can be implemented; MOVE architectures are therefore ideal

for being tailored to application specific needs. CurrentIy we are

implementing a single chip MOVE prototype architecture.

Figure 1: The MOVE architecture.

In the next subsections we tirst go into some more detaik of the

MOVE concep~ explaining how to program this cIass of architec-

74

tures, and indicate some of its advantages (for a complete quali-

tative analysis see [5]). Second the p@icular implementation of

pipelined FUs is discussed This implementation extends the code

scheduling freedom.

2.1 The MOVE Concept

MOVE architectures are programmed by specifying the necessary

!m+nsport of data values in the transport network. There is only

one type of instruction the move from FU to FU. In generaf,

F(Js are connected to the transport network by way of three types

of registers, operand trigger and result registers. All moves are

than from register to register. General-purpose registers (GPRs)

can be viewed as mon~lc-identity FUs. The function of the three

register types is:

Operand registers: These act as normal generaf purpose regis-

ters, except when an operation is triggered (see below) on

the accompanying FU its contents is used as an operand for

the operation.

Trigger regiaterw A move to a trigger registers causes the start

of an operation on the accompanying FU. The moved value

is used as an operand of the operation. If more operands

are neede~ they are taken from operand registers of the FU.

To handle different operations on a single FU, the trigger

register is mapped into different logical address locations.

Result registers Most FUs are fufly pipelinect, so an operation

can be started in every cycle. When a result of an operation

leaves the pipeline it is placed in the result register of the

FU, from where it can be moved to other FUs.

All FUs contain at least one trigger type of register. Practical

MOVE architectures handle multiple moves in parallel; in this

sense they resemble VLIW architectures.

T@ 4 io r~ -+ add ; trigger addition

. . . ; space for other moves

re + ea ir + sd ; trigger store

Figure 2 The MOVE code for an addition followed by a store.

In order to make the MOVE concept more clear, an example is

given in figure 2. The example shows the atiltion of GPRs r a

and ?b and a store of the result at memory address r.. The code

starts with moving r= and ?b to the operand and trigger registers

of the integer unit (registers io and add). The trigger register

is accessed at the location that causes an addition on the integer

unit. The operand move(s) must always be done before or in the

same cycle as the trigger move. When the result of the addition

leaves the pipeline it is available in the result register of the integer

rmi~ in our example the latency of the integer unit is two, so the

result move crm take place two cycles after the trigger move. The

result move passes the result directfy to the trigger register of

the memory unit. At the same time the address of the store is

placed in the operand register of the memoxy unit. ‘t7hus a store is

tiiggered with the data to be stored, and the address of the store

is supplied via the operand register. Since a store has no result

no result move is needed On average between 1.5 and 2 moves

are necessary per operation.

Flow control operations are afso done by moves. An absolute

jump is simply writing the target address into the program counter,

which is visible in the register address space. Relative jumps are

provided by writing a displacement to the program counter dis-

placement register. Both jumps have delay slots before instructions

at the target addfess are executed.

Conditional execution is supported by guards. Each move can be

guarded. A guarded move g : r= + rb only takes place when the

guard g evaluates to true. In the prototype MOVE architecture g

can be a boolean expression of two boolean values produced by

the compare FU.

Advantages of the MOVE concept

The MOVE concept has several advantages both for implementa-

tion in VLSI and for generating high quality code. It will he clear

that splitting traditional operations into more fimdstnental trans-

port operations will offer exha opportunities for generating high

quafity code. The benefits for the scheduler in relation to softwrue

pipelining wilf become clear in the remainder of this paper. The

most important implementation advantages are

s Efficient transport capacity. On average we need far less

than 3 data transports per operatiom this means that with an

equal amount of metal on a chip (transport busses require a

large amount of chip area!) we can keep more function units

busy.

● Very short cycle time, The cycle time of MOVE architectures

is lower-bounded by the register to register transport time,

which can be very short.

● Flexible architecture. It is very easy to tailor MOVE m-

chitectures to specific applications by changing the transport

capacity (e.g. the number of busses), type of FUs, and the

number of FUs.

● Simplicity. Despite its flexibility MOVE architectures art

very easy to design. They are therefore suitable for automatic

generation within a sificon compiler environment.

2.2 FU Pipelines

Most FUs within MOVE architectures are implemented using a

so called hybrid pipefining mechanism. Figure 3 shows a typical

integer pipeline with a latency of 3 clock cycles.

Current high-performance architectures generally implement

pipelines where either interme&ate pipeline stages continue always

on each clock cycle to the next stage (e.g. [7 ,8]) or intermediate

stages continue only in case a new operation is issued (e.g. [9]).

In hybrid pipefines intermediate values continue to the next stage

on each clock cycle, as far as they do not overwrite results from

previous operations. This offers extra schedrshrrg freedom; re-

sults may be moved from the FUs at arty time after triggering the

operation’. Hybrid pipelines also reduce register usage by using

interfrtdlate stages as temporary storage.

‘Even before the resutt has been calGutak& MOVE architectures implement a

locking mechankm which avoids the insefiion of no-op moves.

75

The algorithm for finding a schedule for a given initiation interval

is a variant of list scheduling; its basic form is given in figure 4.

...
- . Comb. natorH.1 logic

= . Register

~ _ ~ra”~prt ~etwor~

Figure 3: The pipeline of the integer unit.

3 Software Pipelining

Software pipeliniog is scheduling a loop in such a way that a next

iteration starts before preceding iterations have finished. Fwst, the

condhions for a correct schedule and the basic algorithm for find-

ing the optimal schedule are presented. The afgorithm is based on

the work of Lam [2]. Because MOVE architectures are transport-

triggered and make the pipelines visible io the architecture, certain

provisions have to be made to guarantee the correct pipeline usage.

These provisions are descriked next.

3.1 Problem Formulation and Basic Algo-
rithm

The instructions from the loop that needs to be software pipelined

are represented as nodes in a directed graph G = (V, E). The

nodes represent instructions, or in oar case moves. It is rdso

possible that a node represents a collection of scheduled nodes.

In that case we speak of hierarchical reduction (see [2]). Every

node is supplied with a description of its resource needs. Between

the nodes are arcs that describe precedence relations. Each arc

(u, rr) has two labels d(a, v) and P(U, u). The meaning of these

two labels is that v needs to be scheduled at least d(u, v) cycles

after u of the P(U, v)th preceding iteration, that ix

u(u) > u(u) + d(u, u) — Sp(ti, 0),

where u(u) is the cycle in which v is triggered, and s is the

iteration initiation interval, this is the time between the initiation

of two successive iterations.

The problem is finding a schedule u with the lowest possible s

that satisfies the following two constmints:

1. Precedence constraints: V(u, v) E E [a(v) 2 U(U) +

d(u, v) – Sp(u, v)].

2. Resottrw constraints: At every moment no more resources

are used than there are available.

These two constraints give two lower bnunds on the initiation

interval.

SchedufeNodea(V, E,.)

begin
w := A@eme%t(v)

s := {u}
u(v) := o
returnScheduleNextNodea(V, E, S, a)

end

SchedufeNe.tNodea(V, E, S, .]

begin
if V = S then return mxcesn
v := AnElement(V – S)

1 := LowerBound(V, E, S,., a)

u := UpperBound(V, E, S,., a)

S:=su {v}
for U(V) := 1 to u do

if NoReaourceConflicts(S, S) then
if ScheduleNextNodea(V, E, S, a) = auccem then

return succesn
retrim fait

end

Figure 4 The basic algorithm for finding a schedule.

The differences with list scheduling are:

●

●

b

If a resource is used at cycle t, it is also used at t + ks,
where k is an integer number.

In list scheduling a node may have a lower bound on a (or

an upper bound in case of bottom-up scheduling). However

in software pipefining a node may rdso have an upper bound

since G is cycfic. Each node has to be scheduled between

its lower and upper bound.

It is not always possible to schedule each node between its

bounds due to- re;ource constraints.

The algorithm starts with scheduling a node at cycle zao. Next

a second node is taken and it is scheduled at a place between its

lower and upper bounds where enough resources are available.

The remaining nodes rue scheduled in a similar fashion.

The two bounds of a node v are determined by the following two

frmctionx

LowerBound(~ E, S, v,s) =

max{u(u) + ~(d(e) – sp(e))] 1 is a path from u e S tn v}

●Et

UpperBound(V, E, S, v, a) =

min{u(u) – ~(d(e) – sp(e)) I 1 is a path tlom v to u E S},

.61

where S is the set of scheduled nodes.

In contrast to Lam we backtrack (to a certain level) if a node could

not be placed, hying one of the earlier placed nodes at a later cycle,

We found out that without backtracking schedtrles for tmmsport.

triggered architectures are too often non-optimal. Current research

aims at improving the heuristics in order to avoid backtracking.

76

The function Aw?lienzertto in Lam’s algorithm does not take a

random element but uses a heuristic. The element that is selected

is the one horn the ready fist with the lowest upper bound. The

ready list is the following subset of V – S:

ReadyList(~ E, S) =

We have experimented with several other heuristics, and we have

found a better one that uses the same ready list but another se-

lection function. The selection function chooses the node in the

ready list with the highest priority. This priority is determined by:

Priority(v) = rs~ – /?(u(v) – l(v)),

where r(u) is an indication of the scarceness of the resources

that v uses, u(v) and l(u) are the bounds of v, and a and/3 are

weight factors that should be determined with some experiment-

ation. With this heuristic we also consider resource constraints.

Since as s becomes larger the change for a resource conflict be-

comes less frequent, r(v) is divided by s. With this heuristic we

achieved an improvement of more than 570 (the average a/s ~;m)

in comparison with Lam’s heuristic when we do not apply back-

tracking.

When a graph is not strongly connected (there is no path between

every pair of nodes) one or both bounds may not exist. To prevent

this we add arcs to E that have a low d – BP. By doing this we

can guarantee that alf nodes have finite lower and upper bounds.

Due to the low d – sp we do not severly fimit our scheduling

freedom.

Iir Lam’s algorithm, software pipelining takes place in two steps.

In the first step aff strongly connected components (SCCS) are

scheduled and in the second step the scheduled SCCS are reduced

to nodes that form art acyclic graph. This graph is scheduled by a

modified fist scheduling algorithm. We dld not use this two-step

method because when a SCC is scheduled, it does not make use

of the information in previously scheduled SCCS. By using more

information it is possible to make better schedules. The drawback

of our method is the increasing schedrrfing time. In practice there

is not much difference since many loops contain only a single

Sec.

3.2 Handling Pipelines

In transport-triggered architectures traditional instructions are split

into their transport components. This, combined with tfre hybrid

pipeline mechanism of MOVE architectures makes that the re-

source management of FUs has to be changed. It is no longer

possible to see a pipeline as a single resource.

Figure 5: Precedence constraints between moves. Each prece-

dence constraint is labeled with its d and p.

node resnurces

~

use move bus, claim trigger register

rdease operand and trigger register chirrr internal stage

release internal stage, claim result register

use move bus, release result register

Table 1: The resources.

Figure 5 shows how we model an A&i a, b, c operation for a 3-

stage integer FU (ss shown in figure 3). In the MOVE architecture

b + io is a move horn GPR b to the integer operand register io.

Besides using one move slot in the instruction stream, and using

a lransport bus during one cycle, this move also claims the io

register for one or more cycles. The io register is released one

cycle after the move c ~ ado! to the trigger register. On its turn,

this move claims the internal stage of the integer pipeline. Thus

nodes can use, claim, or release resourcxx.

Pipelines have properties that have to Ee modeled in precedence

and/or resource constraints. The two properties are (1) pipefines

have a FIFO stnrctnre, and (2) pipelines have a finite storage ca-

pacity. We model these properties by introducing intemaf moves,

and by treating pipeline stages as resources. Internal moves are

moves tiom an operand register, a trigger register or a pipeline

stage to a result register or a pipeline stage.

Alf four registers inside the unit are resources that need to be

claimed and released afterwards. The precedence constraints be-

tween the moves for an addition are shown in figure 5, and the

resources used, claimed and released by each node are summa-

rized in table 1. For software pipelinirrg we add the indicated

backward arrows. They can be seen as an inter iteration WaR-

dependency, and a forwmd edge can be seen as a intra integration

RaWdependency. We have added these backward edges to model

some resource constraints by prece&nce constraints. These prece-

dence constraints are used by the heuristic in AnElernento. Thu:

these extia arcs are not used for preventing incorrect schedules

but for a better performing heuristic.

4 Benchmark results

The purpose of our measurements is to research the infhrence of

hmqrort-triggering and its extra scheduling degrees of tieedom

on the initiation interval for software pipelined loops. The next

subsections tirat define the architecture used for experimentation,

second the dtiferent schedrrfing disciplines and tinally the mea-

surement results for a muple of benchmarks.

4.1 Architecture Parameters

The MOVE architecture has parameters that are relative easy to

change to the requirements of specitic applications; e.g. transport

capacity, number and type of FLJs, latency of FUs, number of

guards, and the number of GPRs. For the measurements in this

paper we assume FU-parameters as listed in table 2.

With a latency of n cycles, we mean that if en operation is trig-

gered in cycle t, the result can be read in cycle t+n. We assume 1

77

Pu 1% rand

~

Icawom S-

load urmcdmte (ldbi32b)
mt addmmkutlmcticm YO
fp mldophcalw f-.
fp additioqk.bbachon f UO
logml 10

SM aho

cwnpare (fast) gcof
Cmlp-e (slow) We.

pm , branch

—

add, sub
f?nul

fadd, fsub

and, or, am, net
.11, .17, *mv

geq, gne
gt, ge, hi, ha

PC, pcd

. . . .

p.,pcd 2, ~b

.,
“Not a result register, but a boolean uses m Ute evswauon m a guam.

‘A branch delay is one cycle longer thau a jump delay.

Table 2 The functionality of our experimental model.

FU of each type, and a sufficient number of registers. The registers

are 32 bi~ and combined for both integer and floating point val-

ues. All registers are fully interconnected by a transport network

containing 2 or more busses. Each move instruction uses 1 bus

during 1 cycle. Three immediate formats are supported 6, 16 and

32 bit. Short immedates of 6 blt are part of the regular move in-

structions (which are sized 16 bit in the MOVE prototype); longer

immediate have to be read from the instruction registers (ir 1 and

+2), which means that they occupy 1 or 2 move instruction slots.

TR:

pficable, we always place immedlatcs of commutative oper-

ations in the operand register.

In contrast to the OTR-1/2 models, where the operand, trig-

ger and result moves are scheduled at fixed relative positions

(like in the VLIW models), the TR model allows all operand

moves to be scheduled earlier than their corresponding trig-

ger moves. Trigger and result move are still at fixed distance.

FREE: This model allows full scheduling freedom of both the

operand and result moves. It makes use of the capabilities

of the hybrid pipelined FUs which aflow result moves to be

scheduled at any time after the !rigger move. Remark that

for software pipelining it does not make sense to schedule a

result move eorlier than the latency of a FU would permi~

except for code density.

Since we listed the models in an order of increasing scheduling

freedom, the following relation holds for the software pipefine

initiation interval .x

4.2 Scheduling Disciplines

fn order to study the effect of the extra scheduling keedom of

the MOVE architecture we introduce six scheduling disciplines

with increasing degrees of freedom. The firat two dkciplines are

derived from traditional VLIWs; that means that every tradhionaf

instmction has been replaced by its corresponding moves, with-

out applying pcmsible extra optimization which are introduced by

this replacement. The remaining disciplines are transport-triggered

models. They differ in the allowed scheduling freedom. This al-

lows us to determine exactly where the extra speedup has to be

contributed to. The disciplines we

“Minimum idtiaticm interval 8 m,% is shown between parentheses.

VLIW Every instruction is projected on a fixed move pattern.

In this pattern, operand and trigger moves are in the same

cycle, and a result move has to take place exactly a tixed

number of cycles later (depending on the latency of the PIJ).

VLIW-bp This is VLIW with software bypassing. Software by-

passing is overlapping result and trigger (or operand) moves

of RaW-dependent operations. E.g. the result move is- - r o

can take place in the same cycle with the trigger move

To a d when the source field of the trigger move is changed

into ir. Software bypassing is the counter part of hardware

bypassing which has the ssme goal, namely reducing the

latency between RaW-dependent operations.

OTR-1: Extia dead code removal. Splitting inshwctious into their

transport components offers extra optimization opportuni-

ties. Software bypassing introduces dead code. Many re-

sults which go directfy to an operand or trigger register do

not have to be moved to GPRs. The removal of this dead

code both reduces transport and GPR requirements.

OTR-2 Loop invariant code motion. Operand moves which are

invariant within the body of the loop may be placed in the

loop prologue. This optimization is unique for fransport-

triggered architectures. To make this optimization more ap-

Table 3: The measured initiation intervala.

4.3 Benchmarks

We use six loops for studying the effect of dtiferent scheduling

disciplines. Four of them are kernels from the Livermore loops2;

the tiffh loop is the SAXPY loop; the sixth loop is a loop that

increments each element of a floating point vector by one (see

figure 6). Because of its size the Iatter loop is included for analysis

purposes presented in section 5. We shalf calf this loop ‘vector-

increment’.

Table 3 shows the initiation intervals of the six loops, for the

six schedu~mg disciplines with fufl backtracking. The number of

move busses b varies tlom 2 to 5. In addition to the measured

initiation interval s, the minimal intervaf s-i. (determined by the

resource and predecence constraints) is shown between parenthe-

ses. It will be clear that for small L a~i~ will be determined by
the available transport cauacitv. while for lame b the number of. . .
FUs or the precedence constraints bounds ~;n.

2We assume single precision floatins point cakulatiorm

78

for ri3 := rlo to rll do
begin

m := rnernory[rf3]

r3:=?z+l

rrberrmry[ro] := rg

end

5 Analysis of the results

As shown its figure 7, depending on the transport capacity, the

MFLOP rates may increase more than 50% for a sample of liv-

ermore benchmarks. There are several independent factors con-

tributing to this increase, In order to anrdyze these factors we look

in detail at the vector-increment loop as shown in figure 6.

Figure 6 The vector-increment example.

.-—-——-—— —

0.3

.-. Z-------

0.25

,,,

0.2 ,.,.:/” / .
,+/. z

...’/. . ‘
.’:4’ “

0.15 v
2 3 $ 6

* .ov.5bu.ae*
7

Figure 7 Flops/cycle for different scheduling disciplines and

transport capacities.

To make the results more clear, a graphic summary of the table is

shown in figure 7 (for b ranging tkom 2 to 8). This graph displays

how the harmonic mean number of floating point operations (that

is equal to the arithmetic mean of the number of FLOPS/cycle)

increases as the number of move busses grows from two to eight.

The graph is in correspondence with the inequality of the last

subsection.

b k.aml 3 I km?] s kcml I I kcl’ml 12 SAXPY Vec+nc

2 7 (7) 10 (9) 7 (6) 7 (6) 13 (7) 5 (4)

3 5 (5) 9 (6) 5 (4) 5 (4) 7 (5) 4 (4)
4 s (4) s (5) 5 (3) 5 (3) 5 (4) 4 (4)

5 5 (4) 6 (5) 3 (3) 3 (3) 5 (3) 4 (4)

Table 4: The measured initiation intervals without backtracking

for the FREE scheduling discipline.

To indicate the effect of backtracking, we included table 4 that

contains the results for the FRFZ discipline without any back-

tracking. The effect of backtracking on our benchmarks for the

FREE discipline is that the average a/s min decreases from 1.27

tO i .06. when we use Lam-s heuristics for our benchmarks the

average s/amin would be 1.32.

r [1
2,1 add

-2,0 2,0

C3W “2’0 N
load

-2,1 3,0

,1 fpadd

-3,1 &,o

store

a operation-triggered graph.

b transport-triggered graph.

Figure 8: Data dependency graph for the vector-increment loop.

Figure 8 shows the data depen&ncy graph for this loop: (a) for

an operation-triggered iwchitecture and (b) for a transport-triggered

one. In these graphs it is assumed that the index addition is dorx

after the store instruction. Its figuring out the dependencies you

should carefully consider all RaW and WSR hazards.

In going from the VLIW discipline to the FREE discipline the

interval a for 2 move busses reduces tlom 12 to 5 cycles. The

corresponding code schedules for VLIW and FREE are displayed

in figure 9. We distinguish four important factors contributing

to this drastic cycle reduction: (1) software bypassing, (2) doad

code removal, (3) common subexpression elimination (CSE), and

(4) code motion. They are discussed next.

-.

Software Bypassing The difference between VLIW and VLIW-

bp is the result of software bypassing. If there exists a RaW-

79

Till + To

TO+ la
ld -+ r=

1 + fao r2 + factd

. . . t

...
far -+ T.3

l-+io r. -+ add

ro + Sa r3 -+ ad steady state
ir + ro

l-~ --+ la

rli -+ 9c0f ro + gne

9: –9 + pcd

ld ~ rz

1 + fao Tz d fadd J_
far 4 T3

l+io r. h add

To 4 8LZ T3 + ad

m -+ ro

a VfJW dkciptiie.

71(3 4 ro
TO 4 add

ro -+ la

r-l] -+ gcof

r~ -+ sa

ir + add

ro -+ la

g:–2-+pcd

far 4 ad

ro + Ma

ir + add

ro 4 la

far + ad

$’0 + Sa

ir + ro

far + ad

l+io

1 -i fao

ld -+ fadd

ir -+ ro T

ro -+ gne

steady state

ld + fadd &

ir -+ ro

M -+ fadd

b FREE discipline.

Figure 9 The code for the vector-increment loop for 2 different

dkciplines.

dependency between a result move and an operand or trigger

move, then without software bypassing the usage must be after

the result move. So the d-label of the arc that &scribes this de-

pendency is 1. However with software bypassing usage and result

move may overlap, so the d-label now becomes O, look e.g. in

figure 8 between the moves ~a?’ - r q and rs A d. From the

precedence constraints it follows that

The effect of software bypassing is a reduction of the ‘length’
(~ di/ ~ pi) of the cycles in the graph. This means a lower

Smin due to precedence constraints. In lUSCs this bypassing is

also available, however not in software but in hardware. For large

VLfWs this hardware would be very complex. The transport-

higgered architectures however do not need this hardware, they

obtain the same result in software.

Removing Dead Code As a result of software bypassing desd

code may result. E.g. in replaeing -far A r q and rs -+ sd

by far -i sd, it may happen that ?S is no longer five. This

occurs frequently when a the result move produces a temporary

result that is used immediately by a few other operations. In eaeh

case a result move and a register usage is saved. In operation-

triggered architectures there is no possibdity to prevent a value to

be written back to the register tile when all its usages are through

the bypassing hardware. In OTR-1 dead code is removed. In the

schedule of figure 9b we see 2 examples of this optimahzation.

The far -+ r3 and M A rZ moves have been removed.

Common Subexpression Elimination If source operands do not

change in two sucees.sive calculations (using the same FU), the

second operand move may be removed. In our example this results

in 3 moves being placed out of the loop (loop invariant code

motion is a speciaf case of CSE), saving 3 move slots in the

steady state (these moves are 1 ~ fao, 1 ~ io and r II ~

gco f). The effect of this optimization is measured in the difference

between ORT-1 and OTR-2. As shown in figure 7 the savings are

significant (more than 2YZ0 in case of a small transport capacity).

To make this optimization more frequently applicable, constant

operands (immedates in generel) of commutative operations are

supplied via the operand register.

Code Motion fn going from OTR-2 to the FREE scheduling dis-

cipline we further relax the scheduling constraints for the operand

and result moves. These moves no longer have to be put at fixed

distances of the trigger move (ss is the case its operation-triggered

architectures). As shown in figure 7 there is an importrmt gain

by decoupling the operand move from the trigger move. Dceou-

pling operand and trigger moves can even lower the minimal s

due to predecenee constraints. This cart be explained by exam-

ining the graphs of vector increment in figure 8. The cycle that

gives a lower bound for s is from the integer addition, via the

lo@ fp addhion, and store, back to the integer addition. In the

top graph this cycle gives a lower bound of 7/ 1 = 7 cycles. How-

ever for transport-triggered architectures with decoupled operand

moves this bound is 8/2 = 4 cycles. Thus decoupling causes a

lower minimum s, and therefore a better s. Besides relaxing the

precedence constraints, decoupling of operand and trigger moves

reduces the resource requirements of both the transport network

and the GPRs; it may eliminate extia moves to temporary regis-

ters, because results may stay longer in the pipeline, or may be

directly put into operand registers i.s.o. GPRs,

Remark that precedence constraints can also be relaxed by using

regisbr renaming or a second painter. HDwever this introduces

extra register and transport requirements (extra moves). This may

increases ~;m due to the resource constraints.

As wilf be clear from looking at the absolute MFLOP values in

figure 7, the function units are underutilized. This means that we

have to apply some combination of loop umolling and register

renaming in order to further reduce precedence constraints and

to keep the FLJs more busy. This is a topic of further research.

Anyhow, the amount of required renaming is lower for trrmsport-

higgered architectures.

80

6 Conclusions and Research

In this paper represented a method for software pipeliningon

transport-triggered architectures and compared the results with

operation-triggered architectures. Measured in MFLOPS we ob-

served speedups up to 50% depending on the transport capacity

of thetransport network connecting the frmction units and general

purpose registers. The main factors contributing to this speedup

are

c Scheduling transport instead of operations gives extia

scheduling freedom and allows for extra optirnizations on

the transport level like: operand and trigger move code mo-

tion, common subexpression efirnination and loop-invariant

code motion.

c On average the number of transport operations per operation

is far less than 3. This means that if 3 busses are avail-

able per operation, their usage is rather low. In transport

triggered architectures we have full control over bus usage.

This means tha~ given a certain transport capacity, we can

keep more function units busy.

● Modeling pipelines with intemrd nodes is an effective method

for modefing hybrid-pipelined function units. It allows for

decoupling operand and result moves from the trigger move,

leading to reduced resource requirements on transport and

general purpose register requirements, and also reducing

precedence constraints.

● Bypassing is important for reducing precedence eonstiaints.

Transport-triggered architectures can realize bypassing in

software; they do not need the bypassing hardware, which

can become complex for large VLIWS.

Baaed on our experiments so far, we rue rather optimistic about

the use of Wnsport-triggered architectures. We like to extend

our research about software pipelining to larger architectures with

more inhomogeneous transport networks. E.g. it is obvious that

between integer and floating point units we do not need a large

connectivity.

Currently we are developing a prototype transport-triggered

MOVE architecture. A retargetable basic block scheduling com-

piler (bawd on GCC) and a simulator are afready operational. The

functionality, numker of function units, and transport capacity can

essify be changed At present we try to integrate the software

pipelining tool, as described in this paper, into this general com-

piler framework.

Research is going to find better heuristics that efiminate the need

for backtracking. Another important research topic is the inchr-

sion of register renaming and ioop unrolling in order to lower

precedence constraints and to keep function units busy.

References

[2] Monica Lam. A Systolic Array Optimizing Compiler. Tiw

Kluwer International Series in Engineering and Computer Sci-

ence, Kfuwer Academic Publishers, Norwell, Massachusetts,

1989.

[3] Kemrd Ebcio~lu and Toshio Nakatani. A New Compila-

tion Technique for Parallelizing Loops with Unpredictable

Branches on a VLIW Architecture. In Proceedings of &
Second Workshop on Programming Languages and Compil-

ers for Parallel Computing, University of Illinois at Urbana-

Champaign, 1989.

[4] B. Su and J. Wang. Loop-camied dependence and the general

urpr software pipelining approach. In Proceedings of HICSS-

24, Vol. 2, pages 366-372, January 1991.

[5] Henk Corporaal and Hans (J. M.) Mukier. Move: a framework

for high-performance processor design. In Supercompuiing-

91, Albuquerque, November 1991.

[6] Elliott I. Organick and James A. Hinds. lnferpreting Ma-

chines: Architecture and Programming of the B1700JB1800

Series. operating and Programming systems series, North-

Holland, 1978.

[7] B.R. Rau et al. The cydra 5 departmental supercomputer, de-

sign philosophies, decisions, and trade-offs. lEEE Computer,

January 89.

[8] Trace technical summary. Multiflow Computer Inc., June

1987.

[9] i860 64-bit Microprocmsor Programmer’s Reference Manual.

Intel, 1989.

[1] Alexander Aiken and Alexandru Nicolau. Optimal LQop

Parallefixation. In Proceedings of the SIGPLAN’88 confer-
ence on Programming Language Design and Implementation,

pages 308–317, AtlantA Georgia, June 1988.

81

