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Compiler Correctness

• Compiler produces correct output

• That is, generated assembly code is 
functionally equivalent to the high-level 
code



Traditional Approaches

• Formal compiler verification

– Hand proofs

– Mechanical proofs

• Testing

– Automatically generating test patterns and 

checking validity of corresponding outputs



Why Traditional Approaches Do 

Not Work

• Formal compiler verification

– Verify algorithm rather than implementation

– Not automatic

• Requires human intervention and expertise

– Must redo proofs if compiler changed

• Testing

– Generated patterns are usually inadequate



Why Traditional Approaches Do 

Not Work (cont.)

• Cannot handle optimizing compilers

– Place many restrictions on optimizations



Better Approach

• Proving full correctness is too expensive

• Instead, employ a method that is less 
expensive and yet gives satisfactory 
confidence

– Check individual compilations



Touchstone: A Certifying Compiler

• Compiles a strongly typed subset of C into 
optimized DEC Alpha assembly language
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Touchstone – Advantages

• Easy to employ

• Also can transform conventional compilers 
to certifying ones

• Can be applied to any type safe language

• Places no restriction on optimizations 
allowed

• Only VCGen and Proof Checker have to 
be correct



Touchstone – Disadvantages

• Applies to only type-safe languages

• But C is not type-safe



Touchstone – Conclusion

• Does not fully address problem

• But is novel work and excellent starting 
point
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System Rules Violations

• What are the some of the ways we might 
find violations of system rules in a 
program?

– Model Checkers

– Theorem Provers

– Testing

– Code Inspections

– Compilers



Metal-Level Compilation

• System specific “meta” semantics

– Essentially these are rules for a systems API’s

– Implemented as runtime extensions to the 

compiler

– Capable of discovering errors in complex 

code as well as optimization opportunities



Extensions to the xg++ Compiler

• xg++ is and extensible compiler based on 
g++

• Extensions are written in a high level state 
machine language called “metal”



How Metal Extensions Work

• Metal is compiled using the mcc compiler 
and dynamically linked into xg++ at 
compile time

• Pattern comparisons are done based on 
xg++’s internal representation



Metal Example



What Can Be Checked

• Assertion side-effects

• Checking assertions of constant scalar 
variables

• Temporal orderings of system calls

• Memory management

• Global checking of blocking routines and 
reference counts



Memory Management Error Counts
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Blocking with an Interrupt Disabled
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Advantages\Disadvantages

• What advantages and disadvantages does 
this approach have?


