
Adaptive Compilation

Yi-Fan Tsai



Outline

� Overview

� Phase Ordering Problem

� Determining Good Optimization Settings



Overview

� The goal of adaptive compilation is to find the 

best combination of optimizations and 

parameters



Obstacles

� The large amount of time that the systems 

have used

� The complexity inherent in a feedback-driven 

adaptive system



Addressed Problems

� Phase ordering problem
� Prasad A. Kulkarni, David B. Whalley, Gary S. 

Tyson, Jack W. Davidson. Evaluating Heuristic 
Optimization Phase Order Search Algorithms, In 
CGO 2007.

� Determining good optimization settings
� John Cavazos, Grigori Fursin, Felix Agakov, 

Edwin Bonilla, Michael F.P. O’Boyle, and Olivier 
Temam. Rapidly Selecting Good Compiler 
Optimizations using Performance Counters, In 
CGO 2007.



Phase Ordering Problem

� Each optimization phase may create or 

destroy specific conditions of other phases.

� Finding the best sequence of optimization 

phases to apply is known as the phase 

ordering problem.



Obstacles

� The relationship and interactions between 

optimization phases remain ill-understood.

� The space of all possible orderings of 

optimization phases is huge since

� Numerous different optimization phases

� Different sequence lengths are allowed

� Repeating phases is allowed



Exhaustive Exploration

� Nodes represent distinct function instances

� Edges represent transitions on application of 
an optimization phase



Search Space Properties



N-Lookahead

� The algorithm scans N levels to select the 
phase that leads to the best result

� The result shows the unpredictable nature of 
phase interactions



Hill Climbing



Simulated Annealing

� The increase in the number of steps to local 
optimal does not translate into any significant 
performance improvement



Greedy Algorithm

� The best achievable performance, 1.1% worse 
than optimal, is slightly worse than that for the 
hill climbing algorithm (0.02%)



Leaf Sequences

� Leaf function instances are those that cannot 

further modified by the application of 

additional optimization phases.

� The sequences leading to leaf function 

instances are called leaf sequences.



Properties of Leaf Sequences

� The performance is typically closely optimal.

� The leaf instances comprise a significant 

portion of optimal instances and a very small 

portion of the total space.



Modified Genetic Algorithm

� The modified algorithm handles the new 
sequences by squeezing out the dormant 
phases and extending it with randomly 
generated phases to get a leaf sequence.



Modified Random Search

� The modified algorithm only considers leaf 
sequences



Determining Good Optimization 

Settings

� Automatically selecting the best set of 
compiler optimizations for a particular program 
is a difficult task.

� The static code features can only characterize 
local code constructs.



Motivation

� The information obtained from performance 
counters is a compact summary of a 
program's dynamic behaviour.

� Example: The graph shows that the program 
has a much number of memory accesses.



Example

� Generating 32-bit code may be only useful for 
a few programs which have lots of variables of 
the type long and/or pointers



Optimization Selection Based on 

Performance Counters

� Extract the performance counter features by 
running the target program.

� Feed this feature vector to the trained model, 
and then get the output of a probability for 
each optimization.

� Sample from the this probability distribution to 
generate the a optimization setting.



Model Construction

� The model is built using a training set.

� Use logistic regression to determine for each 
optimization the probability.



Performance

� This method achieves a speedup compatible 
to the combined elimination algorithm but with 
much fewer evaluations.

� The performance counters are significantly 
better for characterizing large programs with 
complex control flow.



Questions?


