
Advanced Languages

Presented by Hormoz Zarnani and Eric Malloy



The Design and Implementation of a 
Certifying Compiler

George C. Necula and Peter Lee



Compiler Correctness

• Compiler produces correct output

• That is, generated assembly code is 
functionally equivalent to the high-level 
code



Traditional Approaches

• Formal compiler verification

– Hand proofs

– Mechanical proofs

• Testing

– Automatically generating test patterns and 

checking validity of corresponding outputs



Why Traditional Approaches Do 

Not Work

• Formal compiler verification

– Verify algorithm rather than implementation

– Not automatic

• Requires human intervention and expertise

– Must redo proofs if compiler changed

• Testing

– Generated patterns are usually inadequate



Why Traditional Approaches Do 

Not Work (cont.)

• Cannot handle optimizing compilers

– Place many restrictions on optimizations



Better Approach

• Proving full correctness is too expensive

• Instead, employ a method that is less 
expensive and yet gives satisfactory 
confidence

– Check individual compilations



Touchstone: A Certifying Compiler

• Compiles a strongly typed subset of C into 
optimized DEC Alpha assembly language



Structure of Touchstone

Compiler VCGen Prover
Proof

Checker

Proof/

CE

Certifier
Type Spec

Annotated
Code

Safety Predicate
Proof



Touchstone – Advantages

• Easy to employ

• Also can transform conventional compilers 
to certifying ones

• Can be applied to any type safe language

• Places no restriction on optimizations 
allowed

• Only VCGen and Proof Checker have to 
be correct



Touchstone – Disadvantages

• Applies to only type-safe languages

• But C is not type-safe



Touchstone – Conclusion

• Does not fully address problem

• But is novel work and excellent starting 
point



Checking System Rules Using System-
Specific Programmer-Written Compiler 

Extensions

Dawson Engler, Benjamin Chelf, Andy Chou and Seth Hallem

Computer Systems Laboratory

Stanford University

Standford, CA 94305



System Rules Violations

• What are the some of the ways we might 
find violations of system rules in a 
program?

– Model Checkers

– Theorem Provers

– Testing

– Code Inspections

– Compilers



Metal-Level Compilation

• System specific “meta” semantics

– Essentially these are rules for a systems API’s

– Implemented as runtime extensions to the 

compiler

– Capable of discovering errors in complex 

code as well as optimization opportunities



Extensions to the xg++ Compiler

• xg++ is and extensible compiler based on 
g++

• Extensions are written in a high level state 
machine language called “metal”



How Metal Extensions Work

• Metal is compiled using the mcc compiler 
and dynamically linked into xg++ at 
compile time

• Pattern comparisons are done based on 
xg++’s internal representation



Metal Example



What Can Be Checked

• Assertion side-effects

• Checking assertions of constant scalar 
variables

• Temporal orderings of system calls

• Memory management

• Global checking of blocking routines and 
reference counts



Memory Management Error Counts

35261132Total

0002Underflow

0037Use After Free

134944Error Leak

249979No Check

False 

(OpenBSD)

Bug 

(OpenBSD)

False 

(Linux)

Bug 

(Linux)

Violation



Blocking with an Interrupt Disabled

494~3200Interrupt Flag 

Restore

124~180Bottom Halves of 

Interrupt

26083-Total

6344~5800Interrupt Restore

201-Double Unlock

31-Double Lock

11329~5400Holding Lock

False 

Positive

BugAppliedCondition



Advantages\Disadvantages

• What advantages and disadvantages does 
this approach have?


