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Overview

e The goal of adaptive compilation is to find the
best combination of optimizations and
parameters



Obstacles

e The large amount of time that the systems
have used

e The complexity inherent in a feedback-driven
adaptive system



Addressed Problems

e Phase ordering problem
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Optimization Phase Order Search Algorithms, In
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e Determining good optimization settings
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Phase Ordering Problem

e Each optimization phase may create or
destroy specific conditions of other phases.

e Finding the best sequence of optimization
phases to apply is known as the phase
ordering problem.



Obstacles

e The relationship and interactions between
optimization phases remain ill-understood.

e The space of all possible orderings of
optimization phases is huge since
Numerous different optimization phases
Different sequence lengths are allowed
Repeating phases is allowed



Exhaustive Exploration

e Nodes represent distinct function instances

e Edges represent transitions on application of
an optimization phase

(b) Depth—first Traversal



Search Space Properties :

— % nodes touched in the DAG
------- avg local minima % distance from optimal
— — % (avg. active seq. length / batch seq. length)
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(b) Global Minima Information




N-Lookahead

e The algorithm scans N levels to select the
phase that leads to the best result

e The result shows the unpredictable nature of
phase interactions
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Hill Climbing
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(b) Global Minima Information




Simulated Annealing

e The increase in the number of steps to local
optimal does not translate into any significant

performance improvement
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Greedy Algorithm

e The best achievable performance, 1.1% worse
than optimal, is slightly worse than that for the
hill climbing algorithm (0.02%)
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Leat Sequences

e Leaf function instances are those that cannot
further modified by the application of
additional optimization phases.

e The sequences leading to leaf function
instances are called leaf sequences.

(b) Depth—first Traversal



Properties of Leat Sequences

e The performance is typically closely optimal.

e The leaf instances comprise a significant
portion of optimal instances and a very small

portion of t
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Modified Genetic Algorithm :

e The modified algorithm handles the new
sequences by squeezing out the dormant
phases and extending it with randomly
generated phases to get a leaf sequence.
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Modified Random Search e

e The modified algorithm only considers leaf

sequences

% Performance from
Optimal

e . D % |
th o e O M

=

— All Sequences — Leaf Sequences

L S T B T I« T~ B T, -
r;,\ o- ;aq" r‘\’\ - qqr > i

Muitiple of Batch Sequence Length

Number of Attempts

180
170
160
150
140
130
120
110
100

— All Sequences — Leaf Sequences
L}
-

VIV

\\.r‘/\“’\ SR P
—_— N 7 —r
v

N B A O A L O e 9
il n;f’j @ b'% A cas‘f’:7 S

Multiple of Batch Sequence Length

(a) Performance

(b) Cost




Determining Good Optimization
Settings

e Automatically selecting the best set of
compiler optimizations for a particular program
IS a difficult task.

e [he static code features can only characterize
local code constructs.



Motivation

e The information obtained from performance
counters is a compact summary of a
program'’s dynamic behaviour.

e Example: The graph shows that the program
has a much number of memory accesses.
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Example

e Generating 32-bit code may be only useful for
a few programs which have lots of variables of
the type long and/or pointers
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Optimization Selection Based on
Pertormance Counters

e Extract the performance counter features by
running the target program.

e Feed this feature vector to the trained model,
and then get the output of a probability for
each optimization.

e Sample from the this probability distribution to
generate the a optimization setting.



Model Construction

e The model is built using a training set.

e Use logistic regression to determine for each
optimization the probabillity.



Performance

e [his method achieves a speedup compatible
to the combined elimination algorithm but with
much fewer evaluations.

e The performance counters are significantly
better for characterizing large programs with
complex control flow.



Questions”?



