Adaptive Compilation

Yi-Fan Tsai

Outline

e Overview
e Phase Ordering Problem
e Determining Good Optimization Settings

Overview

e The goal of adaptive compilation is to find the
best combination of optimizations and
parameters

Obstacles

e The large amount of time that the systems
have used

e The complexity inherent in a feedback-driven
adaptive system

Addressed Problems

e Phase ordering problem

Prasad A. Kulkarni, David B. Whalley, Gary S.
Tyson, Jack W. Davidson. Evaluating Heuristic

Optimization Phase Order Search Algorithms, In
CGO 2007.

e Determining good optimization settings

John Cavazos, Grigori Fursin, Felix Agakov,
Edwin Bonilla, Michael F.P. O’Boyle, and Olivier
Temam. Rapidly Selecting Good Compiler
Optimizations using Performance Counters, In
CGO 2007.

Phase Ordering Problem

e Each optimization phase may create or
destroy specific conditions of other phases.

e Finding the best sequence of optimization
phases to apply is known as the phase
ordering problem.

Obstacles

e The relationship and interactions between
optimization phases remain ill-understood.

e The space of all possible orderings of
optimization phases is huge since
Numerous different optimization phases
Different sequence lengths are allowed
Repeating phases is allowed

Exhaustive Exploration

e Nodes represent distinct function instances

e Edges represent transitions on application of
an optimization phase

(b) Depth—first Traversal

Search Space Properties :

— % nodes touched in the DAG
------- avg local minima % distance from optimal
— — % (avg. active seq. length / batch seq. length)

100 -

80 ——— e

------- % (num. minima / total samples)
——— % (num global minima / total minima)
— — % functions for which at least one sample reached optimal

M
60

40

20

U I I 1 1 |]

....................

1 1.6 2 25 3 35 4 45
Multiple of Batch Sequence Length

(a) Local Minima Information

100 e
/____,_,
80
o
60 7
20
¢ +—r—— T T T T

1 i5h 2 25 3 a5 4 45
Multiple of Batch Sequence Length

(b) Global Minima Information

N-Lookahead

e The algorithm scans N levels to select the
phase that leads to the best result

e The result shows the unpredictable nature of
phase interactions

[.ookahead
] 2 3
q

% Performance | 22.90 | 14.64

N
]
N

Hill Climbing

[TR % B o

% best perf. distance from opfimal
------- avg. steps to local minimum

———
| IS N PR DN o) N RIS T RN [PR SN (R R s P IR CRR SORE B B T R B DN TR P R RN SR B N P PROE MY B [[|

° 9, % % ®_% S
NP gR Bk M2 9D BB a2 B FeP i Bgs

Multiple of Batch Sequence Length

60
o0
40
30
20
10

— avg. % iterations reaching optimal
% avqg. perf. distance from optimal

- —— T

/_w-_d,;—l-'_'_
\\
e —
T T T T T T T T T LI LI T T T T T 1 T T T T T T 1 T T T T T T T T T T 11T T 1 1
= L S - U N - - S s T O W
’__, Ny | 17 0 :h'}»"' T R D 4,0 ";'{b_.. P o -\\-'@_..

Multiple of Batch Sequence Length

(a) Local Minima Information

(b) Global Minima Information

Simulated Annealing

e The increase in the number of steps to local
optimal does not translate into any significant

performance improvement

n
o
I

e
o

7S]
o

M
o

l
——— OoUoooy

Steps to Local Minimum
o

o

Temp + Step

Greedy Algorithm

e The best achievable performance, 1.1% worse
than optimal, is slightly worse than that for the
hill climbing algorithm (0.02%)

— Best — Average

) ha
ch

o

N

5 ‘* \f\

% e B = &0 9 A

Multiple of Batch Sequence Length

=
o

i
(=}

Performance from Optimal

=]

Leat Sequences

e Leaf function instances are those that cannot
further modified by the application of
additional optimization phases.

e The sequences leading to leaf function
instances are called leaf sequences.

(b) Depth—first Traversal

Properties of Leat Sequences

e The performance is typically closely optimal.

e The leaf instances comprise a significant
portion of optimal instances and a very small

portion of t

90 -
85 H

8oL
10]

% function instances

a8

2 N & O
R e e N Ly

ne total space.

1 1011021031ﬂ41l}51ﬂﬁ10?1ﬂﬂ109 =1.1
perf/optimal perf.

Multiple of Batch Sequence Length

(a) Performance

000

0000

0000
. : : b

Modified Genetic Algorithm :

e The modified algorithm handles the new
sequences by squeezing out the dormant
phases and extending it with randomly
generated phases to get a leaf sequence.

— All Sequences - Leaf Sequences — All Sequences — Leaf Sequences
'E'_Eﬁ 2 \\\ g % \\
£,
£% 2l 5
;“.—E BNerrer \\’\‘ E R o T o o T o o

Multiple of Batch Sequence Length

(b) Cost

Modified Random Search e

e The modified algorithm only considers leaf

sequences

% Performance from
Optimal

e . D % |
th o e O M

=

— All Sequences — Leaf Sequences

L S T B T I« T~ B T, -
r;,\ o- ;aq" r‘\’\ - qqr > i

Muitiple of Batch Sequence Length

Number of Attempts

180
170
160
150
140
130
120
110
100

— All Sequences — Leaf Sequences
L}
-

VIV

\\.r‘/\“’\ SR P
—_— N 7 —r
v

N B A O A L O e 9
il n;f’j @ b'% A cas‘f’:7 S

Multiple of Batch Sequence Length

(a) Performance

(b) Cost

Determining Good Optimization
Settings

e Automatically selecting the best set of
compiler optimizations for a particular program
IS a difficult task.

e [he static code features can only characterize
local code constructs.

Motivation

e The information obtained from performance
counters is a compact summary of a
program'’s dynamic behaviour.

e Example: The graph shows that the program
has a much number of memory accesses.

] i]

S— A R
B o L '.'_'F.'r"i'.i'-.—.—:".'r'ﬂ.—r—."}"_-"f.’:_—
= Jt,

ﬂ ! ;_ﬁ;;g;n'n';'n';NHa"'“n"“H‘ﬂ

Example

e Generating 32-bit code may be only useful for
a few programs which have lots of variables of
the type long and/or pointers

Perl Cnirs

Eelagwe o —ol

Optimization Selection Based on
Pertormance Counters

e Extract the performance counter features by
running the target program.

e Feed this feature vector to the trained model,
and then get the output of a probability for
each optimization.

e Sample from the this probability distribution to
generate the a optimization setting.

Model Construction

e The model is built using a training set.

e Use logistic regression to determine for each
optimization the probabillity.

Performance

e [his method achieves a speedup compatible
to the combined elimination algorithm but with
much fewer evaluations.

e The performance counters are significantly
better for characterizing large programs with
complex control flow.

Questions”?

