
Two High-Throughput
Architectures and

the Compilers Who
Love Them
A Talk for 15745-s07 by

Ronit Slyper - rys@cs.cmu.edu
Jim McCann - jmccann@cs.cmu.edu

(with diagrams borrowed from IBM and NVIDIA)

Motivation

Motivation

Motivation

Motivation

!"#"$#%&' ()&&*+'#,-./0123456-789):

$.;918-43<0#=-/;9

>)?#09012@

> 6-/A.;8#/203B4

!"#"$#%&' ()&&*+'#,-./0123456-789 C&

$-@D.212#$;1-@0

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

!"#"$#%&' ()&&*+'#,-./0123456-789 C*

6;B4210#E-8#F-<-@-13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 C)

G2H1#,2428;13-4#)?#<;1-@

Power

Controller

Wireless

MagnetDrivers

Sensors

Display

I=JK#G-L2@M28#*NO#)&&'

!"#"$#%&' ()&&*+'#,-./0123456-789 ::

;3801#<12=>#;34/#?4/#.-@?.3A2

!"#"$#%&' ()&&*+'#,-./0123456-789 :'

B30183CD12/#E-@?.3A?13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 :F

G?4/.34H#,8?34#I-D4/?8320

!"#"$#%&' ()&&*+'#,-./0123456-789 :J

K2L1#<12=>#$82?12#K217-8M

N O02#03P=.2#.-@?.#8D.20#1-#Q-8P#
R328?8@R9

N *&#.342#=8-H8?P#/-20#1R30S

N E-@?.#-4.9#/2@303-40#! ,.-C?.#2QQ2@1

13P2

!"#"$#%&' ()&&*+'#,-./0123456-789 :

$.;918-43<0

= >834?#@;1128#A4/28#<-@BA128#<-418-.
3C2CD#B8-?8;@@;E.2#@;1128

= F;1G#1-#1G2#HA1A82
I *#@3<8-4#<AE2/#<;1-@

I $82;13-4#-H#A02HA.#;813H;<10

= $82;12#;#2413<34?#09012@#1G;1#2JB.-820#
KLL#1G2#<-@BA128#0<324<2#300A20#-H#
B8-?8;@@;E.2#@;1128

= >;030#H-8#M941G213<#!2;.319NOA1A82#!-E-10
!"#"$#%&' ()&&*+'#,-./0123456-789 *&

M941G213<#!2;.319#+ $;B1A82

*C $;B1A82#PQ#RES2<1
)C T4<-/2#PQ#@-/2.
PC U8;40@31#/;1;

!"#"$#%&' ()&&*+'#,-./0123456-789 **

M941G213<#!2;.319#+ !2B8-/A<2

P+V#92;80 VW#92;80

!"#"$#%&' ()&&*+'#,-./0123456-789 *)

K#$.;918-43< K1-@X#$;1-@

Motivation

!"#"$#%&' ()&&*+'#,-./0123456-789):

$.;918-43<0#=-/;9

>)?#09012@

> 6-/A.;8#/203B4

!"#"$#%&' ()&&*+'#,-./0123456-789 C&

$-@D.212#$;1-@0

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

!"#"$#%&' ()&&*+'#,-./0123456-789 C*

6;B4210#E-8#F-<-@-13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 C)

G2H1#,2428;13-4#)?#<;1-@

Power

Controller

Wireless

MagnetDrivers

Sensors

Display

I=JK#G-L2@M28#*NO#)&&'

!"#"$#%&' ()&&*+'#,-./0123456-789 ::

;3801#<12=>#;34/#?4/#.-@?.3A2

!"#"$#%&' ()&&*+'#,-./0123456-789 :'

B30183CD12/#E-@?.3A?13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 :F

G?4/.34H#,8?34#I-D4/?8320

!"#"$#%&' ()&&*+'#,-./0123456-789 :J

K2L1#<12=>#$82?12#K217-8M

N O02#03P=.2#.-@?.#8D.20#1-#Q-8P#
R328?8@R9

N *&#.342#=8-H8?P#/-20#1R30S

N E-@?.#-4.9#/2@303-40#! ,.-C?.#2QQ2@1

13P2

!"#"$#%&' ()&&*+'#,-./0123456-789 :

$.;918-43<0

= >834?#@;1128#A4/28#<-@BA128#<-418-.
3C2CD#B8-?8;@@;E.2#@;1128

= F;1G#1-#1G2#HA1A82
I *#@3<8-4#<AE2/#<;1-@

I $82;13-4#-H#A02HA.#;813H;<10

= $82;12#;#2413<34?#09012@#1G;1#2JB.-820#
KLL#1G2#<-@BA128#0<324<2#300A20#-H#
B8-?8;@@;E.2#@;1128

= >;030#H-8#M941G213<#!2;.319NOA1A82#!-E-10
!"#"$#%&' ()&&*+'#,-./0123456-789 *&

M941G213<#!2;.319#+ $;B1A82

*C $;B1A82#PQ#RES2<1
)C T4<-/2#PQ#@-/2.
PC U8;40@31#/;1;

!"#"$#%&' ()&&*+'#,-./0123456-789 **

M941G213<#!2;.319#+ !2B8-/A<2

P+V#92;80 VW#92;80

!"#"$#%&' ()&&*+'#,-./0123456-789 *)

K#$.;918-43< K1-@X#$;1-@

Motivation

!"#"$#%&' ()&&*+'#,-./0123456-789):

$.;918-43<0#=-/;9

>)?#09012@

> 6-/A.;8#/203B4

!"#"$#%&' ()&&*+'#,-./0123456-789 C&

$-@D.212#$;1-@0

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

Switching

Coil

Steel

Sleeve

Display

900Mhz
Radio

PIC
Controller

Drivers

Power

Interface Power

Grid

AlNiCo

Magnet

!"#"$#%&' ()&&*+'#,-./0123456-789 C*

6;B4210#E-8#F-<-@-13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 C)

G2H1#,2428;13-4#)?#<;1-@

Power

Controller

Wireless

MagnetDrivers

Sensors

Display

I=JK#G-L2@M28#*NO#)&&'

!"#"$#%&' ()&&*+'#,-./0123456-789 ::

;3801#<12=>#;34/#?4/#.-@?.3A2

!"#"$#%&' ()&&*+'#,-./0123456-789 :'

B30183CD12/#E-@?.3A?13-4

!"#"$#%&' ()&&*+'#,-./0123456-789 :F

G?4/.34H#,8?34#I-D4/?8320

!"#"$#%&' ()&&*+'#,-./0123456-789 :J

K2L1#<12=>#$82?12#K217-8M

N O02#03P=.2#.-@?.#8D.20#1-#Q-8P#
R328?8@R9

N *&#.342#=8-H8?P#/-20#1R30S

N E-@?.#-4.9#/2@303-40#! ,.-C?.#2QQ2@1

13P2

!"#"$#%&' ()&&*+'#,-./0123456-789 :

$.;918-43<0

= >834?#@;1128#A4/28#<-@BA128#<-418-.
3C2CD#B8-?8;@@;E.2#@;1128

= F;1G#1-#1G2#HA1A82
I *#@3<8-4#<AE2/#<;1-@

I $82;13-4#-H#A02HA.#;813H;<10

= $82;12#;#2413<34?#09012@#1G;1#2JB.-820#
KLL#1G2#<-@BA128#0<324<2#300A20#-H#
B8-?8;@@;E.2#@;1128

= >;030#H-8#M941G213<#!2;.319NOA1A82#!-E-10
!"#"$#%&' ()&&*+'#,-./0123456-789 *&

M941G213<#!2;.319#+ $;B1A82

*C $;B1A82#PQ#RES2<1
)C T4<-/2#PQ#@-/2.
PC U8;40@31#/;1;

!"#"$#%&' ()&&*+'#,-./0123456-789 **

M941G213<#!2;.319#+ !2B8-/A<2

P+V#92;80 VW#92;80

!"#"$#%&' ()&&*+'#,-./0123456-789 *)

K#$.;918-43< K1-@X#$;1-@

Motivation

Motivation

Motivation

Motivation
Stop the
clicking!

Motivation

?

Stop the
clicking!

Motivation

?

Stop the
clicking!

IBM Cell BE NVIDIA G8x

Two Architectures

IBM Cell BE NVIDIA G8x

The “ ” Portion
Your desktop’s main CPUOn-die PowerPC Processor

IBM Cell BE NVIDIA G8x

The “ ” Portion
Even Pipe
Floating/
Fixed
Point

Odd Pipe
Branch
Memory
Permute Dual-Issue

Instruction
Logic

Instr.Buffer
(3.5 x 32 instr)Register File

(128 x 16Byte register)

DMA
(Globally-Coherent)

Local Store
(256 KByte, Single Ported)

branch: 1,2
branch hint: 1,2
instr. fetch: 2
dma request: 3

1

2

3

16 bytes
(one dir)

128 bytes
(one dir)

8 bytes
(per dir)

Chapter 3. Hardware Implementation

!

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

!Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

A set of SIMD multiprocessors with on-chip shared memory.

Figure 3-1. Hardware Model
!

3.2 Execution Model
"!#$%&!'(!)*$+,&!-.'/01!%1!+2+/3)+&!'4!)*+!&+5%/+!-6!+2+/3)%4#!'4+!'$!7'$+!-.'/01!
'4!+,/*!73.)%8$'/+11'$!31%4#!)%7+!1.%/%4#9!:,/*!-.'/0!%1!18.%)!%4)'!;<=>!#$'381!'(!
)*$+,&1!/,..+&!!"#$%?!+,/*!'(!)*+1+!@,$81!/'4),%41!)*+!1,7+!437-+$!'(!)*$+,&1A!
/,..+&!)*+!!"#$&%'()A!,4&!%1!+2+/3)+&!-6!)*+!73.)%8$'/+11'$!%4!,!;<=>!(,1*%'4?!,!*+#)",&
%-+),./)#!8+$%'&%/,..6!1@%)/*+1!($'7!'4+!@,$8!)'!,4')*+$!)'!7,2%7%B+!)*+!31+!'(!)*+!
73.)%8$'/+11'$C1!/'783),)%'4,.!$+1'3$/+1D!

!

14 CUDA Programming Guide Version 0.8!

IBM Cell BE NVIDIA G8x

Operation

Single-threaded

Dual-issue

“Normal”

“Blocks of Threads”! Chapter 2. Programming Model

!

!

The host issues a succession of kernel invocations to the device. Each kernel is executed as a batch
of threads organized as a grid of thread blocks

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Figure 2-1. Thread Batching
!

!

CUDA Programming Guide Version 0.8 9!

IBM Cell BE NVIDIA G8x

Memory
Local Store

(256K)

DMA Engine
to copy data
to and from

the local
store

! Cha er . Pr ra in M el

!

!

Grid

Con tant
Memory

Texture
Memory

Global
Memory

Blo k (0, 0)

Shared Memory

o al
Memory

Thread (0, 0)

Regi ter

o al
Memory

Thread (1, 0)

Regi ter

Blo k (1, 0)

Shared Memory

o al
Memory

Thread (0, 0)

Regi ter

o al
Memory

Thread (1, 0)

Regi ter

A hrea has access he e ice’s DRAM an n-chi e r hr u h a se f
e r s aces f ari us sc es.

i ure - . Me r M el
!

!

C DA Pr ra in ui e Versi n . !

16KB / 16

?? / blocks

Abstraction
of shared
not cached
64KB, 8KB
cache
abstraction of
global w/ spatial
cache and
filtering.

IBM Cell BE NVIDIA G8x

Instruction Latencies

dispatched two per cycle) provided they satisfy the

following condition: the first instruction must come

from an even word address and use the even pipe,

and the second instruction must come from an odd

word address and use the odd pipe. When this

condition is not satisfied, the two instructions are

executed sequentially. The instruction latencies and

their pipe assignments are shown in Table 1.

The SPE’s 256-KB local memory supports fully

pipelined 16-byte accesses (for memory instruc-

tions) and 128-byte accesses (for instruction fetches

and DMA transfers). Because the memory has a

single port, instruction fetches, DMA, and memory

instructions compete for the same port. Instruction
fetches occur during idle memory cycles, and up to
3.5 fetches may be buffered in the instruction fetch
buffer to better tolerate bursty peak memory usage.
The maximum capacity of the buffer is thus 112 32-
bit instructions. An explicit instruction can be used
to initiate an inline instruction fetch.

The SPE hardware assumes that branches are not
taken, but the architecture allows for a ‘‘branch
hint’’ instruction to override the default branch
prediction policy. In addition, the branch hint
instruction causes a prefetch of up to 32 instruc-
tions, starting from the branch target, so that a
branch taken according to the correct branch hint
incurs no penalty. One of the instruction fetch
buffers is reserved for the branch-hint mechanism.
In addition, there is extended support for eliminat-
ing short branches by using select instructions.

Data is transferred between the local memory and
the DMA engine in units of 128 bytes. The DMA
engine can support up to 16 concurrent requests of
up to 16 KB originating either locally or remotely.
The DMA engine is part of the globally coherent
memory address space; addresses of local DMA
requests are translated by an MMU (memory
management unit) before being sent on the bus.
Bandwidth between the DMA and the EIB bus is 8

Table 1. Latencies and pipe assignment for SPE

Instruction Pipe
Latency
(cycles)

arithmetic, logical, compare, select even 2

byte sum/diff/average even 4

shift/rotate even 4

float even 6

integer multiply-accumulate even 7

shift/rotate, shuffle, estimate odd 4

load, store odd 6

channel odd 6

branch odd 1–18

Element Interconnect Bus (96 bytes/cycle)

16 bytes
(one dir)

128 bytes
(one dir)

8 bytes
(per dir)

Cell BE Processor

SPE SPE SPE SPE SPE SPE SPE

PPE

To
External
Memory

To
External
I/O

L1 L2

Figure 1
Organization of Cell BE elements

DMA
(Globally Coherent)

Branch: 1,2
Branch hint: 1,2
Instruction fetch: 2
DMA request: 3

Register File
(128 x 16-byte register)

Even Pipe
Floating/
Fixed
Point

Odd Pipe
Branch
Memory
Permutation

Dual-Issue
Instruction
Logic

Instruction
Buffer
(3.5 x 32
instruction)

Local Store
(256 KB, Single Ported)

2

1

3

SPE

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200662

most float, int ops 2

float inv, 1/sqrt, log 8

int 32-bit mul 8

int 24-bit mul 2

int div, mod “slow”

sin, cos, exp, sqrt 16

float div 18/10

local load/store 2

global load/store 200+

sync 2

Note: latencies sometimes hidden
by swapping thread blocks

IBM Cell BE NVIDIA G8x

Two-ish Compilers

•Single Source to
PPE + SPE

•Complicated
optimizations

NVCC

???

Source Code

“Architecture-Neutral
Assembly”

Executable on video card

IBM Cell BE NVIDIA G8x

The Programmer’s Job

Explicitly specify and
coordinate threads
(no compiler help).

(Optionally) indicate
parallelism.

The Compiler’s Job

IBM Cell BE NVIDIA G8x

The Compiler’s Job

IBM Cell BE

IBM Cell BE

The Compiler’s Job

Provide a “Single Program”
Abstraction

Deal with the Local Store:
•fit code on SPE
•handle global memory access
•prevent instruction starvation
•hide memory latency

IBM Cell BE

The Compiler’s Job

Provide a “Single Program”
Abstraction

Deal with the Local Store:
•fit code on SPE
•handle global memory access
•prevent instruction starvation
•hide memory latency

Vectorization
Scalar Variable Overhead

IBM Cell BE

The Compiler’s Job

Provide a “Single Program”
Abstraction

Deal with the Local Store:
•fit code on SPE
•handle global memory access
•prevent instruction starvation
•hide memory latency

Vectorization
Scalar Variable Overhead

Namely, pad slots
and put in registers

IBM Cell BE

Code Partitioning

and the user program. The SPE driver represents the
SPE binary layout during program execution. It
includes space for a data section, a code section that
contains the runtime partition manager code, the
partition table that identifies partitions based on
their index, and a code buffer that will hold one or
more user SPE code partitions. The user program
binary corresponds with the SPE driver binary in
that the data section and the runtime partition
manager code (including the partition table) are the
same size and are bound to the same starting virtual
addresses. This script also determines how much
space to allocate for the data section and the
partition table when generating the SPE driver
binary. An embedder is used to wrap the SPE
binaries as data sections within PPE-format object
files. These object files are then linked in with the
PPE code, and they exist as data sections in the final
PPE user executable.

Optimizations for code partitioning

With code partitioning enabled in stand-alone mode,
performance is fair when executing partitioned
functions on a single SPE relative to execution on
the PPE. Given the preliminary nature of this work,
these results are encouraging.

There are several opportunities that we are currently
exploring to improve the overall performance of our
code partitioning algorithm. To achieve the best
results, profiling can be used instead of static
estimation. Also, using the actual partition size
rather than the size conservatively estimated in the
compiler can improve the utilization of the local
code buffer significantly. The accurate size of
partitions can be determined if the size of each
function is known. During a first pass, minute

partitioning is performed, and each function is
placed in a separate partition. The user binary is

generated, and the size of each partition (each
function) is extracted and saved for later use. In the
second pass, code partitioning under the actual

buffer size limit is performed, using accurate size
information for each function.

The most promising optimization is to anticipate the
next interpartition call and prefetch the corre-
sponding code partition. This has the potential to

hide the latency incurred when fetching partitions
from system memory. However, this optimization
requires multiple buffers, implying a much smaller

partition size limit. The net effect on performance
will depend on the prefetching algorithm and the
accuracy of the cost model applied.

MEASUREMENTS
We first evaluate the optimized SPE code generation
techniques presented in the section ‘‘Optimized SPE

code generation.’’ Figure 11 presents the reduction
in program-execution time for each optimization
relative to the performance of the original compiler.

We achieved a reduction which ranged from 11 to
51 percent, averaging at 22 percent.

The benchmark programs used here are highly
optimized, SIMDized kernels representative of typical
workloads running on the SPEs. Kernels include a

variable length decoding (VLD) from MPEG (Motion
Picture Experts Group) decoding, a Huffman com-
pression and decompression, an IDEA (International

Data Encryption Algorithm) encryption, an ‘‘LU’’
(lower/upper triangular matrix decomposition), and
a ray tracing (OnerayXY). Also included are numer-

ical kernels such as an FFT (fast Fourier transform), a

Figure 9
Partitioning the call graph

300300

5050
2001000

300 300300

5050
200

300

50

50 50

300

10100

900 300

300

10100

900 600 900
150

900

300

10100

300

10100

300 300 600 300

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200678

Call Graph -- Edges are call frequencies

Greedily collapse functions into same
partition (when they fit) -- minimize inter-

partition calls.

IBM Cell BE

Code Partitioning (runtime)

include an extra dummy parameter. When the

compiler transforms interpartition calls, it need only

change the name of the function being invoked and

set the value of the dummy parameter to be the

function pointer. This also enables the runtime

partition manager to efficiently invoke the target

function, as the arguments for the call are already in

the correct locations based on linkage conventions.

The partitioning algorithm is based on a call graph.

Because individual functions are normally small

enough to fit into the SPE local store, this approach

enables correct partitioning in most cases. Occa-

sionally we encounter large single functions, mostly

due to aggressive optimizations such as function

inlining and loop unrolling. For SPE code, these

optimizations constrain the space available for data

in the local store and may result in additional DMA

operations that adversely impact performance.

Because of this, we avoid excessive inlining and

loop unrolling for SPE code. There are rare instances

in which functions are too large even before

optimizations. In such cases, outlining can be

applied to a portion of the original function,

reducing the size of any single function.

Figure 9 illustrates how the partitioning algorithm
works on an example call graph where the size of

each function (shown inside the circle) is assumed

to be 300, and the limit on the size of a partition

(shown as an oval) is assumed to be 1000. The

result is two partitions with three functions in each

partition, and the estimated number of interpartition

calls is minimized to 150 (calls are shown as labels

on the graph edges).

The schema in Figure 10 shows the process of

compiling and linking an executable that uses SPE

code partitioning. The SPE XL compiler, called

‘‘spuxlc,’’ first compiles SPE source code to object

files. The interprocedural link phase then performs

partitioning and generates multiple object files, one

for each overlaid code partition. It also generates an

object file containing a data section that defines all

global data. The SPE linker is then used to produce

two different SPE binaries: the generic SPE driver

Embedded
SPE Driver Embedded

SPE Driver

Figure 8
Execution of an automatically partitioned program

Embedded
SPE Driver

Embedded
User
Program

PPE
Driver

Data
Skeleton

Partition
Manager

Partition
Table

Code
Buffers

Executing
PPE Binary

SPE Execution

Control flow
DMA transfer

Partition
Data

Create SPE
driver thread

Data

Partition
Manager

Partition
Table

Code
Buffers

overlay1

Executing
PPE Binary

SPE Execution

Initialize: Copy
partition data and
root overlay from
system memoryPPE

Driver

Partition
Data

Data

Partition
Manager

overlay1

overlay2

overlay3

overlayN

Data

Partition
Manager

Partition
Table

Code
Buffers

overlay-n

overlay-m

Executing
PPE Binary

SPE Execution

Interpartition call
i) Transfer new
overlay
from system
memory

PPE
Driver

Partition
Data

Data

Partition
Manager

overlay1

overlay2

overlay-m

overlayN

ii) Pass control
to appropriate
address in new
overlay

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 77

IBM Cell BE

Software Cache
Does the hard case right by emulating a data cache.

Tag Index Offset

32-bit address

(4-way set associative, 128-byte lines)

7 bitsX bits25 - X bits

IBM Cell BE

Figure 7 illustrates the cache lookup. Starting with
the address of the desired variable in the primary
slot of an SPE register, instructions are executed to
produce the offset address of the appropriate
directory entry in the tag array (a tag is a label,
which in this case is part of the address and is used
as a comparand to determine if the data is already in
the cache). This task consists of masking all bits in
the address except for those that are used to index
into the tag array. To this offset we add the base
address of the tag array, and using this address, we
load two consecutive quadwords from the array. If
any of the ways contains the tag we are seeking,
then the 128-bit result of the comparison is nonzero,
and we can use this to test for a cache hit. If the
result is zero, this indicates a miss, and the miss
handler is invoked.

Because the call to the miss handler is not expanded

by the compiler until very late in the compilation, it

does not appear to the optimization as a call. This

allows a hit (which we assume to be the common

case) to incur no penalty due to the call setup. We

add the line offset to the line address and load the

desired data. Store processing proceeds in much the

same way, but additional instructions are required

to set the ‘‘dirty bits,’’ that is, bits which indicate

that data in the cache has been modified. It takes

roughly 12 instructions to process a cache hit, and a

similar number to set dirty bits for a store, but

because some of these instructions are dual-issued

and there is often other independent work that can

be scheduled, the cost in cycles is not so high;

nevertheless, it is clearly very important to attempt

Figure 7
Hit logic in the software cache

Tag Array

Data Array

4-Way
Tag
Entry

Cache
Line

Equal ?

Load (,16)

Load (,0)

Rotate hit slot to preferred slot

Load (,0)

Desired Data Quadword

Register Containing Data Address

& 0x3f80 Splat

& 0xffffff80 & 0x07f

High tag bits for hit
 High tag bits
 of other lines
 for this tag

Address of hit cache line
 Addresses
 of other lines
 for this tag

Tag index
Offset in line
Don’t care
Address of tag array (high bits)

Dirty bits in tag entry
Unused space in tag entry
 Register operation result
 Memory location for load

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200674

IBM Cell BE

Instruction Starvation

instruction buffer

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

initiate
refill
after
half
empty

refill IFETCH latency

before
it is too
late to
hide
latency

Odd Pipe
Branch
Memory
Permute

Dual-Issue
Instruction
Logic

Instr.Buffer

DMA
(Globally-Coherent)

Local Store
(256 KByte, Single Ported)
Local Store
(256 KByte, Single Ported)

IBM Cell BE

Instruction Starvation

instruction buffer

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

FP MEM

initiate
refill
after
half
empty

refill IFETCH latency

before
it is too
late to
hide
latency

Odd Pipe
Branch
Memory
Permute

Dual-Issue
Instruction
Logic

Instr.Buffer

DMA
(Globally-Coherent)

Local Store
(256 KByte, Single Ported)
Local Store
(256 KByte, Single Ported)

iFetch

IBM Cell BE

Hiding Memory Latency

Simple: Allocate local variables locally.

Tricky: Use array tiling.

IBM Cell BE

Array Tiling By Example

sum = 0;
for (i = 0; i < 100; ++i) {

 sum += A[i];
}

“Sum A”

IBM Cell BE

Before:

Global Memory:

Local Memory:

sum = 0;
for (i = 0; i < 100; ++i) {

Copy A[i] to Local[0];
sum += Local[0];

}

IBM Cell BE

Before:

Global Memory:

Local Memory:

sum = 0;
for (i = 0; i < 100; ++i) {

Copy A[i] to Local[0];
sum += Local[0];

}

IBM Cell BE

Before:

Global Memory:

Local Memory:

sum = 0;
for (i = 0; i < 100; ++i) {

Copy A[i] to Local[0];
sum += Local[0];

}

IBM Cell BE

Simple Array Tiling:
Global Memory:

Local Memory:

sum = 0;
for (j = 0; j < 100; j += 5) {

Copy A[j:j+4] to Local[0:4]
for (i = 0; i < 5; ++i) {

sum += Local[i];
}

}

IBM Cell BE

Simple Array Tiling:
Global Memory:

Local Memory:

sum = 0;
for (j = 0; j < 100; j += 5) {

Copy A[j:j+4] to Local[0:4]
for (i = 0; i < 5; ++i) {

sum += Local[i];
}

}

IBM Cell BE

Simple Array Tiling:
Global Memory:

Local Memory:

sum = 0;
for (j = 0; j < 100; j += 5) {

Copy A[j:j+4] to Local[0:4]
for (i = 0; i < 5; ++i) {

sum += Local[i];
}

}

IBM Cell BE

Double Buffering:
Global Memory:

Local Memory:

sum = 0;
current = Local;
next = Local + 5;
Copy A[0:4] to current[0:4];
for (j = 5; j < 100; j += 5) {

StartCopy A[j:j+4] to next[0:4];
for (i = 0; i < 5; ++i) sum += current[i];
WaitCopy
swap(next, current);

}

IBM Cell BE

Double Buffering:
Global Memory:

Local Memory:

sum = 0;
current = Local;
next = Local + 5;
Copy A[0:4] to current[0:4];
for (j = 5; j < 100; j += 5) {

StartCopy A[j:j+4] to next[0:4];
for (i = 0; i < 5; ++i) sum += current[i];
WaitCopy
swap(next, current);

}

IBM Cell BE

Double Buffering:
Global Memory:

Local Memory:

sum = 0;
current = Local;
next = Local + 5;
Copy A[0:4] to current[0:4];
for (j = 5; j < 100; j += 5) {

StartCopy A[j:j+4] to next[0:4];
for (i = 0; i < 5; ++i) sum += current[i];
WaitCopy
swap(next, current);

}

IBM Cell BE

Double Buffering:
Global Memory:

Local Memory:

sum = 0;
current = Local;
next = Local + 5;
Copy A[0:4] to current[0:4];
for (j = 5; j < 100; j += 5) {

StartCopy A[j:j+4] to next[0:4];
for (i = 0; i < 5; ++i) sum += current[i];
WaitCopy
swap(next, current);

}

IBM Cell BE

Double Buffering:
Global Memory:

Local Memory:

sum = 0;
current = Local;
next = Local + 5;
Copy A[0:4] to current[0:4];
for (j = 5; j < 100; j += 5) {

StartCopy A[j:j+4] to next[0:4];
for (i = 0; i < 5; ++i) sum += current[i];
WaitCopy
swap(next, current);

}

IBM Cell BE

Triple Buffering

When?

An Observation

IBM Cell BE

An Observation

IBM Cell BE NVIDIA G8x

IBM Cell BE NVIDIA G8x

An Observation

We had plenty to talk
about over here...

...not so much over
here.

Why?

IBM Cell BE NVIDIA G8x

Jim’s Opinion:
Consider the Applications:

Specialized
ApplicationsGeneral-Purpose

Computation

IBM Cell BE NVIDIA G8x

Your Opinion?

